Harder, faster, better, stronger: Operating grids on faster timescales for economic, environmental, and engineering efficiency

Kyri Baker, Assistant Professor

University of Colorado Boulder

Before I moved to Colorado, I spent 9 years of my life here at CMU!

Moving into Mudge Hall, 2006

Performing at ECE Day, 2010

PH.D. DEFENSE

Kyri Baker

FINAL PUBLIC ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Friday, December 5, 2014 PH B34 2:30 p.m.

Coord<mark>inatio</mark>n of Resources across Areas for the Integration of Renewable Generation: Operation, Sizing, and Siting of Storage Devices

PhD defense, Dec 2014

Pretending to be a professor, Baker Hall, 2007

Smart home research with NREL

Award-winning Grid Optimization team

Patented smart inverter control algorithms

Talk Outline

1. Harder, faster, better, stronger grids: the time is now

2. Learning **AC OPF** solutions very quickly

3. Using learning to obtain **distributed DC OPF** solutions faster

How complex is the grid, really?

The US National Academy of Engineering ranks electric power networks as **the number 1 greatest** engineering achievement of the 20th century.

(ranked by how much an achievement improved quality of life)

FIGURE 2: POWER GENERATORS (NON-RENEWABLE & RENEWABLE).

FIGURE 1: TRANSMISSION WIRES 138,000 VOLTS AND ABOVE

Outages are increasing...

By by 2012, the average annual weather-related power outages had doubled since 2003

Transmission infrastructure is **aging**, with more than a quarter of the grid fifty years old or older.

Source: The Texas Tribune and ProPublica

Feb. 16, 2021

Causes of major power outages from 2004-2015 from a portion of WECC

A complex, synchronized system...

Supply and demand must be

balanced at all times in order

to keep the grid stable

International, interstate power exchanges

Hundreds of miles of infrastructure

GRIFFINLab

Millions of participants

System frequency reflects the closeness of balance between **demand** and **supply**

How do we currently optimize large-scale grids?

Minimize cost to deliver power to consumers

Subject to physics, reliability constraints, etc.

How do we currently optimize large-scale grids?

Minimize cost to deliver power to consumers

Subject to physics, reliability constraints, etc.

min

s.t : $g_i(\mathbf{x}) = 0$

 $h_i(\mathbf{x}) \leq 0$

This problem is very hard to solve quickly.

So instead, most grid operators make many simplifications – linearizing the grid models, neglecting losses, estimating line flows...

- → Billions of dollars annually are lost due to these suboptimalities (M. Cain, R. P. O'Neill, and A. Castillo, "History of optimal power flow and formulations," FERC Technical Report, Aug. 2013)
- → ~500 million metric tons of carbon dioxide can be cut by improving global grid efficiencies (S. Jordaan and K. Surana, <u>https://theconversation.com/we-calculated-emissions-due-to-electricity-loss-on-the-power-grid-globally-its-a-lot-128296</u>)

What should we do?

Ideally, optimizing the grid should use the full fidelity, AC optimal power flow model

But this is hard to use for real-time operation

What should we do?

Ideally, optimizing the grid should use the full fidelity, AC optimal power flow model

But this is hard to use for real-time operation

Current operational methods don't capitalize on historical data. We utilize learned operator know-how, but how can we "teach" these algorithms to use previous knowledge?

Who cares about faster, more optimal grids?

The US Department of Energy has sponsored a competition to optimize grids up to 31,000 buses (roughly an entire interconnection).

The problem is **nonconvex**, with **integer variables**, **AC power flow equations**, considers both **reliability and optimality** in the scoring,

... and they wanted us to solve this in 5 minutes or less.

Who cares about faster, more optimal grids?

Don't want to reveal too much about our solution yet, but the key takeaway is **operating grids faster leads to more reliability and lower costs.**

(Our division 2 and 4 code had a parallelization bug which is fixed now)

