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Abstract We introduce a stochastic dynamic programming (SDP) model that
co-optimizes multiple uses of distributed energy storage, including energy and
ancillary service sales, backup capacity, and transformer loading relief, while
accounting for market and system uncertainty. We propose an approximation
technique to efficiently solve the SDP. We also use a case study with high
residential loads to demonstrate that a deployment consisting of both storage
and transformer upgrades decreases costs and increases value relative to a
transformer-only deployment.
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1 Introduction

Recent developments in electric power systems have increased interest in en-
ergy storage. Graves et al (1999) note the development of markets, which
signal the cost and value of many of the services that storage can provide.
The increasing use of electric and electronic devices by consumers can also
yield extreme demand peaks. Of particular concern are grid-chargeable plug-
in electric vehicles (PEVs). Collins and Mader (1983) and Mohseni and Stevie
(2009) analyze possible PEV adoption in two regions of the United States
finding that significant clustering of PEVs, which can yield extremely high
distribution-level loads, is possible. Conversely, Kintner-Meyer et al (2007)
and Sioshansi and Denholm (2010) show that there is sufficient transmission
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and generation capacity to serve charging loads with relatively high PEV pen-
etration levels. Thus, at least initially, the negative impacts of PEVs may be
at the distribution level.

The distribution system is normally built to accommodate the anticipated
peak demand. This can be inefficient, however, since the system may only
achieve this peak during a handful of hours each year. An alternative is to site
storage on the constrained side of the distribution system. By charging storage
when distribution is unconstrained and discharging when loads are higher, the
distribution system can be downsized. Moreover, such storage can provide
additional value to the utility, system operator (SO), or customers beyond
the distribution benefits. For instance, by operating storage in a dynamic
islanding mode it can provide backup energy to customers if there is a service
outage. Similarly, storage can be used to provide ancillary services (AS) or
to arbitrage diurnal day-ahead or real-time energy price differences. AS are
excess generating capacity that a utility or SO reserves to provide a buffer for
real-time deviations between actual and forecasted energy demand or supply.
Nourai (2007) discusses a 1 MW distributed sodium-sulfur battery used by
American Electric Power (AEP) to relieve a distribution-level transformer in
West Virginia.

Using storage for multiple applications presents operational challenges,
however. This is because using storage for one service may prevent or re-
duce its ability to provide another. For instance, discharging storage to re-
lieve a distribution constraint leaves less energy available for backup energy.
In this paper we adapt the stochastic dynamic programming (SDP) model
developed by Xi et al (2014) to study the use of energy storage to relieve dis-
tribution constraints and to provide energy and AS sales and backup energy.
More specifically, the model used here is similar to that in the work of Xi et al
(2014), except we include a more detailed representation of the distribution
transformer’s and storage’s operating constraints and aging characteristics.
Our model accounts for market and system uncertainty in deriving an op-
timal storage use policy. We use an approximation technique, developed by
Nascimento and Powell (2009), to solve the SDP. Using a case study based on
several residential homes and PEVs connected to an overloaded distribution-
level transformer, we demonstrate that supplementing the transformer with
storage decreases costs and increases value relative to a transformer-only de-
ployment. The remainder of this paper is organized as follows: Section 2
presents the SDP model, Section 3 presents our proposed solution algorithm,
Section 4 provides the details of our case study, Section 5 summarizes our
results, and Section 6 concludes.

2 Stochastic Dynamic Programming Model

We model distribution-sited storage at hourly timesteps. Our model assumes
that storage provides four services: arbitraging hourly energy price differences,
selling AS, providing backup energy to serve distribution-level loads in the
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event of a system outage, and relieving transformer loading. Although storage
can provide different AS products, only regulation services are modeled since
Tomić and Kempton (2007) show that they are the most valuable. Regulation
is an AS product that is used to maintain the system’s frequency and voltage
within acceptable bounds by exactly matching real-time energy demand and
supply. Regulation is further subdivided into regulation-up and -down services.
A regulation up provider must increase its output from a baseline level if called
in real-time. A regulation down provider must instead decrease its output. We
assume that the market includes a single regulation product. Thus, an en-
tity that sells regulation capacity may be called by the SO to provide both
regulation-up and -down services in real-time. Regulation services are assumed
to receive a one-part capacity payment only. This payment is determined by
the amount of regulation capacity offered and a uniform market-clearing price
for regulation capacity. If all real-time calls for regulation energy are satisfied
during the contract period, the payment is given by the product of the con-
tracted capacity and the price. Otherwise, the payment is prorated based on
the amount of requested regulation energy actually provided. These assump-
tions are consistent with the definition and pricing of regulation used by PJM
Interconnection, the largest SO market in the United States.

In each hour, the storage operator decides how much energy to charge and
discharge (which can be sold to the market or used to serve the distribution-
level load) and the amount of regulation capacity to sell. These decisions are
made based on the state of the market (i.e., energy and regulation prices and
anticipated regulation calls), state of the system (i.e., whether there is an
outage or not), and an exogenous distribution-level load. If there is no system
outage, storage can be charged and discharged from the grid and can provide
regulation service, otherwise it can only be discharged to serve distribution-
level loads. We further assume that the storage is sufficiently small compared
to the rest of the market that storage decisions do not impact the market
or system. Our model formulation follows the conventions and notation used
by Powell (2007) and Xi et al (2014). Random variables with a subscript t are
unknown (stochastic) before hour t and become known (deterministic) at hour
t. The overall model structure is similar to that used by Xi et al (2014), with
the exception of our handling of the distribution transformer constraint here.

2.1 Model Parameters

P̄ b: maximum power capacity of storage [kW]
R̄max: maximum energy level of storage [kWh]
R̄min: minimum energy level of storage [kWh]

ηc: charging efficiency of storage
ηd: discharging efficiency of storage

P̄ tr: rated power capacity of transformer [kW]
V tr(v): penalty for operating transformer above rated capacity, as a function of

loading [$]



4 X. Xi and R. Sioshansi

V L: penalty for unserved building load [$/kWh]
γ: hourly discount factor

Our model assumes that the storage has a minimum storage level, R̄min.
This accounts for technologies, such as lithium-ion batteries, which suffer ex-
treme cycle-life degradation if the state of charge falls too low. The unitless
ratios, ηc and ηd, reflect efficiency losses from charging and discharging stor-
age, respectively.

P̄ tr is the transformer’s rated power capacity. The transformer can be
operated above this capacity, however, which accelerates transformer aging and
imposes a cost. This accelerated aging is typically estimated using hot-spot or
top-oil temperature models. Susa et al (2005) and Gong et al (2011) present
two examples of such models. These models estimate the effect of operating
the transformer above its rated capacity on its overall lifetime. Combining
this aging effect with an assumed transformer replacement cost gives a cost
for operating the transformer above its rated capacity, which we denote V tr(v).
This function, which we assume to be convex, accrues on an hourly basis and
represents the cost incurred in each hour during which the transformer is
operated above its rated capacity. Allowing the transformer to be operated
above its rated capacity is an added feature of our model, compared to that
developed by Xi et al (2014). V L is the cost penalty for curtailing distribution-
level loads, which are caused by system outages and distribution constraints.
Stored energy can be used, however, to reduce such curtailments.

2.2 Decision Variables

ed
t : energy discharged for sales in hour t [kWh]

ec
t : energy charged into storage in hour t [kWh]

el
t: energy discharged from storage in hour t to serve distribution-level load

[kWh]
lt: distribution-level load met in hour t [kWh]
kt: regulation capacity sold in hour t [kW-h]
vt: amount transformer is overloaded in hour t − 1 [kW]

We also define At =
(

ed
t , e

c
t , e

l
t, lt, kt, vt

)

as a vector of hour-t decision vari-
ables.

