Powering Decarbonization

Strategies to Achieve Net-Zero Emissions in the Electric Sector and Beyond

John Bistline, Ph.D. Energy Systems and Climate Analysis

Carnegie Mellon CEIC Seminar March 17, 2021

Preliminary results. Do not cite or quote.

EPRI Analysis: Key Net-Zero Target Insights

- Zero by 2035 for electric sector involves rapid transformation
 - Reducing electric sector emissions up to ~80% below 2005 levels can be costeffectively achieved with current technologies
 - Negative emissions technologies ("net-zero") are valuable for cost management and flexibility; much higher costs for "absolute-zero"
- Renewables projected to play a major role in all scenarios
 - Ensuring reliability: Grid modernization, electricity market redesign, lowcarbon firm capacity, new transmission, new resource planning methods
- Efficiency and electrification are essential, drive cost reductions and emissions reductions in end-use sectors (many decision-makers)
- Low-carbon fuels (hydrogen, bioenergy) needed to reduce "last 20%" of economy-wide emissions → EPRI's LCRI report in July 2021

Powering Decarbonization Strategies for Net-Zero CO₂ Emissions

White Paper Published: February 2021

https://www.epri.com/research/products/3002020700 EPRI Report #3002020700

www.epri.com

POWERING DECARBONIZATION Strategies for Net-Zero CO, Emissions

February 2021

Net-Zero Emissions Targets and Role of the Power Sector

 "Net zero" in Article 4.1 of the Paris Agreement: "Parties aim to [...] achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century"

 IPCC Special Report on Global Warming of 1.5 °C (SPM C.1): "In model pathways with no or limited overshoot of 1.5°C, global net anthropogenic CO₂ emissions [...] reach net zero around 2050"

Clean electricity is the keystone of the energy transition

Questions: Exploring the Economics of Net-Zero Targets

Company CO₂ Pledges and Policy Drivers

- Company pledges and state/federal policies toward (net) zero CO₂ (e.g., Biden plan for 100% clean by 2035)
- Q: How can these net-zero goals be reached?

Defining "Net Zero"

- Many definitions with impacts on the roles and value of different technologies
- Q: What does "net zero" mean, and what are the implications of alternatives?

CO₂ Removal Technologies

- Discussions of technologies like bioenergy with carbon capture and direct air capture
- Q: How might the availability of CDR options impact electric sector decarbonization?

Scenarios: What Does a "Zero" Target Mean for Electric Sector?

NET-ZERO

Net carbon emissions equal zero. Any emissions produced from operations are balanced by an equivalent amount of carbon removal or offsets.

TARGET TIMING

CARBON-FREE

Electricity generation either does not use fossil fuels or does not emit carbon.

100% of electricity generated from renewable sources such as wind, solar, and hydro.

100% RENEWABLES

NON-ELECTRIC SECTORS

Electric Generation

Detailed representation of:

- Energy and capacity requirements
- Renewable integration, transmission, storage
- State-level policies and constraints

Model Outputs:

Economic equilibrium for generation, capacity, and end-use mix

Emissions, air quality, and water

Energy Use

Detailed representation of:

- Customer heterogeneity across end-use sectors
- End-use technology trade-offs
- Electrification and efficiency opportunities

Documentation, articles, and reports available at https://esca.epri.com

Electric Sector Decarbonization

www.epri.com

Target Definition Impacts Technology Mix

- Net Zero: Negative emission technologies and CCUS enable fossil fuels to supplement nuclear and hydro, balancing the variability of solar and wind.
- Carbon Free: Rapid build of nuclear and storage (H₂ and battery) to balance larger solar and wind expansion.
- 100% Renewables: Increased H₂ utilization, much larger battery deployment to replace retiring nuclear and balance dramatic solar and wind expansion.
- Higher prices resulting from more restrictive target definitions discourage **electrification**, drive additional investments in **efficiency**, reducing **load**.