ALCONDUCT AND	MARKED LYDE, ATT NO NON AVENUE TO THE	M D	Provide Provid					
Place		Division 1		Division 2		Division 3		Division 4
1	Electric Stampede	190,564,664	NU_Columbia_Artelys	208,251,869	Electric Stampede	190,565,648	NU_Columbia_Artelys	207,721,687
2	GravityX	171,474,568	GravityX	190,594,154	NU_Columbia_Artelys	171,497,551	GravityX	186,997,477
3	NU_Columbia_Artelys	169,919,107	GMI-GO	170,851,464	Pearl Street Technologies	161,876,057	GMI-GO	170,848,944
4	Pearl Street Technologies	161,876,057	Electric Stampede	167,721,694	Gordian Knot	147,298,696	Electric Stampede	167,210,475
5	Gordian Knot	146,323,898	Pearl Street Technologies	161,876,057	GravityX	143,962,648	Pearl Street Technologies	161,876,057
6	GOT-BSI-OPF	107,881,004	magos	161,253,968	GOT-BSI-OPF	107,881,004	magos	161,253,968
7	GMI-GO	99,578,006	ARPA-e Benchmark	146,356,600	GMI-GO	99,593,494	ARPA-e Benchmark	146,340,636
8	magos	72,760,192	GOT-BSI-OPF	108,837,590	magos	72,760,192	Monday Mornings	115,001,830
9	ARPA-e Benchmark	49,947,791	Gordian Knot	108,414,227	Monday Mornings	47,645,573	GOT-BSI-OPF	108,837,590
10	Monday Mornings	42,000,595	Monday Mornings	105,517,759	ARPA-e Benchmark	47,329,390	SUGAR-CMU	103,781,578
11	SUGAR-CMU	32,697,483	SUGAR-CMU	103,993,746	SUGAR-CMU	32,664,818	Gordian Knot	102,942,572
12	GERS USA	24,048,950	GERS USA	22,746,121	GERS USA	23,414,842	GERS USA	25,354,657
13	CasePower	0	CasePower	0	CasePower	0	CasePower	0
14	GO-SNIP	0	GO-SNIP	0	GO-SNIP	0	GO-SNIP	0
15	M&H Grid Solutions	0	M&H Grid Solutions	0	M&H Grid Solutions	0	M&H Grid Solutions	0

https://gocompetition.energy.gov/challenges/challenge-2/Leaderboards/Trial3

Talk Outline

1. Harder, faster, better, stronger grids: the time is now

2. Learning AC OPF solutions very quickly

3. Using learning to obtain **distributed DC OPF** solutions faster

(Note: our GO competition solution does not necessarily have anything to do with this section, I just used it as a motivating factor for this talk).

Main idea:

Let's lower emissions and cost *just through updating grid software.*

Main Idea: Optimizing is hard.

 \rightarrow Can we obtain the solution to an optimization problem without actually solving one?

$$\begin{split} \min_{\mathbf{v},\mathbf{p}_{g}} \sum_{j \in \mathcal{G}} a_{j} p_{g,j}^{2} + b_{j} p_{g,j} + c_{j} \\ \text{s.t:} \\ |v_{i}| \sum_{m \in \mathcal{N}} |v_{m}| (G_{im} \cos(\theta_{im}) + B_{im} \sin(\theta_{im})) \\ &= p_{l,i} - \sum_{k \in \mathcal{G}_{i}} p_{g,k}, \quad \forall i \in \mathcal{N} \\ |v_{i}| \sum_{m \in \mathcal{N}} |v_{m}| (G_{im} \sin(\theta_{im}) - B_{im} \cos(\theta_{im})) \\ &= q_{l,i} - \sum_{k \in \mathcal{G}_{i}} q_{g,k}, \quad \forall i \in \mathcal{N} \\ \underbrace{p_{g,j} \leq p_{g,j} \leq \overline{p}_{g,j}, \quad \forall j \in \mathcal{G}}_{q_{g,j},j} \leq q_{g,j} \leq \overline{q}_{g,j}, \quad \forall j \in \mathcal{G} \\ \underbrace{|v_{i}| \leq |v_{i}| \leq \overline{|v|}, \quad \forall i \in \mathcal{N}. \end{split}$$

AC Optimal Power Flow (OPF) can comprise a nonconvex problem with thousands of constraints and variables.

No wonder basically no grid operators use it for optimizing generator dispatch!

 \rightarrow Can we obtain the solution to an optimization problem without actually solving one?

 \rightarrow Can we obtain the solution to an optimization problem without actually solving one?

 \rightarrow Can we obtain the solution to an optimization problem without actually solving one?

Can we use historical OPF runs to inform future optimizations?

"the volume of data being generated in the power sector has grown tremendously.... the majority of data is either not logged, or they are overwritten very quickly¹"

¹ H. Akhavan-Hejazi and H. Mohsenian-Rad, "Power systems big data analytics: An assessment of paradigm shift barriers and prospects," Energy Reports, 2018.