2.3 State Variables

xt: total energy in storage at the beginning of hour t [kWh]
pe

t : market price of energy in hour t [$/kWh]
pr

t : market price of regulation in hour t [$/kW-h]
Dt: distribution-level energy demand in hour t [kWh]
It: binary variable indicating if there is a system outage (equals 1) in hour t
δu
t : dispatch-to-contract ratio of regulation-up in hour t − 1
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δd
t : dispatch-to-contract ratio of regulation-down in hour t − 1

Following the work of Kempton and Tomić (2005) and Xi et al (2014), we
use dispatch-to-contract ratios, δu

t and δd
t , to model the relationship between

regulation capacity sales and real-time regulation deployments. These ratios
are defined as the actual amount of regulation-up and -down energy called in
real-time, divided by the amount of regulation capacity procured by the SO.
Thus, by definition, the terms δu

t+1·kt and δd
t+1·kt are the amount of regulation-

up and -down energy called by the SO in hour t, respectively. These ratios can
be estimated using historical system data. For instance, Kempton and Tomić
(2005) use several years of historical data to estimate an average dispatch-
to-contract ratio for regulation in the California ISO market of 0.08. This
indicates that each kW of regulation capacity sold in the market for one hour
results, on average, in 0.08 kWh of regulation energy being called in real-time.

We assume that the energy and regulation prices, pe
t and pr

t , are all non-
negative. Although regulation prices are typically non-negative, negative en-
ergy prices are occasionally observed in energy markets. Negative energy prices
typically occur because of unpriced non-convexities stemming from unit com-
mitment or subsidies provided to renewable generators. Negative energy prices
tend to occur more often in real-time, as opposed to day-ahead, energy mar-
kets. We assume storage use is scheduled based on day-ahead prices, when this
non-negativity assumption is more likely to hold.

We also define St =
(

xt, p
e
t , p

r
t , Dt, It, δ

u
t , δd

t

)

as a vector of hour-t state
variables.

2.4 Exogenous Variables

The state variables, pe
t , pr

t , Dt, It, δu
t , and δd

t , are assumed to evolve ex-

ogenously of the decision variables. We define p̂e
t , p̂r

t , D̂t, Ît, δ̂u
t , and δ̂d

t as
exogenous random variables that represent the change in the value of these
variables between hour t−1 and hour t. These random variables may be depen-
dent on one another, which would imply that the exogenous state variables are
probabilistically dependent. We define ωt =

(

pe
t , p

r
t , Dt, It, δ

u
t , δd

t

)

as a vector
of hour-t exogenous state variables, thus we can also define St = (xt, ωt).

2.5 State-Transition Function

The exogenous state variables are assumed to evolve randomly according to
the following transition functions:

pe
t+1 = p̂e

t+1 + pe
t ,

pr
t+1 = p̂r

t+1 + pr
t ,

Dt+1 = D̂t+1 + Dt,
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It+1 = Ît+1 + It,

δu
t+1 = δ̂u

t+1 + δu
t ,

and:

δd
t+1 = δ̂d

t+1 + δd
t .

We define the amount of regulation-up that is unserved in hour t − 1 as:

nu
t = max{0, δu

t · kt−1 − ηd · (xt−1 − R̄min) + ed
t−1 + el

t−1 − ec
t−1}. (1)

We similarly define unserved regulation-down as:

nd
t = max{0, δd

t · kt−1 − (R̄max − xt−1)/ηc − ed
t−1 − el

t−1 + ec
t−1}. (2)

Equations (1) and (2) define unserved regulation as the difference between the
amount of regulation called and the maximum amount of regulation that can
be feasibly provided without violating storage energy or power constraints.
Based on these definitions, the amount of energy in storage evolves according
to:

xt+1 = xt + ηc · (ec
t + δd

t+1 · kt − nd
t+1) − (ed

t + el
t + δu

t+1 · kt − nu
t+1)/ηd.

We also define the proportion of regulation energy called in hour t− 1 that is
unserved as:

nr
t =

nu
t + nd

t

(δu
t + δd

t ) · kt−1
. (3)

2.6 Constraints

The total amount of energy charged and discharged in each hour must be
within the power capacity of the storage device:

0 ≤ ec
t + kt ≤ P̄ b, (4)

and:

0 ≤ ed
t + el

t + kt ≤ P̄ b. (5)

The energy level of the storage device is constrained to be within its upper
and lower bounds:

R̄min ≤ xt ≤ R̄max. (6)

Net power flows are only allowed into or out of the distribution system if there
is not an outage:

−P̄ tr · (1 − It) − vt+1 ≤ lt − el
t + ec

t − ed
t − kt, (7)

and

lt − el
t + ec

t − ed
t + kt ≤ P̄ tr · (1 − It) + vt+1. (8)
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Constraints (7) and (8) also define vt+1, the amount that the transformer is
operating above its rated capacity. Charging storage and selling energy and
regulation are not possible if there is an outage:

ed
t , e

c
t , kt, vt+1 = 0, if It = 1. (9)

Constraints (7) through (9) force the distribution-level load to be either served
using stored energy or curtailed in any hour with a system outage. We further
constrain the distribution-level load served to be no greater than the actual
demand:

lt ≤ Dt. (10)

We also assume that the amount of regulation capacity sold cannot exceed
available nameplate transformer capacity:

kt ≤ max{0, P̄ tr − Dt}. (11)

All of the decision variables are non-negative:

ed
t , e

c
t , e

l
t, lt, kt, vt ≥ 0. (12)

We further define As as the set of decision vectors, a, that are feasible
in (4) through (12) when the system is in state s.

2.7 Objective Function

The hour-t objective function contribution is given by:

Ct(St, at) = pe
t · (e

d
t − ec

t) − V L · (Dt − lt) + pr
t−1 · kt−1 · (1 − nr

t ) − V tr(vt).

The first term, pe
t ·(e

d
t−ec

t), represents revenues from net energy sales, excluding
regulation energy provided. The second term, −V L · (Dt − lt), represents the
penalty for unserved distribution-level loads. The third term, pr

t−1 · kt−1 · (1−
nr

t ), are the regulation capacity payments, which are prorated based on how
much regulation energy is provided in real-time. The fourth term, −V tr(vt),
represents the penalty for aging the transformer.

We define a policy, Aπ
t (St), as a mapping between an hour-t state variable,

St, and an hour-t feasible decision, a ∈ ASt
. We further define Π as the set of

all feasible policies. For each π ∈ Π , the total expected discounted profit from
hour t is defined as:

Gπ
t (St) = E

[

T+1
∑

τ=t

γτ−tCτ (Sτ , Aπ
τ (Sτ ))

∣

∣

∣

∣

∣

St

]

,

where T is the optimization horizon. The objective is then to find an optimal
policy, π∗, which satisfies:

Gπ∗

t (St) = sup
π∈Π

Gπ
t (St), ∀ t = 1, 2, . . . , T + 1.
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2.8 System Schematic

Figure 1 is a schematic of the overall system, showing the interaction among
the state and decision variables. The lt kW of distribution-level demand served
is satisfied using el

t kW from storage and the remaining lt − el
t kW is satisfied

using energy from the grid. The quantities ec
t + δd

t+1 · kt − nd
t+1 and ed

t +
δu
t+1 · kt − nu

t+1 represent gross energy charged and discharged into storage for
grid services (i.e., direct energy sales and regulation services). The quantity
lt − el

t + ec
t − ed

t + (δd
t+1 − δu

t+1) · kt + nu
t+1 − nd

t+1 represents net energy drawn
from the grid through the transformer. This quantity may be negative, for
instance if the distribution-level load is low and storage discharges more net
energy than the building draws from the grid.

Demand
Distribution-Level

Dt

Transformer

Grid

Storage Device

xt

e
l
tlt − e

l
t + e

c
t − e

d
t

e
c
t + δ

d
t+1 · kt − n

d
t+1

e
d
t + δ

u
t+1 · kt − n

u
t+1

+n
u
t+1 − n

d
t+1

+(δd
t+1 − δ

u
t+1) · kt

lt − e
l
t

Fig. 1: System schematic

3 Solution Technique

One approach to find a near-optimal policy is to discretize all of the continuous
decision and state variables and apply the dynamic programming algorithm to
solve the problem. This is impractical given the large dimension of the decision
and state variables. Hence we propose adapting an approximate stochastic
dynamic programming (ASDP) method developed by Nascimento and Powell
(2009). We also use sampling techniques to derive statistical upper and lower
bounds for the true optimum of the SDP, demonstrating the quality of the
solutions found by the algorithm.

