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Abstract

We examine the economic consequences of a bid-based security-constrained centralized unit commitment
paradigm based on three-part offers, which is the prevalent day-ahead market-clearing mechanism in re-
structured electricity markets in the United States. We then compare this approach with an energy-only
auction with self-commitment (such as in Australia) addressing efficiency and pricing as well as the tradeoff
between coordination losses and incentives to bid truthfully.

1. Introduction

The introduction of competition in the electricity supply industry has led to a number of important
questions regarding the need for organized markets to efficiently and reliably coordinate the power system,
and the desirable features and scope of those markets. Complicating electricity market design, power
systems are subject to a number of ‘network’ constraints, in that these constraints depend on the actions of
every market participant and each participant can impose an externality on others using the power system.
Furthermore, generators’ cost structures are nonconvex due to startup and no-load cost components and
generating units are constrained in the time it takes them to startup or shutdown, and the rate at which
they can adjust their output. Thermal units typically have non-zero minimum generating constraints and
‘forbidden zones,’ in which they cannot operate stably, when they are online. Other types of generating
units, such as combined-cycle gas turbines (CCGT) and cascaded watershed hydroelectric systems tend to
have complex constraints restricting their operation. Due to the stochastic nature of demand fluctuations,
generators must be able to adjust their real and reactive power outputs in real-time to ensure constant
load balance. Other random contingencies such as transmission equipment failures or forced generator
outages may also require generators to adjust their outputs within a short period of time to maintain
system reliability. Thus, efficient and reliable operation of the system requires having a sufficient number of
generators online and available to react to variations in load and other contingencies at least cost.

These complexities call into question the ability of decentralized markets, where suppliers respond au-
tonomously to market signals, to efficiently and feasibly commit and dispatch units while respecting power
system constraints. On the other hand, while a centralized market can, in theory, find the most efficient
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dispatch of the generators, the market designs suffer equity and incentive problems. Decentralized designs
can overcome some of these issues but will suffer efficiency losses due to the loss of spatial and temporal co-
ordination among resources. These design issues arise particularly in the context of determining the proper
role for the system operator (SO) in making day-ahead unit commitment decisions.

As electricity markets in various countries have been restructured and have evolved, different approaches
have been used with varying degrees of success. In the US, for example, the move towards standard market
design has led to heavy reliance on open and transparent centralized markets where an SO operates central
energy markets and has the authority to commit and schedule generators based on load forecasts and a mul-
tipart auction with offers specifying nonconvex cost components and unit operating constraints (including
startup and no-load costs, minimum load, energy offer curve, ramp rates, and generator-specific operating
limits) [see Bowring (2006) for one example of such a market in the US]. The unit commitment in these sys-
tems is based on a centralized market-clearing mechanism using a security-constrained bid-based economic
dispatch optimizer. Output levels of generators can then be adjusted at a second set of settlement prices
in a real-time market. The British market, by contrast, started with a centralized market in the original
Electricity Pool and moved to a more decentralized design under the New Electricity Trading Arrange-
ments (NETA) and subsequent reforms under the British Electricity Trading and Transmission Agreements
(BETTA), which were meant to overcome some of the problems experienced under the original centralized
pool design [see Newbery (2006)]. The Australian National Electricity Market relies on self-commitment
by generators who then submit energy-only offers into a single-settlement market [see Moran and Skinner
(2008)]. Although these design differences are driven to a large extent by realities of the market such as asset
ownership, generation mix, and system infrastructure, different ‘philosophies’ regarding the proper role of
centralized markets have also played a role in determining the scope of any centralized markets.

This paper revisits the issue of dispatch efficiency raised by the design of markets based on centralized
versus decentralized day-ahead dispatch and examines other economic implications of the two approaches
attributable to the problem structure of unit commitment optimization and to the ‘cost of anarchy’ in self-
commitment. Unfortunately, in addressing these issues one must recognize that ‘the devil is in the details’
and much of the discussion hinges on the computational complexity of the unit commitment problem. Until
recently, the Lagrangian relaxation (LR) algorithm was the only practical means of solving a commercial-
scale unit commitment. However, advances in optimization technology over the last decade have enabled the
formulation and solution of such problems as mixed-integer programs (MIPs) using branch and bound (B&B)
algorithms [see Streiffert et al. (2005), which discusses the use of MIP in PJM, the largest SO market in the
United States]. One of the issues that has traditionally plagued the use of MIP in solving unit commitment
problems has been the inability to provide a solution within a reasonable amount of time. However, a MIP-
based formulation has significant advantages as it can represent complex units, such as CCGTs, pumped
hydroelectric storage, and cascaded watershed hydro systems, better than LR can. Furthermore, a MIP-
based solution algorithm allows SOs to easily introduce new types of unit-operating and system constraints
to the formulation of the problem and is less dependent on heuristics that must be tailored to specific
resource characteristics. In contrast to LR methods, even if the B&B algorithm times-out before finding
an optimum, one is still left with a primal-feasible solution and a bound on the optimality gap.1 These
intermediate solutions are often found within the same amount of time that an LR-based algorithm takes,
and typically have optimality gaps of the same size or smaller than LR solutions. These overwhelming
advantages and the tractability of MIP algorithms have led SOs, such as PJM, and the California ISO’s
Market Redesign and Technology Update, that started on April 1, 2009, to implement MIP-based solution
methods as opposed to LR. Furthermore, the forthcoming Texas nodal market redesign features centralized
commitment solved using MIP, and ISO New England (ISONE) is similarly exploring a switch from LR to
MIP.