 \rightarrow Can we obtain the solution to an optimization problem without actually solving one?

Proposed Paradigm

Train Machine Learning model offline on historical OPF runs

 \rightarrow Can we obtain the solution to an optimization problem without actually solving one?

Does this actually work?

July 2020: A. Velloso and P. Van Hentenryck obtain negligible feasibility and optimality gaps (under 0.1%) for Security Constrained DC OPF on a 1,888 bus network in less than two seconds².

Sept. 2019: A. Zamzam and K. Baker obtain feasible AC OPF solutions with negligible optimality gaps 6-20x faster than a state of the art solver³.

Dec. 2020: H. Lange, B. Chen, M. Berges, and S. Kar solve difficult AC OPF problems (with binary commitment variables) by using deep learning and the Holomorphic Embedded Load Flow method (HELM)⁴

² A. Velloso and P. Van Hentenryck, "Combining Deep Learning and Optimization for Security-Constrained Optimal Power Flow," <u>https://arxiv.org/abs/2007.07002</u>, July 2020.

³ A. Zamzam and K. Baker, "Learning optimal solutions for extremely fast AC optimal power flow," IEEE SmartGridComm, <u>https://arxiv.org/abs/2861719</u>, 2019.

4 H. Lange, B. Chen, M. Berges, and S. Kar, "Learning to Solve AC Optimal Power Flow by Differentiating through Holomorphic Embeddings," <u>https://arxiv.org/pdf/2012.09622.pdf</u> Dec. 2020

GRIFFINLab

Why is it powerful?

- → We can convexify or linearize the hard equations (e.g. the AC power flow equations) to solve these problems quickly, but convexifying generally makes us lose information
- \rightarrow Neural networks can represent nonconvex, complicated relationships between variables
- → Inference (the process of making a prediction) mostly involves applying functions, multiplying, and adding
- \rightarrow It's an approximation, but it can be a damn good one

Emulate the solver itself?

 \rightarrow Train a neural network to emulate iterations from the Matpower Interior Point Solver (MIPS)

Input: Current candidate solution x(k) and system loads (real and reactive)

Output: Next candidate solution x(k+1)

Idea: Use a NN to iterate

GRIFFINLab

Both Newton-Raphson and Learning-Boosted Newton Raphson are fixed point iterations:

 $\mathbf{x}^{k+1} = F(\mathbf{x}^k)$

But the learning-boosted method has an easier to evaluate *F()*

⁸ K. Baker, "A Learning-boosted Quasi-Newton Method for AC Optimal Power Flow," <u>https://arxiv.org/abs/2007.06074</u>, Workshop on machine learning for engineering modeling, simulation and design @ NeurIPS 2020.

Optimality and Feasibility gaps

Fig. 2. Predicted generation values for 200 test scenarios (colors) and actual optimal values (black dashed line) for the IEEE 30-bus system.

MEAN ABSOLUTE ERROR ACROSS TESTING DATASET

Casa	MAE: Voltage	MAE: Active	MAPE:
Case	Magnitude (pu)	Power (MW)	Cost (%)
30-bus	0.004 pu	0.64 MW	0.29%
300-bus	0.009 pu	10.47 MW	0.65%
500-bus	0.099 pu	0.62 MW	0.66%
1,354-bus	0.019 pu	7.55 MW	1.16%

TABLE IVTIME TO CONVERGENCE FOR EACH NETWORK.

Casa	Mean	Max	Variance	Mean
Case	Time (s)	Time (s)	in Time (s)	Speedup
30-bus MIPS	0.04	0.41	4.52e-04	
30-bus NN	0.06	0.42	3.53e-04	-0.66x
300-bus MIPS	1.09	10.87	2.09	
300-bus NN	0.03	0.42	0.001	36.3x
500-bus MIPS	1.46	2.96	0.49	
500-bus NN	0.08	0.45	3.25e-4	18.3 x
1,354-bus MIPS	7.64	19.89	15.55	
1,354-bus NN	0.34	0.69	0.0016	22.5x

Real-time optimal solution tracking

Slack-bus generator tracking optimal solutions (black dashed line) for the IEEE-500 bus system.

MATPOWER MIPS solver takes a couple seconds to solve, meaning its optimal generation setpoints are outdated in between solutions.

The learning-boosted method provides approximate optimal solutions in less than a second, making it more appropriate for realtime optimization.