We define:

xpost
t = fpost(xt, at) = xt + ηc · ec

t − (ed
t + el

t)/ηd,

as the post-decision hour-t storage level. This represents the amount of en-
ergy in storage immediately after the hour-t decisions are made, but before
the amount of energy needed for regulation is known (i.e., it accounts for the
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amount of energy charged and discharged for arbitrage and serving the dis-
tribution loads). Note that we can also refer to xt as the pre-decision hour-t
storage level, since it is the storage level before any hour-t decisions are made.
We further define Spost

t = (xpost
t , ωt) as the post-decision hour-t state variable

and:

F ∗
t (xt, ωt) = Gπ∗

t (St),

and:

F post
t (xpost

t , ωt) = E
[

F ∗
t+1(xt+1, ωt+1)

∣

∣ωt

]

,

to be the optimal value function around the pre- and post-decision hour-t stor-
age level, respectively. By definition F ∗

t (xt, ωt) satisfies the following Bellman-
type equation:

F ∗
t (xt, ωt) = max

at∈ASt

{

Ct(St, at) + γF post
t (xpost

t , ωt)
}

. (13)

The ASDP algorithm requires F ∗
t (xt, ωt) and F post

t (xpost
t , ωt) to be concave

in xt and xpost
t , respectively. We prove concavity in the following lemma.

Lemma 1 If V tr(vt) is convex in vt and the energy and regulation prices, pe
t

and pr
t , are all non-negative, then F ∗

t (xt, ωt) and F post
t (xpost

t , ωt) are concave

in xt and xpost
t , respectively.

Proof This is shown using an inductive argument. In period, T , the boundary
condition and (3) give:

F post
T (xpost

T , ωT ) = E

[

pr
T ·

(

kT −
nu

T+1 + nd
T+1

δu
T+1 + δd

T+1

)

− V tr(vT+1)

∣

∣

∣

∣

∣

ωT

]

, (14)

where nu
T+1 and nd

T+1 are defined by (1) and (2). The terms nu
T+1, nd

T+1, and

vT+1 are the only elements of (14) dependent on xpost
T . The term −(nu

T+1 +

nd
T+1) is a piecewise-linear concave function of xpost

T . Due to the convexity

assumption, −V tr(vT+1) is concave in xpost
T . Note, also, that system outages

do not affect concavity, since an hour-T system outage simply forces all of
nu

T+1, nd
T+1, and vT+1 to equal zero. Thus, F post

T (xpost
T , ωT ) is concave in xpost

T

as the expectation gives a convex combination of concave functions.
Furthermore, (13) shows that F ∗

T (xT , ωT ) is a positive-weighted sum of
CT (ST , aT ), which is linear in xT , and F post

T (xpost
T , ωT ), which is concave in

xT . Since constraints (4) through (12) define a convex feasible set for xT ,
F ∗

T (xT , ωT ) is concave in xT since it is the supremal convolution of a concave
function, which Rockafellar (1970) shows to be concave.

For t < T we have:

F post
t (xpost

t , ωt) = E
[

F ∗
t+1(xt+1, ωt+1)

∣

∣ωt

]

= Prob {It+1 = 0|ωt} · E
[

F ∗
t+1(xt+1, ωt+1)

∣

∣ωt

]

(15)

+Prob {It+1 = 1|ωt} · E
[

F ∗
t+1(xt+1, ωt+1)

∣

∣ωt

]

,
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where equation (15) explicitly shows the relationship between It+1 and the
expectation involved in computing F post

t (xpost
t , ωt). Using an inductive argu-

ment, F ∗
t+1(xt+1, ωt+1) is concave in xt+1 and, thus, in xpost

t as well. More-

over, equation (15) defines F post
t (xpost

t , ωt) as a convex combination of two
concave functions, showing the concavity of F post

t (xpost
t , ωt). The concavity of

F ∗
t (xt, ωt) follows by applying the same inductive argument to (13). ⊓⊔

Rather than working directly with the F post
t functions the ASDP algorithm

uses approximations, which are denoted F̂ post
t . The algorithm works in two

phases: Monte Carlo simulation is used in the first to iteratively update the
F̂ post

t functions, improving the approximations; the approximations are then
used in the second phase to determine a near-optimal policy.

3.1 Approximate Bellman Equation

F̂ post
t is assumed to be a concave piecewise-linear function of xpost

t . It is es-
timated by iteratively updating F̂ post

t at a discrete set of values. We denote
the values at which the function is updated x̃post

t,i , i = 1, 2, . . . , Mt, and assume

that they are rank ordered (i.e., x̃post
t,1 < · · · < x̃post

t,Mt
). F̂ post

t is estimated for a

discrete set of exogenous state variables, which are denoted ω̃t. We define Ω̃t

as the discrete set of exogenous state variables at which F̂ post
t is estimated.

The decision variables are also restricted to a discrete set of values in the first
phase of the algorithm. We use ãt to denote such a discrete decision vector
and define ÃS̃t

as the set of ãt that satisfy the discretization and are feasible

in constraints (4) through (12) when the system is in the discrete state, S̃t.
Further details of the discretization used are given in Section 4.5.

We denote the slopes of F̂ post
t (xpost

t , ω̃t) as:

m̂t(ω̃t) =
(

m̂t(x̃
post
t,2 , ω̃t), · · · , m̂t(x̃

post
t,Mt

, ω̃t)
)

, (16)

where:

m̂t(x̃
post
t,i , ω̃t) =

F̂ post
t (x̃post

t,i , ω̃) − F̂ post
t (x̃post

t,i−1, ω̃)

x̃post
t,i − x̃post

t,i−1

. (17)

Figure 2 shows an example of a F post
t (x, ωt) function and its piecewise-linear

approximation, in which the discrete exogenous state variable, ω̃t, is used and
Mt = 5.

Using these slopes, equation (13) can be approximated in the discretized
exogenous variable space as:

F̂ ∗
t (xt, ω̃t, m̃t(ω̃t)) = max

ãt∈A
S̃t

,yt

{

Ct(xt, ω̃t, ãt) + γ

Mt
∑

i=2

m̂t(x̃
post
t,i , ω̃t) · yt,i

}

,

(18)
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x̃post

t,1 x̃post

t,2 x̃post

t,3 x̃post

t,4 x̃post

t,5

m̂t(x̃
post

t,2 , ω̃t)

m̂t(x̃
post

t,3 , ω̃t)

m̂t(x̃
post

t,4 , ω̃t)

m̂t(x̃
post

t,5 , ω̃t)

x

F
p
o
s
t

t

 

 
F post

t (x,ωt)

F̂ post

t (x, ω̃t)

Fig. 2: Optimal objective function and piecewise-linear approximation

where:
Mt
∑

i=2

yt,i = fpost(xt, ãt), (19)

and,

0 ≤ yt,i ≤ x̃post
t,i − x̃post

t,i−1, ∀ i = 2, . . . , Mt. (20)

Note that ãt and ω̃t are restricted to the discretization in (18). Since our
original SDP involves exogenous state variables from a continuous space, we
use the discretized exogenous state variable that is closest to the actual ex-
ogenous state variable. We could, instead, conduct multi-dimensional inter-
polation on xpost

t and ωt, which could provide more robust results at higher
computational costs. Alternatively, we could simulate directly from the dis-
cretized distribution, rather than rounding continuous variables to discretized
values. Doing so would only provide value function approximations at the dis-
cretized points, however, whereas we aim to approximate the value function
at points from the continuous distribution. Our results in Section 5 show that
our interpolation and discretization scheme provides reasonably near-optimal
policies with relatively small optimality gaps. Note also that if the discretiza-
tions, ãt, ω̃t, and x̃post

t , are defined appropriately, then xpost
t = fpost(xt, ãt)

will necessarily take on one of the Mt discrete values assumed.