1In theory, the B&B algorithm may time out before finding an integer-feasible solution, in which case heuristics or an
alternative solution method would have to be employed. Indeed, Streiffert et al. (2005) mention the concern when introducing
MIP to the PJM market that the B&B algorithm could time out without finding a feasible solution. They overcame this
issue by running the old LR-based algorithm in parallel as a backup. This was eventually phased-out due to the excellent
performance of the MIP.
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Due to the computational complexity of unit commitment problems and limited solution times, SOs that
implement B&B-based algorithms do not solve their unit commitment problems to complete optimality or
prove that the best solution found is optimal.2 PJM, for instance, allows its MIP optimizer to run within
a certain period of time or until the optimality gap is below some maximal threshold, and uses whatever
intermediate integer-feasible solution the solver has found. An obvious issue raised in using MIP to solve the
commitment is, therefore, how robust the solution is in terms of economic efficiency and fairness to market
participants. Such issues have been studied in the context of LR-based unit commitment by Johnson et al.
(1997). Sioshansi et al. (2008a) reexamined the issue under a MIP formulation for a commercial-scale unit
commitment problem based on an ISONE data set and solved to optimality with a B&B algorithm.

We will review these results and discuss their policy implications with regards to the implementation
of a centralized day-ahead market based on a security-constrained bid-based economic dispatch. We then
compare these results to an alternative design based on self-commitment and an energy-only single-settlement
auction wherein generators offer energy supply curves and are paid only for the energy they sell. We review
simulation studies of such a decentralized approach conducted by Sioshansi et al. (2008b) using the same
ISONE data employed for the centralized MIP-based approach. The decentralized market is modeled as a
simultaneous Walrasian-type day-ahead auction for twenty-four hours in which generators decide whether
to commit their units (i.e., turn them on) and how much energy to offer in order to maximize their profits
at the posted energy prices. The auctioneer will iteratively adjust the vector of hourly energy prices until
the demand is served by the generators. We model our decentralized self-committed market after the
multiround auction design proposed by Wilson (1997), although our specific market design differs slightly.
The Wilson (1997) proposal called for generators and loads to iteratively submit one-part offers, subject
to some proposed activity rules,3 specifying prices at which they would be willing to supply and consume
energy until converging to an equilibrium set of prices, commitments, and dispatches. Our simulated market,
instead, assumes that the auctioneer iteratively adjusts prices and the generators declare how much energy
they are willing to provide at those set of prices. This market could also allow for loads to participate by
declaring how much energy they would consume at the price vector given by the auctioneer, but because
we assume loads to be fixed, the demand side does not participate in our market. It is worth noting that
the Wilson (1997) proposal was geared towards the original California market design, and while some of the
elements were used, the design eventually settled on a simpler single-round auction. We do not advocate or
refute this iterative auction design but rather employ it as an algorithm that will converge to a set of hourly
energy prices that are consistent with individual rationality of the generators regarding their commitment
and output decisions over a 24-hour period. Our analysis focuses on the resulting energy prices, which
should be independent of the process by which they are arrived at.

The comparison between the central unit commitment and decentralized market paradigms is based on
competitive benchmarks assuming that generators do not behave strategically in manipulating their offers
in the two markets and instead submit truthful offers. This comparison shows the extent of productive
efficiency losses from a decentralized market and the distributional consequences of the two designs but does
not capture incentive effects that will be discussed qualitatively. Sioshansi and Nicholson (2007) consider
the incentive properties of the two market designs using a simplified symmetric duopoly model. They show
that although generators generally have incentives to overstate their costs, offer caps can be designed to
make the two markets cost equivalent. Sioshansi and Nicholson (2007) assume, however, that the SO is
able to solve the commitment problem to optimality in the centralized market, and do not account for the
incentive effects of suboptimal unit commitments.

The simulation results discussed in this paper are not new. They are pulled based off of the two previous
papers by the authors. The main contribution here is a comparative examination of these results that
highlights the tradeoffs between the centralized and decentralized approaches to day-ahead unit commitment
and policy implication of such tradeoffs. We also examine the market design implications of nonconvexities
and computational complexity of the auction clearing engine. To clarify some of these issues we produce a

2Since LR-based algorithms almost invariably have a duality gap, they are not solved to optimality either.
3The purpose of the activity rules is to ensure early price discovery, fast convergence, and to prevent large generators and

consumers from manipulating the auction by withholding themselves from the market until the final round of bidding.
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simple examples that illustrates the causes for coordination losses in decentralized markets with nonconvex
cost functions and the potential impact of such decentralization on energy prices faced by consumers.

2. The Unit Commitment Problem, Energy Pricing, and Properties of LR and B&B Solutions

The unit commitment problem finds the least-cost commitment and dispatch of a set of generating units
to meet expected load over a time horizon consisting of a fixed number of periods, typically, twenty-four
single-hour periods. The problem can be formulated as a MIP in which the operating status of each unit
(online or offline) in each planning period is characterized by a set of binary variables, and a set of continuous
variables indicate the generating output of each unit in each planning period. In addition to a load-balance
constraint, which ensures that expected demand is met in each period, unit commitment formulations
will typically also have ancillary service requirements, upper- and lower-generating capacities for each unit,
ramping constraints, minimum-up and -down times when units are started and stopped, startup costs (which
can depend on the length of time that a unit has been offline), and transmission network constraints. The
objective function to be minimized includes energy, no-load, and startup costs for each generating unit.
Bidders in a centralized day-ahead market specify these costs as part of their offers in a multipart auction
along with operating constraints that are included in the constraints.

