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Before I moved to Colorado, I spent 9 years of my life here at CMU!

Moving into Mudge Hall, 2006 Performing at ECE Day, 2010

Pretending to be a professor, 
Baker Hall, 2007 PhD defense, Dec 2014
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Smart home research with NREL

Award-winning Grid Optimization team

Patented smart inverter control algorithms 3



Talk Outline

1. Harder, faster, better, stronger grids: the time is now

2. Learning AC OPF solutions very quickly

3. Using learning to obtain distributed DC OPF solutions faster
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How complex is the grid, really?
The US National Academy of Engineering ranks electric power networks as the number 1 greatest
engineering achievement of the 20th century.

(ranked by how much an achievement improved quality of life)
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Outages are increasing…
By by 2012, the average annual weather-related power outages had doubled since 2003

Transmission infrastructure is aging, with more than a quarter of the grid fifty years old or older.

Causes of major power outages
from 2004-2015 from a portion of WECCFeb. 16, 2021
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A complex, synchronized system…

60 Hz

International, interstate
power exchanges

Hundreds of miles of infrastructure

Millions of participants

Supply and demand must be
balanced at all times in order
to keep the grid stable
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How do we currently optimize large-scale grids?
Minimize cost to deliver power to consumers

Subject to physics, reliability constraints, etc. 
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How do we currently optimize large-scale grids?
Minimize cost to deliver power to consumers

Subject to physics, reliability constraints, etc. 

This problem is very hard to solve quickly.

So instead, most grid operators make many 
simplifications – linearizing the grid models, 
neglecting losses, estimating line flows…

à Billions of dollars annually are lost due to these suboptimalities (M. 
Cain, R. P. O’Neill, and A. Castillo, “History of optimal power flow and formulations,” FERC 
Technical Report, Aug. 2013)

à ~500 million metric tons of carbon dioxide can be cut by improving 
global grid efficiencies (S. Jordaan and K. Surana, https://theconversation.com/we-
calculated-emissions-due-to-electricity-loss-on-the-power-grid-globally-its-a-lot-128296 )
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What should we do?

Ideally, optimizing the grid should use the 
full fidelity, AC optimal power flow model

But this is hard to use for real-time operation
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What should we do?

Ideally, optimizing the grid should use the 
full fidelity, AC optimal power flow model

But this is hard to use for real-time operation

Current operational methods don’t capitalize 
on historical data. We utilize learned 
operator know-how, but how can we “teach”
these algorithms to use previous knowledge?
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Who cares about faster, more optimal grids?

The US Department of Energy has sponsored a
competition to optimize grids up to 31,000 buses
(roughly an entire interconnection).

The problem is nonconvex, with integer variables,
AC power flow equations, considers both reliability
and optimality in the scoring,

… and they wanted us to solve this in 5 minutes or less.
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Who cares about faster, more optimal grids?

Don’t want to reveal too much about our solution yet, but the
key takeaway is operating grids faster leads to more reliability
and lower costs.
(Our division 2 and 4 code had a parallelization bug which is fixed now)

https://gocompetition.energy.gov/challenges/challenge-2/Leaderboards/Trial3 13

https://gocompetition.energy.gov/challenges/challenge-2/Leaderboards/Trial3


Talk Outline

1. Harder, faster, better, stronger grids: the time is now

2. Learning AC OPF solutions very quickly

3. Using learning to obtain distributed DC OPF solutions faster

(Note: our GO competition solution does not necessarily have anything to do with this section, 
I just used it as a motivating factor for this talk).
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Main idea:

Let’s lower emissions and cost just 
through updating grid software.
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Main Idea: Optimizing is hard. 
à Can we obtain the solution to an optimization problem without actually solving one?

AC Optimal Power Flow (OPF) can comprise a
nonconvex problem with thousands of 
constraints and variables.

No wonder basically no grid operators use it for 
optimizing generator dispatch!
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How does it work?
à Can we obtain the solution to an optimization problem without actually solving one?

Current Paradigm

Obtain initial guess
(flat start? Solve a DC OPF?

Line search?)
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Solve. Linearize/convexify?
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Iterate? Tune parameters?

Didn’t converge?
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How does it work?
à Can we obtain the solution to an optimization problem without actually solving one?

Current Paradigm

Obtain initial guess
(flat start? Solve a DC OPF?

Line search?)

Solve. Linearize/convexify?
Invert matrices?

Iterate? Tune parameters?