3.2 ASDP Algorithm

Our ASDP approach is summarized by the pseudocode in Algorithms 1 and 2.
The first phase of the algorithm, in which the F̂ post

t functions are estimated, is
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summarized in Algorithm 1. We use j throughout this algorithm to denote the

iteration number and m̂
(j)
t (ω̃t) denotes the slopes of the F̂ post

t functions after
the jth iteration. This algorithm begins with an initialization (Step 1). This
includes discretizing the action, exogenous state, and post-decision variables,
choosing an initial value for the slopes of F̂ post

t , and fixing the starting state of

charge of storage, x1. The starting values, m̂
(0)
t (ω̃t), are not restricted, except

that they must be non-decreasing (i.e., the F̂ post
t functions must be concave).

Nascimento and Powell (2009) suggest using empirical results, consulting ex-
perts, or simply setting the slopes equal to zero. In our case study we initialize
the slopes by generating a single sample path of exogenous state variables,
{ωt}

T+1
t=1 and solving a deterministic optimization problem in which the sam-

ple path is fully known. The solution of this problem is used to estimate the
slopes and the projection procedure in Steps 14–16 of Algorithm 1 is used to
ensure concavity.

The remaining steps of the algorithm are repeated in each iteration. First
a path of the exogenous state variables is randomly sampled from the contin-
uous space (Step 3) and this sample path is rounded to the nearest discretized
sample path (Step 4). The algorithm then cycles through hours 1 to T − 1 of
the optimization horizon (the algorithm does not cycle through hour T , since
the exact computation of F post

T is trivial). In each hour it first determines an
optimal action variable from the discretized space, using the piecewise-linear
approximation of F post

t from the previous iteration (Step 6). The resulting
post-decision hour-t storage level is computed (Step 7), and without loss of gen-
erality we assume that this is the ξth discretized value of x̃post

t (in rank order).
The unserved regulation (Step 8) and change between the post-decision hour-t
and pre-decision hour-(t + 1) storage level (Step 9), which we denote ∆x̃t+1,
are computed. Two random samples of F post

t are then computed (Step 10).
These random samples, which we denote θ̃t+1,ξ and θ̃t+1,ξ+1,

1 are computed
using the approximation of F ∗

t+1 from the previous iteration. The random sam-
ples are then used to update the slopes (Step 12), based on a learning rate
parameter, αj . Note that we only update the slopes of the piecewise-linear
function associated with the actual sampled exogenous state variable, ω̃t, and
the breakpoint, x̃post

t,ξ . Finally, we use a projection operation (Step 15) to en-
sure that the final updated slopes are non-increasing. Steps 3 through 19 of
the algorithm are repeated J times, which yields a final set of piecewise-linear

approximations of the F post
t functions, which are denoted m̃

(J)
t (ω̃t).

The second phase of the ASDP technique, which uses the final approxi-
mation to compute a near-optimal policy, is summarized in Algorithm 2. This
algorithm begins by fixing the starting storage level (Step 1). It then iterates
through each hour of the optimization horizon, first observing the exogenous
state variable and then rounding this to the nearest discretized exogenous state
variable (Step 3). If t > 1, unserved hour-(t−1) regulation energy (Step 5) and

1 In keeping with our convention that variables with the subscript t are stochastic before
hour t and become known at hour t, we put a t+1 subscript on these random samples. This
is because the random samples are computed based on a realization of ω̃t+1.
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Algorithm 1 Phase 1 of ASDP Algorithm: Estimation of F̂ post
t

1: Initialize:

– Discretize at, ωt, xpost
t

– Initialize m̂
(0)
t (ω̃t)

– Fix x1

2: for j = 1 to J do

3: Randomly generate a sample path, {ωt}
T+1
t=1 , from the continuous distribution

4: Round the continuous sample path to the nearest discretized sample path, {ω̃t}
T+1
t=1

5: for t = 1 to T − 1 do

6: (ãt, yt) ∈ arg max
n

F̂ ∗

t (xt, ω̃t, m̃
(j−1)
t (ω̃t))

˛

˛

˛ ãt ∈ AS̃t
, (19), (20)

o

7: Without loss of generality, suppose fpost(xt, ãt) is the ξth discretized value of x̃post
t

in rank ordering (i.e., fpost(xt, ãt) = x̃post
t,ξ

)

8: nu
t+1 ← max{0, δ̃u

t+1 · k̃t−ηd · (xt− R̄min)+ ẽd
t + ẽl

t− ẽc
t} and nd

t+1 ← max{0, δ̃d
t+1 ·

k̃t − (R̄max − xt)/ηc − ẽd
t − ẽl

t + ẽc
t} {compute unserved regulation}

9: ∆x̃t+1 ← ηc · (δ̃d
t+1 · k̃t−nd

t+1)− (δ̃u
t+1 · k̃t−nu

t+1)/ηd {compute change in storage
level from regulation calls}

10: θ̃t+1,ξ ←
h

F̂ ∗

t+1(x̃
post
t,ξ

+ ∆x̃t+1, ω̃t+1, m̃
(j−1)
t+1 (ω̃t+1)) − F̂ ∗

t+1(x̃
post
t,ξ−1 +

∆x̃t+1, ω̃t+1, m̃
(j−1)
t+1 (ω̃t+1))

i

/
“

x̃post
t,ξ
− x̃post

t,ξ−1

”

and θ̃t+1,ξ+1 ←
h

F̂ ∗

t+1(x̃
post
t,ξ+1 + ∆x̃t+1, ω̃t+1, m̃

(j−1)
t+1 (ω̃t+1)) − F̂ ∗

t+1(x̃
post
t,ξ

+

∆x̃t+1, ω̃t+1, m̃
(j−1)
t+1 (ω̃t+1))

i

/
“

x̃post
t,ξ+1 − x̃post

t,ξ

”

11: for i = 1, . . . , Mt and z ∈ Ω̃t do

12: ρt(x̃
post
t,i , z)←

8

>

<

>

:

(1− αj) · m̂
(j−1)
t (x̃post

t,i , z) + αj · θ̃t+1,i, if z = ω̃t

and i ∈ {ξ, ξ + 1};

m̂
(j−1)
t (x̃post

t,i , z), otherwise

13: end for

14: for i = 1, . . . , Mt and z ∈ Ω̃t do

15: m̂
(j)
t (x̃post

t,i , z)←

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ρt(x̃
post
t,ξ

, ω̃t), if z = ω̃t, x̃
post
t,i < x̃post

t,ξ

and ρt(x̃
post
t,i , z) ≤ ρt(x̃

post
t,ξ

, ω̃t)

ρt(x̃
post
t,ξ+1, ω̃t), if z = ω̃t, x̃

post
t,i > x̃post

t,ξ+1

and ρt(x̃
post
t,i , z) ≥ ρt(x̃

post
t,ξ+1, ω̃t)

ρt(x̃
post
t,i , ω̃t), otherwise

16: end for

17: xt+1 ← fpost(xt, ãt) + ∆x̃t+1

18: end for

19: end for

the starting hour-t storage level (Step 6) are computed. A near-optimal hour-t
decision is then determined, based on the final piecewise-linear approximation
of the F post

t function (Step 8). Note that the rounded exogenous state variable,
ω̃t, is used to determine what set of slopes to use in this maximization. Finally,
the hour-t profit contribution is calculated (Step 9).
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Algorithm 2 Phase 2 of ASDP Algorithm: Obtain a Near-Optimal Policy
1: Fix x1

2: for t = 1 to T do

3: Observe ωt from continuous distribution and round it to the nearest discrete ω̃t