Historically, solving a commercial-scale problem with hundreds of generating units was impractical using
a B&B algorithm. As such, LR techniques were employed in which a Lagrangian dual is obtained by
relaxing the load-balance, reserve, and any other ‘coupling’ constraints and penalizing violations in the
objective function. When these constraints are relaxed, the problem can be decomposed into a set of
problems for each generating unit, making the dual problem relatively simple to solve. The LR algorithm
then works iteratively to try and find a set of energy and reserve capacity ‘prices’ (the objective function
penalty coefficients), which incent an optimal commitment and dispatch of the units while satisfying the
relaxed constraints. However, the solution resulting from solving the decomposed dual problem is typically
not primal-feasible, due to nonconvexities, and additional processing of the LR solution using heuristics are
needed to restore primal-feasibility. Hence the LR solution to the unit commitment problem is inherently
approximate and, as demonstrated by Johnson et al. (1997), the objective function near the optimum is
relatively ‘flat’ so that there are multiple feasible solutions that differ only slightly in terms of the respective
values of the objective function. This observation has been confirmed by Sioshansi et al. (2008a) using a
data set from ISONE with 276 dispatchable generation units. Once a commitment and dispatch is obtained
from the centralized unit commitment, generators are typically given linear energy payments based on the
dual variables associated with the hourly load-balance constraints, which give the marginal cost of energy
in each hour.

Regardless of whether the unit commitment is solved using LR, B&B, or another technique, these prices
are often found either from the unit commitment problem itself or from an optimal power flow (OPF)
problem. If they are based on the unit commitment solution, this is typically done by fixing the integer
variables in the problem at their final value and resolving the resulting dispatch problem, which is continuous
and will yield dual variables. If the unit commitment problem includes a load-flow model, then the resulting
load-balance constraints at each network bus will yield a set of locational marginal prices (LMPs) at each
bus in the network. Otherwise, the single systemwide load-balance constraint will yield a single market-
clearing marginal cost price (MCP). If the OPF problem is used for pricing, this will generally take the
unit commitments as fixed and solve for the optimal power flow (oftentimes using a more complex ac load
flow model, as opposed to a dc approximation) for each planning period, ignoring intertemporal constraints.
Again, the dual variables associated with the load-balance constraints at each bus are used to determine the
LMPs.

Thus, the LMPs found by the unit commitment and OPF model will generally differ due to their different
treatments of intertemporal and load-flow constraints. When there are no binding load-flow constraints, the
OPF LMPs will simply be set by the highest marginal cost unit, which is not running at minimum load.
The unit commitment prices, on the other hand, will reflect intertemporal cost shifting when price setting
units have binding intertemporal ramping constraints. To see this, consider the simplified dispatch problem
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in time period t:

min
qg,t

∑

g

Cg(qg,t)

s.t. Dt =
∑

g

qg,t

Q−

g ≤ qg,t ≤ Q+
g ,

where Cg is generator g’s cost function, Dt is the demand in hour t, qg,t is the amount of power provided
by generator g, and Q−

g and Q+
g are lower- and upper-bounds on generator g’s output. If we let λt denote

the Lagrange multiplier associated with the load-balance constraint and µ−

g,t and µ+
g,t the multipliers for

the lower- and upper-bound constraints, then the first-order necessary condition (FONC) for an optimum
implies:

λt = C′

g(qg,t) + µ+
g,t − µ−

g,t, with µ−

g,t, µ
+
g,t ≥ 0.

Under this formulation the cost of serving an incremental demand unit, which defines the MCP, is λt, whereas
µ−

g,t and µ+
g,t are zero when the lower- and upper-bound constraints on generator g’s output are not active.

It follows that the MCP is set by the marginal cost of whichever generator is not operating at its lower-
or upper-bound constraint, i.e, λt = C′

g(qg,t). If ramping constraints are binding in the unit commitment,
expensive peaking units may have to be started or dispatched at increased output levels during shoulder
periods in order to meet demand at the peak period. Thus setting the price at the marginal cost of the most
expensive operating unit unfairly penalizes consumption during shoulder periods and produces perverse
incentives for load shifting that could alleviate ramp constraints. Such distortions could be corrected by
setting energy prices based on the unit commitment solution, which explicitly accounts for the intertemporal
ramp constraints. To illustrate this point we introduce intertemporal ramping constraints in the above
simplified dispatch problem which becomes:

min
qg,t

∑

g,t

Cg(qg,t)

s.t. Dt =
∑

g

qg,t ∀ t

Q−

g ≤ qg,t ≤ Q+
g ∀ t

− Rg ≤ qg,t − qg,t−1 ≤ Rg ∀ t,

where Rg is generator g’s ramping limit. If we let η−

g,t and η+
g,t denote the Lagrange multipliers associated

with ramp-down and ramp-up constraints, the FONC becomes:

λt = C′

g(qg,t) + µ+
g,t − µ−

g,t + η+
g,t − η+

g,t+1 − η−

g,t + η−

g,t+1, with µ−

g,t, µ
+
g,t, η

+
g,t, η

+
g,t+1, η

−

g,t, η
−

g,t+1 ≥ 0.

The Lagrange multipliers are zero if the corresponding constraint is non-binding, hence if the only binding
constraint on the price-setting generator, g, is its ramp-up constraint in hour t, then the FONC in hours
t − 1 and t become:

λt−1 = C′

g(qg,t−1) − η+
g,t,

and
λt = C′

g(qg,t) + η+
g,t.