Convergence

Takes more iterations to converge because each iteration is using an approximate direction, but each iteration is faster

Case	Mean Time (s)	Max Time (s)	Variance in Time (s)	Mean Speedup
30-bus MIPS	0.04	0.41	4.52e-04	
30-bus NN	0.06	0.42	3.53e-04	-0.66x
300-bus MIPS	1.09	10.87	2.09	
300-bus NN	0.03	0.42	0.001	36.3x
500-bus MIPS	1.46	2.96	0.49	
500-bus NN	0.08	0.45	3.25e-4	18.3x
1,354-bus MIPS	7.64	19.89	15.55	
1,354-bus NN	0.34	0.69	0.0016	22.5x

TABLE IV TIME TO CONVERGENCE FOR EACH NETWORK.

Fig. 3. Norm of $\mathbf{x}^{k+1} - \mathbf{x}^k$ for two scenarios in the 500-bus (left) and 1,354-bus (right) systems.

What about feasibility?

⁹ K. Baker, "Emulating AC OPF solvers for Obtaining Sub-second Feasible, Near-Optimal Solutions," <u>https://arxiv.org/pdf/2012.10031</u>, Dec. 2020

How fast is this?

Network	ОРГ Туре	Average Solve Time (s)	Percent Solve Success (%)
	AC OPF w/Flat Start	0.069 s	100%
	AC OPF w/DC Start	0.079 s	100%
30-bus	AC OPF w/PF Start	0.068 s	100%
	NN with PF	0.050 s	100%
	DC OPF	0.010 s	100%
	AC OPF w/Flat Start	3.26 s	100%
	AC OPF w/DC Start	3.34 s	100%
500-bus	AC OPF w/PF Start	3.15 s	100%
	NN with PF	0.12 s	100%
	DC OPF	0.12 s	100%
	AC OPF w/Flat Start	20.12 s	59.4%
	AC OPF w/DC Start	11.63 s	59.4%
1354-bus	AC OPF w/PF Start	10.64 s	59.8%
	NN with PF	0.25 s	98.00%
	DC OPF	0.33 s	100%

Solves in similar time to DC OPF and is **even faster** for large networks

Is **more robust** than other ways of warm-starting **AC OPF**

(many papers on this topic only perturb the base loading scenario +/-10 or 20%. Here, we perturbed the loads +/-40%, which created many "difficult to converge" scenarios)

How optimal is this?

Network	Average Gap: NN	Average Gap: DC	Worst Gap: NN	Worst Gap: DC
30-bus	0.20%	1.46%	0.31%	1.82%
500-bus	2.70%	5.30%	10.12%	16.22%
1354-bus	0.09%	1.40%	0.20%	1.73%

(across 500 test loading scenarios)

DC OPF is often used to determine market clearing prices and LMPs. This is currently an "acceptable" optimality gap in industry.

Tradeoffs

Talk Outline

1. Harder, faster, better, stronger grids: the time is now

2. Learning **AC OPF** solutions very quickly

3. Using learning to obtain **distributed DC OPF** solutions faster

Joint work led by the National Renewable Energy Laboratory (NREL) in Golden, Colorado

"Learning-Accelerated ADMM for Distributed DC Optimal Power Flow," D Biagioni, P Graf, X Zhang, AS Zamzam, K Baker, J King, IEEE Control Systems Letters, 2020

Why DC OPF?

DC OPF is used to dispatch generators in many existing power markets

Telling operators to make the jump to AC OPF (especially using a neural network) might be a bit too unrealistic – maybe we can speed up DC OPF first

Balancing areas have to coordinate tie-line flows and still have to solve large-scale DC OPF problems – can we start solving these faster (faster than 5 minutes?)

Many benefits to more autonomy in grids

Central Question: How to use AI/ML to enable autonomous control of future power grids?