4: if t > 1 then

5: nu
t ← max{0, δu

t ·kt−1−ηd ·(xt−1−R̄min)+ed
t−1 +el

t−1−ec
t−1}, nd

t ← max{0, δd
t ·

kt−1−(R̄max−xt−1)/ηc−ed
t−1−el

t−1 +ec
t−1}, and nr

t ←
nu

t
+nd

t

(δu
t
+δd

t
)·kt−1

{compute

unserved regulation}
6: xt ← xt−1 +ηc · (ec

t−1 +δd
t ·kt−1−nd

t )− (ed
t−1 +el

t−1 +δu
t ·kt−1−nu

t )/ηd {update
beginning hour-t storage level}

7: end if

8: (at, yt) ∈ argmax
n

F̂ ∗

t (xt, ωt, m̃
(J)
t (ω̃t))

˛

˛

˛ at ∈ ASt

o

{find a near-optimal hour-t de-

cision}
9: Ct ← pe

t · (e
d
t − ec

t )−V L · (Dt− lt) + pr
t−1 · kt−1 · (1−nr

t )−V tr(vt) {compute hour-t
profit contribution}

10: end for

3.3 Statistical Optimality Bounds

As noted before, the ASDP algorithm provides near-optimal policies for our
original SDP. To demonstrate the quality of these policies, we also generate
statistical upper and lower bounds on the true optimal value of the SDP.
Shapiro (2003) shows that implementable and feasible policies provide valid
statistical lower bounds, which we use. A policy is implementable and feasible if
it satisfies the constraints of the original SDP and is non-anticipative, meaning
that hour-t decisions depend solely on information available at hour-t. Our
ASDP algorithm provides such feasible and implementable policies. This is
because the hour-t decision that is determined in Step 8 of Algorithm 2 depends
solely on the hour-t state variable. Moreover, the only exogenous variables
that are unknown when making hour-t decisions that affect feasibility are the
dispatch-to-contract ratios. Since regulation energy calls can go unserved with
an associated profit penalty, the quantities, nu

t+1, nd
t+1, and nr

t+1, are defined
in Step 5 of Algorithm 2 to ensure that any hour-t decision is feasible. Thus, we
compute our lower bound by randomly generating K sample paths, {ωt}

T

t=1,
of the exogenous state variables and determining near-optimal policies using
Algorithm 2. Let GIF

0 (ωk) denote the resulting objective function value over
the T -hour horizon with exogenous state variable sample path, ωk. We then
compute our lower bound as:

BL =
1

K

K
∑

k=1

GIF
0 (ωk).

We compute statistical upper bounds using a sample path averaging tech-
nique. This is done by randomly generating K ′ sample paths, {ωt}

T

t=1, of the
exogenous state variables. For each sample path we solve a deterministic op-
timization problem in which the full sequence of exogenous random variable
values is known in hour 1 and profits are maximized over the T -hour hori-
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zon. Let GDET
0 (ωk) denote the resulting profit with exogenous state variable

sample path, ωk. We compute our upper bound as:

BU =
1

K ′

K′

∑

k=1

GDET
0 (ωk).

We compute 100 lower and upper bounds, using 1000 randomly generated
sample paths for each. This provides sample means and standard errors of the
bounds, which can be used to determine confidence intervals.

4 Case Study

We demonstrate our model and solution algorithm using a case study, in which
a battery is co-located with a residential transformer. We allow the battery
to provide all of the services modeled by our SDP. Our case study assumes a
residential subdivision consisting of six houses connected to the grid through a
25 kVA transformer. We further assume that two of the homes have one hybrid
PEV each and another two have one pure battery PEV each. The added PEV
charging loads overload the transformer in some hours. We examine how a
battery would be used in such a setting and also examine long-term economics
of using a battery in this manner. Specifically, we allow the utility to address
these distribution overloads (in addition to providing other services) using a
mix of transformer upgrades and by installing a battery.

The region studied is in the PJM Interconnection system and we model the
system based on PJM market rules. We further use PJM market and system
data from 2009 to study battery use and economics over a typical year. This
typical year is assumed to repeat in perpetuity for our long-term economic
analysis. We optimize battery use over the year 24 hours at a time using a
rolling 48-hour optimization horizon. This is done by first solving the ASDP
for hours one through 48, to derive an optimal policy for days one and two.
We then generate a sample path of random variable realizations for the first 24
hours and use the optimized policy to determine day-one decisions, objective
function contributions, and the beginning state of the system on day two, S25.
We then roll forward and solve another ASDP for hours 25 through 71, using
S25 as the starting state of the system. We proceed in this fashion to model
battery use over the year studied.

Sioshansi et al (2009) argue that this use of an additional 24-hour ‘look-
ahead’ period ensures that energy that has carryover value on a subsequent
day is kept in storage. It is important to note that determining a proper length
of the look-ahead period can depend on the battery’s power and energy ca-
pacities. A battery that can store and discharge energy for many consecutive
hours may require a longer look-ahead period to optimally carry energy over
to subsequent periods. Our case study assumes a battery with a high power
capacity relative to its energy capacity, implying that it can only charge and
discharge for a limited number of hours. Thus, the 24-hour look-ahead period
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should be sufficient. Since we optimize over a 48-hour period, we assume a dis-
count factor γ = 1 in the ASDP. We now detail other assumptions underlying
the case study.

4.1 Distribution-Level Load

Residential demand consists of PEV and non-PEV loads. We model the non-
PEV loads based on two datasets provided by AEP for residential customers
in its central-Ohio service territory in 2009. One data set provides summary
statistics (i.e., minimum, average, and coincident peak load) for a typical
25 kVA transformer connecting six homes to the grid in 2009. The second
data set is an average hourly residential home load profile for 2009. We scale
the hourly average loads, using generalized method of moments, to generate a
load profile with summary statistics that match the values reported by AEP
for a 25 kVA transformer connected to six homes.

PEV charging load data are generated based on the mass simulation model
developed by Gong et al (2011). Their technique generates vehicle driving pro-
files using a Markov chain method and converts the driving profiles into battery
energy usage. It then determines when vehicles are charged and the charging
load assuming that the PEVs begin charging no earlier than 7 pm (but pos-
sibly later, depending on return time to the home) using a 4.4 kW level-2
charger.

Figure 3 shows three load duration curves corresponding to these data
sets. The first corresponds to the ‘unscaled’ average hourly residential loads
provided by AEP. The second are the loads scaled to match the summary
statistics given by AEP. AEP reports that the minimum, average, and coin-
cident peak loads for a typical 25 kVA transformer connected to six homes
are 0.20 kW, 10.24 kW, and 25.97 kW, respectively. Our scaled load profile
has values of 0.22 kW, 10.16 kW, and 26.00 kW for these summary statistics.
The third load duration curve corresponds to the sum of the PEV and scaled
non-PEV loads. Figure 3 further shows that the three load profiles exceed the
25 kVA transformer capacity in 11, 63, and 398 hours of the year, respectively.

Adding the PEV charging loads changes the distribution-level charging
profile in two important ways. The first is that it increases the average and
peak load on the distribution transformer to 11.37 kW and 41.47 kW, re-
spectively. This effect is clearly seen in Figure 3. Secondly, the PEV charging
changes the hours in which the distribution-level load peaks. Without PEVs,
the distribution-level load peaks midday. Under our modeling assumption, the
PEV charging load peaks in hours 19–21, when most PEVs begin their charg-
ing cycles. When the PEV charging loads are added, 99 of the 100 highest-load
hours of the year occur between hours 19 and 21.

We assume in our case study that the PEV loads are deterministic and
known, based on outputs of the mass simulation model (these are represented
by the difference between the third and second load duration curves shown in
Figure 3). The non-PEV loads are assumed to follow serially independent log-
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Fig. 3: Load duration curves for scaled and unscaled distribution-level loads

normal distributions. The mean of the distribution in each hour is given by the
scaled non-PEV load modeled using the AEP data (these are represented by
the second load duration curve shown in Figure 3) and we assume a variance
of 0.15. We assume a penalty of V L = $3.72/kWh on any unserved residential
load, which is the value reported by Kariuki and Allan (1996).