Because the multiplier, η+
g,t, is non-negative these conditions imply that the MCP in hour t − 1 will be

subsidized by an increased MCP in hour t. Such an intertemporal subsidy would mitigate the higher prices
imposed on period t − 1 due to the ramp constraint activated by the demand in period t. It assigns the
increased cost to those who cause it and it creates the correct incentives for load shifting from period t to
period t − 1. From generator g’s perspective the above price adjustment is beneficial since it increases its
revenue by η+

g,t · Rg, which is the shifted price increment from period t − 1 to period t times the increase
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in generator g’s output level. For inframarginal generators operating at their upper bound or generators
operating at minimum load the adjustment is revenue neutral. A binding ramp-down constraint would have
a similar but opposite effect on the MCPs.

In spite of the compelling argument in favor of accounting for ramp constraints in setting marginal
cost prices, this is not done in practice and LMPs are set for each time interval with no consideration of
ramp constraints (even when such constraints are enforced in determining the generators’ output level).
The primary reason for this approximation is the computational burden of accounting for intetemporal
constraints in conjunction with a full network representation OPF. In our simulation, however, the two sets
of prices are nearly identical so our analysis uses the unit commitment prices, which are produced as a
byproduct of the unit commitment optimization.

Table 1 shows the value of the objective function and corresponding duality gaps for 11 near-optimal
solutions produced by LR for the above data set in comparison to the true MIP-optimal solution produced
by B&B. These results are based on a simplified model of the ISONE commitment problem, which includes
minimum up and down times, ramping constraints, hourly load-balance constraints, and a single type of
load-based ancillary service requirement. To simplify the model, marginal generating costs are assumed to
be constant, startup costs are not time dependent, and transmission constraints are ignored. The different
LR solutions are generated by adjusting the rate of convergence of the step-size sequence used in the
subgradient algorithm underlying the LR. The troubling issue highlighted by Johnson et al. (1997) and
reconfirmed by Sioshansi et al. (2008a) is the fact that near-optimal solutions may result in large deviations
in surplus accrued by individual generators and in energy prices. The last column in table 1 shows the
number of units that have a different dispatch in each near-optimal solution compared to the MIP-optimal
solution. While such deviations were inconsequential in a regulated monopoly setting they have significant
economic implications in a deregulated market with dispersed ownership of generation units. Furthermore,
the near-optimal solutions can result in negative surplus for some generators, which is confiscatory and not
sustainable. This creates incentive problems since generators may attempt to manipulate their offers to shift
the solution in their favor, which may result in a suboptimal commitment and dispatch. One could argue
that a MIP B&B solver that determines the true optimal solution would resolve the ambiguity resulting
from the approximate nature of the LR approach. However, the MIP-optimal solution could be confiscatory
while the presence of alternate near-optimal solutions and the consequential incentives to misrepresent offers
are inherent in the problem structure and do not depend on the solution technique.

Table 1: Comparison of LR Solutions and MIP Optimum, with Linear Energy Payments Only

Solution Total Cost ($) Optimality Gap (%) Units Affected
MIP 8074022.55
1 8181665.93 1.33 125
2 8212269.01 1.71 128
3 8202929.15 1.6 132
4 8171416.63 1.21 141
5 8125904.86 0.64 109
6 8220547.52 1.82 128
7 8211208.66 1.7 132
8 8124845.51 0.63 112
9 8180528.2 1.32 129
10 8189867.05 1.44 125
11 8116566.01 0.53 112

The confiscatory issue is resolved by all SOs employing day-ahead centralized unit commitment by means
of ‘make whole’ payments, which ensure that a centrally dispatched unit will cover its cost in any 24-hour
period. These payments are computed as the difference between the cost incurred by each generator (which
are calculated on the basis of the cost components in the generator’s multipart bids in the auction) and the
energy payments received from the market—if this difference is positive. If so, then the sum of energy and
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make whole payments ensure that the generator recovers all of its costs. If not, then this implies that the
generator has earned inframarginal rents from energy payments, which is keeps as surplus. These make whole
payments do not, however, make the hourly dispatch ex-post incentive-compatible in every hour. The make
whole payments will, however, smooth out the payoff differences to individual generators between alternative
near-optimal solutions and the MIP optimum by truncating the payoff distribution at zero. Table 2 shows
the effect of make whole payments on the distribution of surplus deviations (normalized on a per MWh basis)
between the near-optimal LR solutions and the MIP optimum. Because the surplus calculations are based
on costs specified in generator offers, as opposed to actual costs, the surplus calculations are offer-based (i.e.
generators’ actual surplus may differ from our calculations, since generators may have misrepresented their
costs).

Table 2: Comparison of Unit Offer-Based Surplus Deviations Between LR Near-Optimal Solutions and MIP Optimum

As-Bid Surplus ($/MWh)
Without Make-Whole Payments With Make-Whole Payments

Solution Mean Max cv Mean Max cv

1 61.19 942.24 3.66 0.33 4.68 1.76
2 71.92 945.92 3.38 0.33 4.8 1.79
3 73.66 939.3 3.31 0.33 4.8 1.79
4 57.46 943.55 3.33 0.39 4.8 1.61
5 7.28 952.56 8.2 0.33 4.8 1.79
6 71.9 945.92 3.38 0.29 4.54 1.8
7 73.64 939.3 3.31 0.29 4.54 1.8
8 5.57 353.56 5 0.29 4.54 1.8
9 62.95 931.94 3.56 0.29 4.54 1.8
10 61.22 942.24 3.66 0.29 4.54 1.8
11 5.6 353.56 4.97 0.33 4.8 1.79

3. MIP Implementation

Although recent computational and algorithmic advances make direct solution of the unit commitment
by B&B tractable, SOs cannot currently solve their commitment problems to complete optimality within
the allotted timeframe. Most SOs, upon receiving generation offers and other market data day-ahead,
must return commitments and a schedule to market participants within a few hours. The formation of these
schedules oftentimes requires solving multiple unit commitment, optimal power flow, and other optimization
problems. As such, SOs that have implemented or are proposing to use MIP in their unit commitment set
limits on the solution time and rely on the best integer-feasible solution found at the end of that time.
Although SOs boast their ability to find feasible solutions with minuscule optimality gaps, if an SO is left
to rely on an intermediate integer-feasible but suboptimal solution, the same issues of generator payoffs,
energy pricing, and inequity of the resulting dispatch arise as with suboptimal LR commitments.