Didn’t converge?

Obtain optimal solution

Can we use historical OPF runs to inform future optimizations?

“the volume of data being generated in the power sector has grown tremendously….
the majority of data is either not logged, or they are overwritten very quickly1”

1 H. Akhavan-Hejazi and H. Mohsenian-Rad, “Power systems big data analytics: An assessment of paradigm shift barriers and prospects,” Energy Reports, 2018.
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How does it work?
à Can we obtain the solution to an optimization problem without actually solving one?

Current Paradigm

Obtain initial guess
(flat start? Solve a DC OPF?

Line search?)

Solve. Linearize/convexify?
Invert matrices?

Iterate? Tune parameters?

Didn’t converge?

Obtain optimal solution

Proposed Paradigm

Train Machine Learning
model offline on historical

OPF runs
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How does it work?
à Can we obtain the solution to an optimization problem without actually solving one?

Current Paradigm

Obtain initial guess
(flat start? Solve a DC OPF?

Line search?)

Solve. Linearize/convexify?
Invert matrices?

Iterate? Tune parameters?

Didn’t converge?

Obtain optimal solution

Proposed Paradigm

Train Machine Learning
model offline on historical

OPF runs

Inference

(no matrix inversions.)

Input new loads
Obtain candidate
optimal solution

(potential post-processing
for feasibility).
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Does this actually work?

July 2020: A. Velloso and P. Van Hentenryck obtain negligible feasibility and optimality gaps (under 0.1%) for 
Security Constrained DC OPF on a 1,888 bus network in less than two seconds2.

Sept. 2019: A. Zamzam and K. Baker obtain feasible AC OPF solutions with negligible optimality gaps 6-20x faster 
than a state of the art solver3.

Dec. 2020: H. Lange, B. Chen, M. Berges, and S. Kar solve difficult AC OPF problems (with binary commitment 
variables) by using deep learning and the Holomorphic Embedded Load Flow method (HELM)4

2 A. Velloso and P. Van Hentenryck, “Combining Deep Learning and Optimization for Security-Constrained Optimal Power Flow,” 
https://arxiv.org/abs/2007.07002, July 2020. 

3 A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast AC optimal power flow,” IEEE SmartGridComm, https://arxiv.org/abs/2861719, 2019.

4 H. Lange, B. Chen, M. Berges, and S. Kar, “Learning to Solve AC Optimal Power Flow by Differentiating through Holomorphic Embeddings,” 
https://arxiv.org/pdf/2012.09622.pdf Dec. 2020
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Why is it powerful?
à We can convexify or linearize the hard equations (e.g. the AC power flow equations) to solve these 

problems quickly, but convexifying generally makes us lose information

à Neural networks can represent nonconvex, complicated relationships between variables

à Inference (the process of making a prediction) mostly involves applying functions, multiplying, and adding

à It’s an approximation, but it can be a damn good one
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Emulate the solver itself?
à Train a neural network to emulate iterations from the Matpower Interior Point Solver (MIPS)

Generate training data by storing MIPS iterations 
for various loading scenarios

Input: Current candidate solution x(k) and 
system loads (real and reactive)

Output: Next candidate solution x(k+1)
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Idea: Use a NN to iterate
Both Newton-Raphson and Learning-Boosted Newton Raphson are fixed point iterations:

But the learning-boosted method has an easier to evaluate F()

Key Idea:

It may be easier to learn what direction to 
move in than to directly learn an optimal 

solution from an initial point

8 K. Baker, “A Learning-boosted Quasi-Newton Method  for AC Optimal Power Flow,” https://arxiv.org/abs/2007.06074, Workshop on machine learning for 
engineering modeling, simulation and design @ NeurIPS 2020.
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Optimality and Feasibility gaps

26



Real-time optimal solution tracking

Slack-bus generator tracking optimal solutions 
(black dashed line) for the IEEE-500 bus system.

MATPOWER MIPS solver takes a couple seconds 
to solve, meaning its optimal generation 
setpoints are outdated in between solutions.

The learning-boosted method provides 
approximate optimal solutions in less than a 
second, making it more appropriate for real-
time optimization.
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Convergence
Takes more iterations to converge because each iteration is using an approximate direction,
but each iteration is faster
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What about feasibility? 