4.2 Battery Characteristics

The batteries’ energy capacity depends on two factors: the amount of energy
that has previously been cycled through the batteries and ambient temper-
ature. We model the effects of both factors based on the results of battery
cycling experiments conducted at The Ohio State University’s Center for Au-
tomotive Research.2 We assume that the batteries have a nominal capacity,
R̄nom, which is reduced by 1.048× 10−5 kWh per Ah of net energy exchanged
(i.e., charged or discharged) at 220 V. This is equivalent to 4.762× 10−5 kWh
of nominal energy capacity lost per kWh of net energy exchange.

Given the extremely low rate of battery capacity deterioration, our SDP
does not directly account for this capacity loss in the optimization. Rather,
after the operation of the battery over a one-week period is determined, the
nominal battery capacity is updated before proceeding to model operations
over the following week. Since the battery capacity is updated a posteriori, our
SDP does not fully tradeoff the implicit cost of battery cycle life degradation

2 Since this testing is still preliminary, results are not yet publicly available. The exper-
iments cycle batteries repeatedly and under different temperature conditions to determine
their capacities and aging characteristics.
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against the value of the services that the battery provides. One could attempt
to capture this tradeoff by adding a battery cycling cost to the objective
function. This may be difficult to implement in practice, however, since the
opportunity cost of battery degradation depends on how the battery would be
optimally operated in the future.

We further assume that once the nominal battery capacity reaches some
threshold level, the battery is no longer usable. This can either represent an
actual battery failure, or the fact that once the nominal capacity is sufficiently
low, it is more efficient to remove the battery from service and recycle it. We
consider cases in which this failure occurs once the nominal capacity is less
than between 50% and 75% of the starting nominal capacity. Figure 4 shows
the deterioration of the battery capacity as a function of the number times
it is cycled under the two different threshold assumptions. The figure defines
a battery cycle as completely discharging and then completely recharging the
battery. The figure also suggests that by examining the effect of the failure
threshold on battery operations and economics, we can also indirectly examine
the effect of different battery deterioration rates. This is because varying the
failure threshold affects the number of cycles that the battery can operate
through.
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Fig. 4: Nominal capacity deterioration as a function of battery cycling

We capture temperature effects by modeling the batteries’ minimum and
maximum energy capacities, R̄min and R̄max, as being a fraction of R̄nom,
where this fraction is temperature-dependent. Figure 5 shows weekly-average
temperature data for the city of Columbus, OH from the year 2009, which are
used to model temperature effects (daily-average temperatures are used in the
modeling, but Figure 5 shows the weekly-averaged data). It also shows the
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modeled minimum and maximum capacity for each week (as a percentage of
R̄nom). Figure 5 further indicates that the batteries’ charging and discharging
efficiencies are temperature-dependent.
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Fig. 5: Weekly average temperatures and resulting battery capacities and ef-
ficiencies

We assume that future battery capacities and efficiencies are known with
perfect foresight and deterministic within the 48-hour optimization horizon.
We further assume that the batteries have a maximum charging and discharg-
ing power capacity, P̄ b, which is equal to 8.5 kW per kWh of nominal energy
capacity, based on tested characteristics of lithium ion batteries.

4.3 Transformer Characteristics

A transformer can be operated above its rated capacity, however this accel-
erates transformer aging. Susa et al (2005) and Gong et al (2011) develop a
transformer aging model based on hot-spot and top-oil temperatures, which
we use to estimate the effect of operating a transformer above its rated capac-
ity. This is done by increasing transformer loading during a single hour, while
holding the remaining loads constant, and modeling the expected decrease in
transformer life. We then use an assumed lump-sum replacement cost of $750
for a 25 kVA transformer, based on typical values reported by AEP, to trans-
late this expected transformer life loss into a cost. Since transformers are a
relatively mature technology, we do not expect or model substantive future
cost reductions. The resulting cost of operating the 25 kVA transformer above
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its rated capacity is given by the following convex piecewise-linear function:

V tr(vt) =







































0.68vt, if vt ∈ [0, 0.1P̄ tr),
1.76(vt − 0.1P̄ tr) + 0.68 · 0.1P̄ tr, if vt ∈ [0.1P̄ tr, 0.2P̄ tr),
5.14(vt − 0.2P̄ tr) + 2.44 · 0.1P̄ tr, if vt ∈ [0.2P̄ tr, 0.3P̄ tr),
16.30(vt − 0.3P̄ tr) + 7.58 · 0.1P̄ tr, if vt ∈ [0.3P̄ tr, 0.4P̄ tr),
50.21(vt − 0.4P̄ tr) + 23.88 · 0.1P̄ tr, if vt ∈ [0.4P̄ tr, 0.5P̄ tr),
158.40(vt − 0.5P̄ tr) + 74.09 · 0.1P̄ tr, if vt ∈ [0.5P̄ tr, 0.6P̄ tr),
520.70(vt − 0.6P̄ tr) + 232.49 · 0.1P̄ tr, if vt ∈ [0.6P̄ tr, +∞).

(21)

4.4 Exogenous Random Variables

Although our model and solution algorithm do not require any specific cor-
relation among the exogenous random variables (other than the Markovian

property), we assume in our case study that p̂e
t , p̂r

t , D̂t, Ît, δ̂u
t , and δ̂d

t are

all mutually independent. We further assume that p̂e
t , p̂r

t , D̂t, δ̂u
t , and δ̂d

t are
serially independent over time.

Historical energy and regulation capacity prices show very little correlation.
In 2009 these prices had a correlation of about −0.15. This is because high en-
ergy prices signal less generating capacity being available and higher-cost gen-
eration having to be used to serve the load. High regulation prices signal a lack
of fast-responding generation. Indeed, energy prices tend to peak midday when
electricity demand is the highest, whereas regulation prices can peak overnight
when loads are low and only base-load generators with slow ramping rates are
online. These differences in the diurnal price patterns also explain the slightly
negative correlation between the two sets of prices. Knittel and Roberts (2005)
and Shrestha and Songbo (2010) test historical energy price data from the
California ISO and Singapore electricity markets, respectively, and show that
these best fit a log-normal distribution. Our own examination of PJM system
marginal prices in 2009 reveals the same. Thus, we assume that the energy
prices have a log-normal distribution. Although the distribution of regulation
prices has not been examined, our analysis of 2009 PJM data indicates that
these prices also fit a log-normal distribution, which we assume.

To capture seasonal and diurnal price patterns, we allow the price distribu-
tions to differ for each of the 8760 hours of the year. Specifically, the location
parameter of the price distribution in each hour is set equal to the actual his-
torical energy or regulation price. The scale parameters are set equal to the
maximum likelihood estimator given by all of the prices observed for the same
hour of the day during the course of the month. That is, a different scale pa-
rameter is estimated for each of 24 hours in the month of January, as is done
for the 24 hours of each of other months of the year.

The distributions of the dispatch-to-contract ratios of regulation up and
down are estimated using historical PJM data from 2009. These data specify
the amount of regulation capacity reserved in each hour and the amount of
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gross regulation up and down energy deployed in real-time. The data do not
show any diurnal or seasonal patterns in the ratios. Thus, we assume that
the distributions are time-invariant. Hypothesis testing suggests that a Gaus-
sian distribution best fits the historical data, which we assume. Maximum-
likelihood estimators of the mean and standard deviation are used.

A number of approaches are used to model power system reliability, with
Markov-based models being common. DeSieno and Stine (1965) show that
power system failures approximately follow a Markov process. We model sys-
tem outages using a two-state Markov chain in which the system can either
be in an outage or non-outage state. Transitions between these states depend
solely on the present state of the system, and the transition probabilities are
time-invariant. We use system reliability data reported by FirstEnergy for its
Ohio service territory in 2009 to estimate the transition probabilities. FirstEn-
ergy reports an average of 1.24 outages per customer during the year, which
lasted an average of 2 hours. Based on these values, we assume a 0.000142 prob-
ability that the system has an outage at hour t+1 if it is in a non-outage state
at hour t, and a 0.5 probability that it recovers from an outage in each hour.