To illustrate the consequences of truncating the B&B process before completion, table 3 summarizes the
progression of the MIP optimizer in CPLEX 9.120 solving the simplified ISONE unit commitment problem
mentioned above with the default settings. It should be noted that unlike commercial MIP-based unit
commitment software packages, the formulation of the problem or the settings in CPLEX were not fine-
tuned, nor were problem-specific cutting planes introduced to improve the solutions or solution times of
the problem.4 CPLEX finds 5 intermediate suboptimal integer-feasible solutions, all of which have smaller
optimality gaps than the near-optimal LR solutions shown in table 1. Moreover, should the SO use one

4The integrality and optimality gap tolerances were set to zero in order to ensure that the final solution given by CPLEX
is indeed the MIP-optimum.

7



of the intermediate solutions but include a make-whole provision, the net offer-based surplus to each unit
is identical to that under the MIP optimum in all but the first solution, with the largest deviation being
$0.02/MWh. As in the case of the near-optimal LR solutions, energy prices corresponding to intermediate
solutions can deviate substantially in some hours from those corresponding to the MIP-optimum, as shown
in table 4. In the absence of make whole payments, the profitability of some units can vary erratically among
near-optimal intermediate solutions For instance two identical units (in terms of stated costs and operating
constraint parameters) receive identical commitments and dispatches in the MIP optimum (with negative
surplus to each) but are given different commitments and dispatches in every intermediate MIP solution.

Table 3: Progression of Integer-Feasible Solutions Found by B&B

Solution Total Cost ($) Optimality Gap (%)
1 8074400.39 0.0049275
2 8074045.7 0.0005345
3 8074020.25 0.0002192
4 8074014.91 0.0001531
5 8074003.06 0.0000063

Table 4: Energy Prices Corresponding to Intermediate B&B Solutions

Energy Price of Solution ($/MWh)
Hour 1 2 3 4 5 Optimum
2 45.84 44.3 44.3 44.3 44.3 44.3
11 114.95 64.49 59.72 59.72 59.72 59.72
23 48.96 50.24 48.96 50.24 50.24 50.24

Although the above results suggest that make whole payments resolve the payoff instability issues when
using near-optimal LR solutions or intermediate B&B solutions, the formulation upon which these obser-
vations are drawn is a simplification of any actual unit commitment solved by SOs and excludes many
important details. Sioshansi et al. (2008a) present a summary of the progression of integer-feasible solutions
found by CPLEX in solving ISONE’s complete unit commitment problem, which includes virtual trans-
actions, demand bids, time-dependent startup costs, stepped generation costs, multiple types of ancillary
services, and a dc load-flow model. Due to inclusion of demand side bids the problem is formulated so as
to maximize total surplus of energy traded. In the course of optimizing the model, 38 intermediate integer-
feasible but suboptimal solutions were found, which are quite revealing. Solutions that are very close to the
optimum in terms of the MIP duality gap result in different payoffs to individual generators. Moreover, no
monotonicity is evident in the pattern of surplus deviations or energy prices. Intermediate solutions, regard-
less of how close to optimal, can result in significant differences in energy prices with some extreme cases
showing 10% deviations from the MIP optimum when the objective function value is a millionth of a percent
away from the optimum. These observations are based on simulations that assume truthful revelation of
costs and constraint parameters. However, the above observations are likely to lead to misrepresentation
and manipulation attempts by market participants that engage in this process on a daily basis. Such distor-
tions call into question the efficiency justification for the security-constrained bid-based economic dispatch
which underlines the day-ahead market design. To address this question one must consider the alternative
approach based on self commitment and a single-part energy-only auction-based dispatch.