9 K. Baker, “Emulating AC OPF solvers for Obtaining Sub-second Feasible, Near-Optimal Solutions,” https://arxiv.org/pdf/2012.10031, Dec. 2020

Subset of predicted
variables

Power flow solver

Feasible and (generally)
close to optimal solution

29

https://arxiv.org/pdf/2012.10031


How fast is this?
Solves in similar time to DC OPF and is 

even faster for large networks

Is more robust than other ways of
warm-starting AC OPF

(many papers on this topic only perturb the 
base loading scenario +/-10 or 20%. Here, we 
perturbed the loads +/-40%, which created 
many “difficult to converge” scenarios)
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How optimal is this?

DC OPF is often used to determine market clearing
prices and LMPs. This is currently an “acceptable”
optimality gap in industry.

(across 500 test loading scenarios)
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Tradeoffs

(AC OPF was warm-started with a power flow
solution)
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Talk Outline

1. Harder, faster, better, stronger grids: the time is now

2. Learning AC OPF solutions very quickly

3. Using learning to obtain distributed DC OPF solutions faster

Joint work led by the National Renewable Energy Laboratory (NREL) in Golden, Colorado

“Learning-Accelerated ADMM for Distributed DC Optimal Power Flow,” 
D Biagioni, P Graf, X Zhang, AS Zamzam, K Baker, J King, IEEE Control Systems Letters, 2020
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Why DC OPF?

DC OPF is used to dispatch generators in many existing power markets

Telling operators to make the jump to AC OPF (especially using a neural network)
might be a bit too unrealistic – maybe we can speed up DC OPF first

Balancing areas have to coordinate tie-line flows and still have to solve large-scale
DC OPF problems – can we start solving these faster (faster than 5 minutes?)
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Many benefits to more autonomy in grids

Central Question: How to use AI/ML to 
enable autonomous control of future 
power grids?

More specifically, how to enable control 
paradigms that:
• Are distributed and/or decentralized
• Preserve privacy of subsystems
• Leverage data-driven methods to 

increase performance, improve 
scalability, and the like
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A spectrum of modalities for distributed control

Model-Based

Model-Free 

DC Optimal Power Flow 

Reinforcement Learning

Model-
Based

Model-
Free

Enforces physical constraints Yes No

Convex optimization Yes No

Distributed (local) decisions ADMM Maybe

Preserve privacy ADMM Maybe

Learn directly from data No Yes
Hybrids
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Model-
Based

Model-
Free

Enforces physical constraints Yes

Convex optimization Yes

Distributed (local) decisions ADMM

Preserve privacy ADMM

Learn directly from data No Yes
Learning-Accelerated ADMM
(This Talk)

Hybrids

A spectrum of modalities for distributed control
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Centralized DC OPF : Linearized AC OPF

Power balance

Generation limits

Voltage angle limits

Bus partitioning

Cost minimization

1

3

2
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ADMM for Distributed DC OPF

Private decisions
• Generation
• Voltage angles for internal buses

Public decisions
• Voltage angles for partition buses (via shared lines)

Each partition considers external voltage angles on tie
lines as a local decision variable, one copy per partition

ADMM forces consensus on these shared variables

1

3

2

𝑠 = 0

𝑠 = 1
Consensus update

Dual update

Augmented Lagrangian
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ADMM as Dynamical System

ADMM is an iterative algorithm
• Known to be slow esp. for high accuracies, and
• Rate is sensitive to step size parameter (𝜌)
• Robust to perturbations under mild conditions 

When we look at primal and dual variables as a function 
of iteration, it looks like a steady-state dynamical system

Convergence ó steady state of an ODE (?)

(There is theory to support this)

So, why not try to predict these converged values and 
speed up convergence by appropriate warm starting?
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Core Idea:  Predict converged ADMM values given 
the first K
We can treat this as a supervised learning problem

INPUTS: A sequence of ADMM iteration values

OUTPUTS:  Converged values

How to generate training data?
• Learn from the past:  use fully converged ADMM iterations
• Learn from an oracle:  solve the centralized problem to get 

optimal primal/dual values
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Learning-Accelerated ADMM
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Results on three networks

Train size:  1000

Train size:  4000

Train size:  40,000

(K = 4; predicted values injected in fourth iteration)



NREL    |    44

Conclusions

Inefficient grid operations results in increased emissions, cost, and decreased reliability

In addition to upgrading and installing additional hardware, upgrading the algorithms
can help us achieve better grid operations



Thank you! Questions?

Kyri Baker, www.kyrib.com
Kyri.baker@colorado.edu
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