The low probability with which it occurs raises an issue in capturing the
effect of system outages on battery usage. If outages are not observed in the
sample paths generated in Step 3 of Algorithm 1, our estimates of F̂ ∗

t may
underestimate the benefit of keeping energy stored for future outages. To over-
come this issue, we modify Algorithm 1. Specifically, after randomly generating
a sample path and updating the estimated slopes of F̂ ∗

t in Steps 5–18, we re-
peat Steps 5–18 by fixing the outage variable equal to 1 in each hour. In this
way, the F̂ ∗

t functions are explicitly estimated taking into account the cost
savings of having stored energy available to help mitigate an outage. Our op-
timized policies using Algorithm 1 (without this modification) and this variant
in which outages are explicitly included in the function updates are quite sim-
ilar to each other. This suggests that although there is a high cost of load
curtailment, the low probability with which outages occur and the value of
other services that the battery can be used for overshadows the benefits of
keeping additional energy stored. These results are further discussed in Sec-
tion 5.

4.5 Model Discretization

The pre- and post-decision storage level state variables are discretized to take
on values:

x̃t, x̃
post
t ∈ {R̄min, R̄min + 0.5, R̄min + 1.0, · · · , R̄max}.

This implies that the charging and discharging variables, ẽc
t , ẽd

t , and ẽl
t, can

only take on a discrete number of values, corresponding to possible transitions
between x̃t and x̃post

t . We discretize the kt variables using 1 kW interval widths
between their upper and lower bounds, which are defined by equations (4)
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and (5). We discretize the vt variables using the breakpoints shown in equa-

tion (21). The distributions of the p̂e
t , δ̂u

t , D̂t, and δ̂d
t random variables are

discretized into five possible outcomes and the distributions of the p̂r
t random

variables into four possible values, using bracket medians. The distribution of
Ît needs no discretization, as it can only take on two values.

These assumptions yield a discrete dynamic program, given by (18), which
can be solved using the dynamic programming algorithm. Moreover, we can
exploit the structure of our problem to further reduce the feasible action space,
over which we must search for an optimal solution at Step 6 of Algorithm 2.
We first note that due to roundtrip efficiency losses, it is suboptimal to simul-
taneously charge and discharge energy. Thus, for all t, ec

t cannot be non-zero
if at least one of ed

t and el
t is and vice versa. Hence, the total number of

combinations that ec
t , ed

t , and el
t can take in a given hour is M2, where:

M =
∣

∣{R̄min, R̄min + 0.5, R̄min + 1.0, · · · , R̄max}
∣

∣ .

Furthermore, due to the high penalty on unserved building loads, the value
of l̃t can be determined by (7) through (10) and the values of It, ẽc

t , ẽd
t , ẽl

t,
k̃t, and ṽt. Specifically, if It = 1, then l̃t = min{D̃t, ẽ

l
t}. Otherwise, if It = 0

then l̃t = min{D̃t, P̄
tr + ṽt + ẽl

t}. This structure implies that a maximum of
M2 ·|ṽt|·P̄

tr combinations of action variables are feasible and could be optimal
in (18).

4.6 ASDP Algorithm Implementation

Nascimento and Powell (2009) prove that the piecewise-linear approximations
of the F post

t functions, which are estimated in Algorithm 1, converge to the
true cost-to-go function as the number of iterations approaches infinity. We
conduct 500 iterations of this algorithm, since for most of the case studies run,
the approximation is within a 1% relative error after about 100 iterations. The
values of αj used in Step 11 of Algorithm 1 are taken to be 1/2 for the first
50 iterations, 1/3 for the next 50, 1/4 for the following 50, etc.

5 Results

We first model and study the operation of an exogenously fixed battery and
transformer deployment over a typical one-year period. We then use the results
of this typical year to conduct a more thorough long-term economic analysis,
in which the utility has the option of installing batteries and transformer
upgrades to maximize life-cycle value of the deployment.

5.1 Short-Term Operational Modeling Results

Figure 6 shows the operation of a battery with a nominal capacity of R̄nom =
15 kWh over a one-day period. The figure shows that much of the value of the



DP Model of Storage and Transformer Deployments to Relieve Distribution 23

battery comes from regulation, and that it provides much more regulation than
arbitrage. This is because regulation is primarily a capacity service resulting
in relatively little energy charging or discharging. This means that this service
tends to incur little cost and comparably high revenues. Although the dispatch-
to-contract ratio in a particular hour can be high (e.g., we find cases of up to
0.35 in the historical PJM data) the regulation-up and -down signals tend
to cancel-out in the long-run. Our simulation has high ratios of up to 0.36,
but the average ratio over the year is much lower at 0.10, which is consistent
with the historical PJM data. Thus, on average, providing regulation results
in small net charging of the battery. When the energy price is sufficiently high
compared to the price of regulation, such as in hour 15, the battery provides
arbitrage energy as well.
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Fig. 6: Battery operation over a one-day period

Figure 6 also illustrates that determining an optimal policy is more complex
than following diurnal price patterns. For instance, the battery is charged in
hour 12, despite the energy price being relatively high at that time. This
is because a high dispatch-to-contract ratio in hour 10 results in 3.5 kWh
of energy discharge. This, coupled with energy sales due to the high energy
price in hour 11, nearly depletes the battery’s state of charge. The battery is
recharged in hour 12 so it can provide more regulation capacity in subsequent
hours while reducing the likelihood of not receiving 100% of the regulation
payment due to an unserved energy call. Table 1 reports the mean upper-
and lower-bounds on the optimal SDP objective function value and standard
errors for the bounds over the typical year studied. The optimality gap is
around 1.97%, showing that the ASDP algorithm provides a relatively good
near-optimal solution.
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Table 1: Upper and lower bounds on optimal SDP objective function value

Bound Value [$] Standard Error [$]

BL 2172.7 18.74
BU 2215.4 22.39

Another benefit of the battery, which is illustrated in Figure 7, is that it
improves the net distribution-level load profile. This is because the battery
allows stored energy to be used during extremely high-load periods while also
increasing transformer loading during low-load periods when the transformer
is not being fully utilized. Adding the 15 kWh battery reduces the peak net
distribution-load from 41.47 kWh (without the battery) to 35.45 kWh. More-
over, adding the battery reduces the net distribution-level load by an average
of 12.3 kW during the 10 highest-load hours of the year. The battery increases
the average (over the course of the year) distribution-level load from 11.37 kW
to 11.41 kW, which reflects the effect of energy lost in the storage process. The
battery also reduces net distribution-level demand variability slightly. With-
out the battery the hourly loads have a standard deviation of about 6.76 as
opposed to 6.23 with the battery.
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Fig. 7: Net distribution-level load duration curve without and with 15 kWh
battery
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5.2 Long-Term Distribution Infrastructure Design

Optimizing distribution infrastructure design involves an economic tradeoff be-
tween the upfront transformer upgrade and battery installation capital costs
and the associated stream of revenues and averted costs. These are combined
with an assumed annual discount rate to compute the net present value (NPV)
of different infrastructure designs and to determine an NPV-maximizing de-
ployment. We compute these NPVs over a 20-year period, which is a standard
design life of a distribution-level transformer. Before presenting the results of
this analysis, we detail the cost and revenue assumptions underlying it.

5.2.1 Cost Assumptions

Our cost assumptions are based on typical values reported to us by AEP. The
transformer is assumed to be available in 25 kVA, 37.5 kVA, 50 kVA, and
75 kVA sizes only, with lump-sum per-unit capital costs of $750, $1000, $1300,
and $1750, respectively. Although the transformer has a 20-year design life,
it may fail prematurely depending on loading characteristics. If this occurs,
we assume that a replacement transformer of equal capacity is immediately
installed, with the same capital cost. As noted before, since transformers are
a relatively mature technology, we do not model substantive future cost re-
ductions. Since distributed battery storage devices are not widely available,
the cost of such systems is uncertain. Thus, we consider two bounding cases
in which such batteries cost $50/kWh and $200/kWh. We assume that all
battery and transformer installations incur annual maintenance costs equal to
5% of their upfront capital costs. We further assume a 7% annual discount
rate.