4. One-Part Energy Auctions with Self-Commitment

The decentralized market model we analyze assumes that energy is traded through an energy-only market.
As suggested in the discussion above, due to nonconvexities, network externalities, and other complexities
of power systems, a decentralized market can suffer from both efficiency losses and higher settlement costs,
even under a competitive assumption. To see this, consider a very simple example in which a baseload coal
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generator and a combustion turbine (CT) must be committed and dispatched to serve a 1000 MW load in a
single hour. Table 5 summarizes the characteristics of the two generators in the example. Assuming that the
two generators behave competitively and truthfully reveal their generation costs and operating constraints,
then the least-cost solution to the centralized market would be to commit the coal generator and have it
generate 1000 MW. The energy price would be set at $10/MWh, but this generator would have to be given
a $75,000 make whole payment so that it could recover its fixed startup cost. In a decentralized energy-only
market (which we still assume to be perfectly competitive), by contrast, the energy price would have to be
raised to $85/MWh or higher in order for it to be individually rational for the coal generator to startup
and provide energy. At this price, however, the CT, which is assumed to behave competitively and offer its
energy at the marginal cost of $75/MWh, would want to be fully dispatched at prices between $75/MWh
and $85/MWh, however the offer quantity below $85/MWh is not sufficient to meet demand. At $85/MWh
the aggregate competitive supply function has a discontinuity and the offer quantity jumps from 200 MW to
1200 MW, which will require the SO to use some rationing rule in its energy procurement. Efficiency losses
will occur if the CT is dispatched in this energy-only market, which is a likely outcome given that it submits
the lowest offer. Moreover, if the CT is dispatched at any level then the coal generator will produce less
than 1000 MW and the energy price will have to be raised above $85/MWh, in order to ensure that the coal
generator recovers it startup costs (otherwise it will withdraw from the market). It should be noted that
if the energy price is $85/MWh, then the two market designs would yield the same total settlement costs
(when make whole payments are taken into account), but if the CT is dispatched and the energy price in the
decentralized market is raised above $85/MWh to assure sufficient supply, then this market outcome will
be inefficient and more costly to consumers than a coordinated centralized market. In an extreme case in
which the CT is dispatched to its capacity of 200 MW and the coal generator to 800 MW, the energy price
would have to rise to at least $103.75 in order to ensure the coal generator recovers its costs, which would
yield a 22% increase in settlement costs to consumers, and a 15% increase in commitment and dispatch
costs, which would be the allocative efficiency losses.

Table 5: Generator Characteristics in Example

Generator Capacity (MW) Startup Cost ($) Variable Cost ($/MWh)
Coal 2000 75,000 10
CT 200 0 75

Although this example is a gross oversimplification of any actual electricity market, it highlights the
fact that due to nonconvexities, energy-only markets will be prone to efficiency losses and higher settlement
costs than a centralized market, even under a price-taking assumption, which is consistent with our findings
based on the ISONE dataset.

To compute a competitive benchmark using the ISONE dataset, the market is modeled as a competi-
tive auction in which the auctioneer5 announces a set of hourly energy prices and price-taking generators
individually determine their hourly commitments and output levels to maximize profits and submit offers
to the auctioneer indicating how many MWh they are willing to supply in each hour. The auctioneer then
iteratively adjusts the hourly energy prices until it finds a set of prices that incent sufficient generation to
serve the load. This iterative price-updating process is meant to mimic the Wilson (1997) proposal for a
self-committed market with two important differences. One is that loads are fixed in each hour as opposed
to being price-elastic.6 Thus the market is assumed not to accept demand bids but rather solicit sufficient
generation at any price to serve a fixed hourly load. The other is that under Wilson’s proposal, genera-
tors are assumed to submit offers consisting of quantity/price pairs. Because the model analyzed in this
section assumes generators to behave competitively, generators are modeled as price-takers, that take the
auction prices as fixed and decide their commitments and generation offers to maximize profits individually,

5The auction can be thought of as being operated by the SO, or it can be a separate outside market.
6In order for our simulations of the two market designs to be comparable, we use the same underlying cost, load, and

generator constraint data in the two sets of market simulations.
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as opposed to strategically adjusting their energy offers to raise energy prices. It should also be noted that
a generator’s decision to produce energy is independent of whether it is contracted, since we assume that
it can always fulfill any contractual obligation through purchases from the market. If a generator is not
contracted, then the production decision is based on sales revenue versus the cost of production. On the
other hand, if a generator is contracted then market prices represent the opportunity cost of not producing
and the generator’s decision is driven by minimizing the cost of fulfilling its contractual obligation.

Although the model assumes that energy is traded through a centralized energy market, it can be thought
of as solving for a competitive equilibrium of direct bilateral trade between generators and consumers a la
a Walrasian auction model. The model further assumes that the auctioneer starts with a set of prices that
incent sufficient generation to serve the load, and iteratively adjusts prices until finding a set of supporting
minimal prices—which is a set of prices such that generators offer sufficient energy to serve the load, but
would no longer do so if any of the energy prices were reduced. As the energy prices are dropped, higher-cost
units will no longer find it profitable to commit themselves and the total quantity offered for generation will
be driven towards the system load.

One difficulty with finding a set of supporting minimal prices is that the binary nature of the generators’
commitment decisions means that a set of supporting minimal prices will generally not be market-clearing,
meaning generators will offer more total generation than there is load to serve, yet reducing any of the energy
prices will cause a unit to decommit itself, leaving insufficient energy to serve the load.7 One solution is
to assume that the auction uses some type of rationing rule to determine how the load is divided amongst
generators willing to commit themselves. Our model assumes, instead, that because higher-cost generators
drop out of the commitment as prices are iteratively reduced, then if there is excess generation offered and
multiple units are competing for the same load, the one with the lowest average cost over the course of the
day will prevail.

In modeling generators’ profit-maximizing behavior, they are assumed to perfectly rationally expect the
behavior of other generators and take into account the ‘winner determination assumption’ in making their
own commitment decisions. This is to preclude the possibility that a unit may commit itself in expectation
of being dispatched but finds that it doesn’t, resulting in a net profit loss. This assumption is enforced
algorithmically in the model formulation and simulation. Finally, the model assumes that each generator
acts independently in making its commitment decisions, as opposed to making commitment decisions for
portfolios of generators being owned by generating firms. This assumption is made because the dataset
used does not have unit ownership information, although the technique and results would translate to a
setting with generation asset portfolios. As indicated earlier, the above assumptions are not intended to
represent an accurate behavioral model but rather specify an algorithm that will lead to a set of prices that
will support individually rational decisions of generators regarding daily self-commitment and output while
meeting the load in each hour.