More specifically, how to enable control paradigms that:

- Are distributed and/or decentralized
- Preserve privacy of subsystems
- Leverage data-driven methods to increase performance, improve scalability, and the like

A spectrum of modalities for distributed control

Model-Based

DC O	ptimal Power Flow	
$\min_{\mathbf{g}, \boldsymbol{\theta}}$	$\sum_{s=1}^{S} f_s(\mathbf{g}_s)$	
s.t.	$\mathbf{H}_s oldsymbol{ heta}_s + \sum_u \mathbf{H}_{su} oldsymbol{ heta}_{su} + \mathbf{g}_s - \mathbf{d}_s = 0_s,$	$\forall s$
	$\underline{\mathbf{g}}_{s} \leq \mathbf{g}_{s} \leq \overline{\mathbf{g}}_{s},$	$\forall s$
	$\mathbf{\underline{f}}_{s} \leq \mathbf{K}_{s} oldsymbol{ heta}_{s} + \sum_{u} \mathbf{K}_{su} oldsymbol{ heta}_{su} \leq \mathbf{\overline{f}}_{s},$	$\forall s$
	$oldsymbol{ heta}_{su} = \mathbf{E}_{su}oldsymbol{ heta}_{u}$	$\forall s, u$

	Model- Based	Model- Free
Enforces physical constraints	Yes	No
Convex optimization	Yes	No
Distributed (local) decisions	ADMM	Maybe
Preserve privacy	ADMM	Maybe
Learn directly from data	No	Yes

Hybrids

Reinforcement Learning

A spectrum of modalities for distributed control

Model-Based

DCO	ptimal Power Flow	

Hybrids

Learning-Accelerated ADMM (This Talk)

Reinforcement Learning

	Model- Based	Model- Free
Enforces physical constraints	Yes	
Convex optimization	Yes	
Distributed (local) decisions	ADMM	
Preserve privacy	ADMM	
Learn directly from data		Yes

Centralized DC OPF : Linearized AC OPF

Cost minimization

Power balance

Generation limits

Voltage angle limits

Bus partitioning

 (g_2, d_2, θ_2)

 (g_3, d_3, θ_3)

3

ADMM for Distributed DC OPF

Consensus update

Dual update

Private decisions

- Generation
- Voltage angles for internal buses

Public decisions

Voltage angles for partition buses (via shared lines)

Each partition considers external voltage angles on tie lines as a local decision variable, one copy per partition

ADMM forces consensus on these shared variables

ADMM as Dynamical System

ADMM is an iterative algorithm

- Known to be slow esp. for high accuracies, and
- Rate is sensitive to step size parameter (ρ)
- Robust to perturbations under mild conditions

When we look at primal and dual variables as a function of iteration, it looks like a steady-state dynamical system

Convergence \Leftrightarrow steady state of an ODE (?)

(There is theory to support this)

So, why not try to predict these converged values and speed up convergence by appropriate warm starting?

Core Idea: Predict converged ADMM values given the first *K*

We can treat this as a supervised learning problem

INPUTS: A sequence of ADMM iteration values

OUTPUTS: Converged values

How to generate training data?

- Learn from the past: use fully converged ADMM iterations
- Learn from an oracle: solve the centralized problem to get optimal primal/dual values

Learning-Accelerated ADMM

```
Algorithm 1: Learning Accelerated-ADMMInput: DC-OPF ADMM problem specification;<br/>K-step RNN to predict converged \lambda_{su}^*, \overline{\theta}_{su}^*Output: Distributed solution to DC-OPFSet k \leftarrow 0while ADMM not converged doif k = K thenPredict converged values: \lambda_{su}^*, \overline{\theta}_{su}^*<br/>Overwrite dual variables: \lambda_{su}^{(k)} \leftarrow \lambda_{su}^*<br/>Overwrite consensus variables: \overline{\theta}_{su}^{(k)} \leftarrow \overline{\theta}_{su}^*<br/>Execute ADMM iteration<br/>k \leftarrow k + 1<br/>end
```


Fig. 9. RNN architecture consists of a single Gated Recurrent Unit layer operating on concatenated inputs, followed by dense prediction layers with two-headed linear outputs.

Results on three networks

(K = 4; predicted values injected in fourth iteration)

Fig. 4. Histograms showing the \log_{10} relative error in the objective cost, compared with the optimal value, for ADMM and LA-ADMM after 100 iterations. LA-ADMM significantly accelerates convergence for the 14- and 118-bus test cases and mitigates the worst-case examples in the 2848-bus examples.

Fig. 5. Residual error as function of ADMM iteration. Solid lines indicate the mean across all runs in the test set while the shaded areas indicate ± 1 standard deviation from the mean.

Inefficient grid operations results in increased emissions, cost, and decreased reliability

In addition to upgrading and installing additional hardware, upgrading the algorithms can help us achieve better grid operations

Thank you! Questions?

Kyri Baker, <u>www.kyrib.com</u> Kyri.baker@colorado.edu