5.2.2 Revenue Assumptions

Deployment revenues are estimated using the SDP model. This is done by
running the SDP in the manner outlined in Section 4 and repeating the pro-
cess using 1000 sample paths of the exogenous random variables to estimate
expected annual revenues. Figure 8 shows annual expected battery operating
revenues, as a function of the starting nominal battery capacity at the begin-
ning of the year and the transformer capacity. The revenues shown account for
battery cycle-life losses during the course of the year, since the starting nom-
inal battery capacity is updated after each week of simulated operations. As
expected, it shows that the battery value is increasing in its capacity, although
this can be greatly limited by transformer capacity as well. This reflects the
transformer potentially limiting the ability of the battery to provide market
services, especially regulation.

While using the battery accrues the revenues shown in Figure 8, it also
causes cycle-life losses to the battery. Figure 9 shows these cycle-life losses, as a
function of transformer and starting nominal battery capacities. As expected,
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Fig. 8: Expected annual battery operating revenues

a larger battery or transformer gives greater losses, since such deployments
allow greater operational flexibility and more energy exchange to occur.
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Fig. 9: Expected annual battery capacity loss

To compute the expected NPV of revenues earned, we define υ(P̄ tr, R̄nom)
as expected revenues earned by the deployment during the modeled typical
year, as a function of the transformer and starting (at the beginning of the
year) nominal battery capacities. We also define λ(P̄ tr, R̄nom) as expected
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nominal battery capacity loss after the modeled typical year, as a function
of the transformer and starting nominal battery capacities. Both of these
functions are found from Figures 8 and 9, using linear interpolation. We im-
pose the battery failure condition (discussed in Section 4.2) when defining
υ(P̄ tr, R̄nom). This is done by fixing υ(P̄ tr, R̄nom) = υ(P̄ tr, 0) for any R̄nom

below the cutoff value, at which the battery is assumed to fail. We also define
γann as the annual discount rate.

5.2.3 Discounted Deployment Profits

The NPV of revenues earned by a deployment consisting of a P̄ tr kVA trans-
former and a battery with a starting (at the beginning of year 0) nominal
capacity of R̄nom

0 kWh is given by:

υNPV (P̄ tr, R̄nom
0 ) =

19
∑

y=0

γy
ann · υ(P̄ tr, R̄nom

y ),

where the starting nominal battery capacity in each year is updated according
to:

R̄nom
y+1 = R̄nom

y − λ(P̄ tr, R̄nom
y ), ∀ y = 1, 2, . . . , 18.

The net discounted profit of the deployment is then given by:

υNPV (P̄ tr, R̄nom
0 ) − Ktr(P̄ tr) − Kba(R̄nom) −

r
∑

y=1

γy·L(P̄ tr)
ann Ktr(P̄ tr), (22)

where:

r =

⌊

20

L(P̄ tr)

⌋

,

is the number of times that the transformer must be replaced during the
20-year optimization period, Ktr(P̄ tr) and Kba(R̄nom) are the transformer
and battery capital costs, respectively, as a function of their starting nominal
capacities, and L(P̄ tr) is the expected transformer failure time in years.

Figure 10 shows the estimated NPV, as defined by (22), of different de-
ployment configurations over the 20-year study horizon. The figures assume
different underlying battery costs and failure characteristics. Contrasting the
figures shows that while battery capital cost plays a role in determining the
net return and economic viability of a distributed battery storage system, its
failure characteristic is a much more important parameter. This is indicative
of the fact that with the assumed 7% annual discount rate, the ability of a bat-
tery to earn revenues over a prolonged period of time is important in making
such an investment viable. These results, further, suggest that the principal
focus of battery manufacturers targeting distributed storage solutions should
be on maximizing battery cycle-life, with manufacturing cost a less important
factor.

All of the configurations without a battery result in a negative NPV. This
is because such deployments incur the cost of installing a transformer, without
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(a) $50/kWh battery cost and battery fail-
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(b) $50/kWh battery cost and battery fail-
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(c) $200/kWh battery cost and battery fail-
ure at 50% of starting nominal capacity
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(d) $200/kWh battery cost and battery fail-
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Fig. 10: Expected NPV of deployment profits with different battery costs and
failure points

earning any revenues through providing market services with the battery. The
highest-NPV configuration without a battery includes a 37.5 kVA transformer.
Installing a 25 kVA transformer requires two transformer replacements during
the 20-year planning horizon. A 37.5 kVA transformer, on the other hand,
does not require any replacement within the 20-year horizon. If a 25 kVA
transformer is installed, a battery with a 10 kWh starting nominal capacity
is needed to maintain a 20-year transformer life.3 None of the other deploy-
ments examined require transformer replacements within the 20-year planning
horizon considered.

3 We only model battery capacities with starting energy capacities in 5 kWh increments.
A deployment with a 25 kVA transformer and a battery with a starting nominal capacity
of 5 kWh results in an expected transformer life of 18.4 years. A 10 kWh battery results in
a 21.3 year transformer life.
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6 Conclusions

This paper presents an SDP model that co-optimizes the use of a battery
for multiple applications. This includes energy arbitrage, the provision of AS,
backup energy for distribution-level loads, and distribution infrastructure re-
lief. Our SDP accounts for both market and system uncertainty, and is fairly
flexible in how such uncertainties are modeled. We also adapt an approxima-
tion technique developed by Nascimento and Powell (2009) to solve the SDP
efficiently. We use a case study, based on central Ohio in the year 2009, to
demonstrate the model. We show the inherent complexity in co-optimizing
the use of a storage device for multiple applications. We also use the results of
our short-run operational model to study long-term distribution infrastructure
design. Our results show that the aging characteristic of the battery and the
point at which it fails are critically important parameters in determining the
long-run financial viability of a distributed energy storage system. Although
we focus on small-scale distributed storage, the model is also applicable to
utility-scale storage.
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Kempton W, Tomić J (2005) Vehicle-to-grid power fundamentals: Calculating
capacity and net revenue. Journal of Power Sources 144:268–279

Kintner-Meyer MCW, Schneider KP, Pratt RG (2007) Impacts Assessment of
Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids:
Part 1: Technical Analysis. Online Journal of EUEC 1(4)



30 X. Xi and R. Sioshansi

Knittel CR, Roberts MR (2005) An empirical examination of restructured
electricity prices. Energy Economics 27:791–817

Mohseni P, Stevie RG (2009) Electric vehicles: Holy grail or Fool’s gold. In:
Power & Energy Society General Meeting, 2009, Institute of Electrical and
Electronics Engineers, Calgary, AB, pp 1–5

Nascimento JM, Powell WB (2009) An Optimal Approximate Dynamic Pro-
gramming Algorithm for the Energy Dispatch Problem with Grid-Level
Storage, working paper

Nourai A (2007) Installation of the First Distributed Energy Storage System
(DESS) at American Electric Power (AEP). Tech. Rep. SAND2007-3580,
Sandia National Laboratories

Powell WB (2007) Approximate Dynamic Programming: Solving the Curses
of Dimensionality. Wiley-Interscience, Hoboken, New Jersey

Rockafellar RT (1970) Convex Analysis. Princeton University Press, Princeton,
New Jersey

Shapiro A (2003) Inference of statistical bounds for multistage stochastic pro-
gramming problems. Mathematical Methods of Operations Research 58:57–
68

Shrestha GB, Songbo Q (2010) Statistical Characterization of Electricity Price
in Competitive Power Markets. In: 2010 IEEE 11th International Conference
on Probabilistic Methods Applied to Power Systems (PMAPS), Institute of
Electrical and Electronics Engineers, Singapore

Sioshansi R, Denholm P (2010) The value of plug-in hybrid electric vehicles
as grid resources. The Energy Journal 31:1–23

Sioshansi R, Denholm P, Jenkin T, Weiss J (2009) Estimating the Value of
Electricity Storage in PJM: Arbitrage and Some Welfare Effects. Energy
Economics 31:269–277

Susa D, Lehtonen M, Nordman H (2005) Dynamic Thermal Modelling of Power
Transformers. IEEE Transactions on Power Delivery 20:197–204
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