5. Comparative Analysis Based on Market Simulation

To examine the pros and cons of centrally- and self-committed markets we conduct simulations of the
two approaches based on actual market data from an ISONE unit commitment problem in February of
2005, consisting of 276 dispatchable units. This dataset is used because of availability of the data, and is
meant to be an illustrative example of the relative efficiency losses and settlement costs between the two
market designs. The ISONE system covers approximately 6.5 million retail customers, includes more than
350 generators with 31,000 MW of installed capacity, an all-time peak load of 28,127 MWh, and $11 billion
of annual energy trade.

For ease of analysis and discussion the unit commitment formulation used in the simulations is a simpli-
fication of a commercial model. It includes stepped marginal costs and fixed (not time-dependent) startup
and no-load costs for each unit. Demand is price-inelastic, there are no network flow constraints, virtual bids,

7In order for our simulations of the two market designs to be comparable, we use the same underlying cost, load, and
generator constraint data in the two sets of market simulations.
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self-schedules, or ancillary service requirements. The computations assume that the centrally committed
market settles with a uniform hourly energy price—specifically the dual variable associated with the hourly
load balance constraints in the unit commitment problem. As noted before, because linear energy-only pay-
ments can be confiscatory, the analysis further assumes that the SO includes a make whole provision, which
pays each unit the difference between its total costs incurred in the commitment and dispatch (calculated
on the basis of costs stated in its offer) and the total energy payments received over the course of the 24
hours, if that difference is positive. These payments ensure that total net profits (on the basis of stated
costs) are always non-negative.

The operating costs and constraint parameters used in the market simulations are those which were
submitted by generators to ISONE. The competitive benchmark assumption takes these generator-offered
parameters as reflecting actual costs and unit operating constraints—thereby assuming away any incentive
compatibility issues. The computation of the central commitment assumes generators will offer these actual
cost and constraint parameters to the SO for use in its commitment problem, as opposed to strategically
misstating them to increase profits. The computation of the self-commitment assumes that generators
behave as price-takers and maximize profits with the same cost and constraint parameters.

Table 6 compares the total settlements paid to generators, commitment costs, and profits of the generators
in the simulations of the two market designs. Although the centrally-committed market is assumed to include
a make whole provision, the dataset and optimal central commitment is such that each generator receives
sufficient inframarginal rents to recover all of its costs and no supplemental make whole payments are
required. Nonetheless, figure 1 shows that the set of supporting minimal prices found in the self-committed
market far exceed the energy prices paid in the central unit commitment.

Table 6: Cost and Profit Comparison of Centrally- and Self-Committed Market Designs

Energy Make-Whole Total Commitment Total Unit
Market Design Payments Payments Settlements Costs Profits

Central $16,075,121 $0.00 $16,075,121 $5,758,201 $10,316,920
Self $25,060,666 $25,060,666 $6,003,274 $19,057,392
%-difference 55.90% 4.16% 84.72%

Indeed, a critical assumption underlying a centrally-committed market is that the SO can force cross
subsidies of ‘losing’ hours by profits from other hours and has a means of preventing generators from making
adjustments to their assigned schedules. Figure 2 shows the resulting load imbalances which would occur
in a centralized market if generators could individually adjust their outputs to maximize profits against
the hourly energy prices—known as uninstructed deviations. While the scale of these deviations may seem
small, it is important to note that they would have disastrous consequences in a power system, since any
difference between power demand and supply will threaten system stability and may cause brown- or black-
out conditions. Due to the potential for such deviations, SOs penalize such deviations in generation by
requiring generators to buy or sell back their insufficient or excess generation at the LMP—oftentimes with
an added deviation penalty—thereby removing any incentive for such deviations.

This enforcement mechanism can be problematic, however, in multiple-settlement systems in which the
SO computes different sets of LMPs at different time intervals in real-time. Since there can be differences
between the prices at which an uninstructed deviation is paid and penalized, a generator may be inclined
to change its output if these price differences are predictable.

More importantly, the simulation demonstrates that a self-committed market requires higher energy
prices than a centrally-committed one. Because the model assumes that demand is fixed and inelastic, these
higher prices are simply a wealth transfer from consumers to generators, without any efficiency losses. In
a market with demand response, the higher prices will generally result in allocative distortions. Indeed, if
we return to the example described in table 5 and suppose that demand is given by the price-elastic inverse
demand function, p(D) = 1010−D, we can show how the higher energy prices from centralized commitment
will result in social and consumer welfare losses. With this inverse demand function, the welfare-maximizing
solution of the centrally-committed market would be to still commit the coal generator and have it produce
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Figure 1: Energy Prices Uunder Central Unit Commitment and Self-Commitment

1000 MW. This will yield a social surplus of $425,000, a consumer surplus of $500,000, and an energy price
of $10/MWh. Again, because the coal generator will not recover its startup costs a make whole payment of
$75,000 will be required. Because consumer surplus is $500,000, the cost of this make whole payment could
be imposed on consumers (which ensures that the market is revenue-adequate) in the form of a two-part
tariff, that would not have any allocative efficiency losses.