Target Definition Impacts Technology Mix and Costs

U.S. Average Generation Price

increases cost of electric sector decarbonization

Target Definition and Timing Impacts Technology Mix and Cost

U.S. Average Generation Price

Delaying target allows more gradual introduction of new technology, avoids electricity price spike

Regional Differences in Achieving "Zero" Targets

2035

www.epri.com

- Net-Zero less expensive in all regions
- **East** and **South** impacted by limited renewable resource availability (and constraints on transmission expansion)
- Carbon-Free similar to 100% Renewables in Midwest and West

0

Cumulative Capacity Investments 2020–2035

Observations: Electric Sector Decarbonization

- Near-term low regrets options: Retire coal; expand renewable capacity; maintain existing nuclear and gas capacity
- Many low-cost pathways to reach net zero; some are lower-cost than others → Target definitions and timing matter
 - Restricting technology options increases cost of electric sector decarbonization relative to a net-zero formulation, highlighting the value of modest carbon removal deployment
 - Targeting 80% by 2035 allows for more gradual introduction of new technology, avoids electricity price spike but with higher cumulative CO₂
- Wind/solar are likely at the center of least-cost decarbonized electricity systems; policy design and technological cost will impact regional shares but not likely to be 100% everywhere

Economy-Wide Decarbonization

Efficiency and Electrification Drive Non-Electric Reductions

Carbon Price with Electric Sector Zero Targets

How Does Electric Sector Decarbonization Contribute?

How Does Electric Sector Decarbonization Contribute?

With a harmonized economy-wide carbon price, bio-CCS drives electric sector emissions **net-negative**

Economy-wide emissions fall to 80% below 2005 with net-negative electric sector emissions

Total Expenditure on Electricity

- Total electric system costs rise from ~\$400B/year in 2020 to ~\$600B/year in 2050 in decarbonization scenarios
- 12% increase in price
- 39% increase in demand
- \rightarrow 57% increase in expenditure
- But electricity is a relatively small component of total energy-service costs

Total Expenditure on Electricity + Non-Electric Fuels

Total Economy-Wide Energy Service Costs

<u>Change</u> in Total Energy Services Cost and Emissions Target Scenarios vs. Reference

Net-Zero Targets achieve emissions reductions at lower cost than the more restrictive target definitions

- Carbon-Free and 100% Renewables targets have higher costs and slightly higher emissions because of the higher electricity price discourages electrification
- Shifting the target to 2050 lowers costs while achieving fewer emissions reductions
- Deeper cuts to emissions will require additional efficiency and electrification, CDR, lowcarbon fuels, likely higher cost

Observations: Economy-Wide Decarbonization

- Electrification/efficiency lower CO₂ and energy service costs and should always complement electric sector targets to reach economy-wide goals
 - Economy-wide CO₂ fall to ~70% below 2005 with electric sector decarbonization plus additional electrification in end-uses
 - CO₂ falls by 80% when negative emissions technologies are available
- Electric sector CO₂ likely to be net negative as economy-wide netzero is approached → Net-zero economy-wide would require additional technologies and end-use policies

Key Takeaways

Full Portfolio and Optionality

Restricting technology options significantly increases cost of electric sector decarbonization to achieve zero

Timing

Target timing impacts the costs and pace of the transition

Collaboration

Essential to overcome major challenges in reaching zero-emission targets in electric sector, especially by 2035 (R&D, siting, permitting, market reform)

Decarbonizing the economy requires redirecting customers' energy equipment choices and changing how they interact with energy providers

Low-Carbon Resources

Technology advances in lowcarbon resources needed to achieve net zero in the electric sector and enable deep reductions in hard-toelectrify end uses

Together...Shaping the Future of Electricity

John Bistline +1-650-855-8517 jbistline@epri.com

www.epri.com

Bibliography

- Blanford, Wilson, Bistline (2021), Powering Decarbonization: Strategies for Net-Zero CO₂ Emissions, EPRI Report 3002020700 (<u>link</u>)
- Bistline, Blanford (2020), Value of Technology in the U.S. Electric Power Sector, Energy Economics (link)
- Bistline, Young (2019), Economic Drivers of Wind and Solar Penetration in the U.S., Environmental Research Letters (<u>link</u>)
- EPRI (2020), National Implications of Utility CO₂ Targets: 2020 Update, EPRI Report 3002019004 (<u>link</u>)
- Young, et al. (2020), US-REGEN Model Documentation, EPRI Report 3002016601 (link)

For more information, see our website at <u>https://esca.epri.com</u>

US-REGEN Capital Costs for Electric Technologies

Technology Mix Depends on "Zero" Target Definition

* Storage includes existing pumped hydro and new battery storage

Ň