In a self-committed market, by contrast, the energy price would have to rise to at least $85/MWh
in order for the coal generator to be willing to startup and provide energy, which would reduce demand.
Moreover, because this $85/MWh is greater than the marginal cost of the CT, it would want to startup and
generate energy as well. The SO’s rationing rule between the coal and CT generators in the self-committed
market will determine the extent of productive and allocative efficiency losses, but as an upper-bound, we
will consider a case in which the SO would favor the CT over the coal generator in its dispatch decision.8

In such a case, because the CT would always offer itself at a lower price, it would be dispatched to produce
200 MW, and the coal generator would produce (1010−200−p) = (810−p) MW, where p is the equilibrium
energy price. The equilibrium energy price would then be a solution to the equation:

p = 10 +
75000

810 − p
,

which ensures that the price is sufficiently high to recover all of the coal generator’s costs. The solution
to this equilibrium condition yields an energy price of about $118.45, and a total demand of 891.55 MW.9

Because of the higher price and lower demand, however, consumer surplus is reduced to $397,431 (a 21%
loss compared to centralized commitment), social surplus is $406,120 (a 4% loss compared to centralized
commitment), and generation costs rise by about 14%.

Table 6 also shows that a self-committed market will generally suffer productive efficiency losses, as
demonstrated by the more than 4% increase in total commitment and dispatch costs. These efficiency
losses are not the result of units committing themselves under a self-committed market when they would
not be committed under the central commitment. Rather these losses stem from the fact that a central
commitment gives the most efficient coordination of generator dispatches, which are lost when generators

8As we noted before, because the CT would offer its generation at $75/MWh, whereas the coal generator would bid a higher
price, it is not unreasonable to assume that the SO would favor the CT in its dispatch.

9A simple calculation will confirm that this price recovers all of the coal generator’s costs.
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dispatch themselves independently. Of the 276 units, 108 are committed in at least one hour under the
central unit commitment solution. Of these 108, 73 follow the same commitment and dispatch schedule
under the self-committed market as under the central unit commitment, with some shuffling of generation
amongst the remaining 35.
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Figure 2: Load Imbalance from Profit-Maximizing Uninstructed Deviations in Centrally-Committed Market

6. Conclusions

Clearly centrally- and self-committed markets present tradeoffs, which must be evaluated in addressing
market design issues. Centrally-committed markets strive for the least-cost commitment and dispatch of
generators by solving for a commitment that minimizes the SO’s cost objective. However, as shown above
and by Sioshansi et al. (2008a), this approach presents equity and incentive issues that also call into question
the efficiency of the centralized solution. Although make whole payments, which are made by most SOs
that operate centrally-committed markets, reduce these equity and incentive issue, they do not completely
eliminate them. As shown in table 2, generators can in some cases earn up to $5/MWh of excess surplus
from a suboptimal unit commitment solution. Given the fact that generators participate in these markets
repeatedly, it is not inconceivable that they may learn to manipulate their bids in order to influence the
resulting commitment and dispatch. Indeed, Newbery (2006) notes that because the original Electricity
Pool market in Britain was operated using the same commitment and dispatch model that generators used
under the monopoly regime, they were able to do this type of market manipulation.

Self-commitment, on the other hand, has been offered as a viable alternative, which addresses and
reduces some of the issues with centrally-committed markets but suffer from loss of coordination amongst
generators. This loss of coordination will result in some efficiency losses, mainly due to the nonconvexities in
generator cost and operating constraints. Moreover, because generators’ nonconvex cost components must
be covered by energy payments, energy prices and total settlement costs will generally be higher than in
a centrally-committed market. Thus, central- and self-commitment are two imperfect market models with
inherent shortcomings since centralized markets will be fraught with incentive problems and decentralized
markets with coordination losses.10

10In theory, a Vickery-Clarke-Groves (VCG) mechanism (assuming the SO’s unit commitment problem could be solved to
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On one hand an SO with broad economic authority can, in theory, determine the most-efficient commit-
ment to meet forecasted demand. However, centrally-committed markets, are not strategy-proof and are
prone to incentive compatibility issues, meaning that generators can profitably manipulate their offers to in-
crease profits. This has both been shown through simple examples, for example by Sioshansi and Nicholson
(2007), and was a criticism of the original Electricity Pool in Britain. Proponents claim that a decentralized
energy-only market, in which generators individually determine their commitments, can reduce the incen-
tive issues of a central unit commitment while minimizing efficiency losses. The simulation of a competitive
benchmark discussed above and conducted by Sioshansi et al. (2008b) provides an estimate of the productive
efficiency losses from a self- as opposed to centrally-committed market design, under a competitive assump-
tion. While these losses are relatively small, around 4% in the case examined here, this would nonetheless
represent a significant welfare loss in absolute terms considering that SO markets typically trade energy
worth billions of dollars on an annual basis. The efficiency loss in the market simulations would amount to
an annual loss of nearly $90 million for the ISONE system, if the results are typical of most days.11 More-
over, a self-committed market may also yield consumer surplus losses in the presence of demand response
due to the higher energy costs that will generally be seen in self-committed markets. The potential for
allocative efficiency losses with demand response may be an important consideration as these programs are
slowly becoming more prevalent.

Finally, it is interesting to note that many centrally-committed markets also allow generators to self-
schedule their generation, in which case they individually make commitment decisions and submit one-part
energy-only bids. Thus, many markets operate as a hybrid of centrally- and self-committed markets. Our
findings regarding energy prices in centrally- versus self-committed markets may suggest that generators in
such markets would prefer self committing, but in practice generators tend to favor using the centralized
commitment. One possible reason for this behavior is that a generator that self commits must recover all of
its nonconvex costs through energy payments, and will have to roll these fixed costs into its one-part energy
bid. Units that are centrally committed by the SO, on the other hand, are given make whole payments
to recover their nonconvex costs. These payments are not considered in the optimization underlying the
centralized unit commitment. This different treatment of nonconvex costs can serve to make a self-committed
generator less attractive in the SO’s dispatch, since the cost of a self-committed unit will seem higher than
an identical generator that participates in the centralized unit commitment.
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