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Talk Outline A orarrinten

1. Harder, faster, better, stronger grids: the time is now
2. Learning AC OPF solutions very quickly

3. Using learning to obtain distributed DC OPF solutions faster
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ow complex is the grid, really? ~ #ewme

The US National Academy of Engineering ranks electric power networks as the number 1 greatest
engineering achievement of the 20th century.

(ranked by how much an achievement improved quality of life)
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Outages are increasing... 29 GRIFFINLab

By by 2012, the average annual weather-related power outages had doubled since 2003

Transmission infrastructure is aging, with more than a quarter of the grid fifty years old or older.

Percent of customers without power
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A complex, synchronized system...

Color Key:

Red: Generation
Blue: Transmission
Green: Distribution
Black: Customer

Generating Station /

765, 500, 345, 230, and 138 kV

Substation
Step Down
Transformer
. . . ,_' - J-B-R-2-}
Transmission lines !

Generating
Step Up
Transformer

I

Transmission Customer
138kV or 230kV

Supply and demand must be
balanced at all times in order
to keep the grid stable
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Subtransmission

Customer
26kV and 69kV

Primary Customer

13kV and 4kV

Secondary Customer

International, interstate
power exchanges

Hundreds of miles of infrastructure

Millions of participants

120V and 240V
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System Frequency
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Demand

System frequency reflects the closeness of balance between
demand and supply



How do we currently optimize large-scale grids?

Minimize cost to deliver power to consumers

Subject to physics, reliability constraints, etc.




How do we currently optimize large-scale grids?

Minimize cost to deliver power to consumers

min f(x)
835 gi(x)=0 Subject to physics, reliability constraints, etc.
h](X)SO

~

/ This problem is very hard to solve quickly.

So instead, most grid operators make many
simplifications — linearizing the grid models,
neglecting losses, estimating line flows...

\ )

—> Billions of dollars annually are lost due to these suboptimalities (w.
Cain, R. P. O’Neill, and A. Castillo, “History of optimal power flow and formulations,” FERC
Technical Report, Aug. 2013)

- ~500 million metric tons of carbon dioxide can be cut by improving

global grid efficiencies (s. Jordaan and K. Surana, https://theconversation.com/we-
calculated-emissions-due-to-electricity-loss-on-the-power-grid-globally-its-a-lot-128296 )
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What Sh0u|d we dO? WY’ GRIFFINLab

Ideally, optimizing the grid should use the .g"%ij ﬁﬂﬂi‘j@m
full fidelity, AC optimal power flow model o> - o -
But this is hard to use for real-time operation e ,, — e
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What should we do? o2, GRIFFINLab

Ideally, optimizing the grid should use the
full fidelity, AC optimal power flow model

But this is hard to use for real-time operation

on historical data. We utilize learned 4,
operator know-how, but how can we “teach” 3 : ¥
these algorithms to use previous knowledge? o~ "”"lé’?wl. f &

- -
Current operational methods don’t capitalize »MI% <-|:;. i»-"“+ L‘EI" —afE
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Who cares about faster,

=538

ll,.‘

GRID OPTIMIZATION COMPETITION

Up to $2.3 million in prizes for better power grid optimization!

The US Department of Energy has sponsored a
competition to optimize grids up to 31,000 buses
(roughly an entire interconnection).

The problem is nonconvex, with integer variables,
AC power flow equations, considers both reliability

and optimality in the scoring,

... and they wanted us to solve this in 5 minutes or less.

more optimal grids

5 .0, GRIFFINLab
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o )
Who cares about faster, more optimal grids? % carrias

Don’t want to reveal too much about our solution yet, but the
key takeaway is operating grids faster leads to more reliability

and lower costs.
(Our division 2 and 4 code had a parallelization bug which is fixed now)

Place | - |Division 1

Division 2 | | Division 3 | | Division 4
1 Electric Stampede 190,564,664 NU_ Columbia Artelys 208,251,869 Electric Stampede 190,565,648 NU_Columbia Artelys 207,721,687
2 GravityX 171,474,568 GravityX 190,594,154 NU_Columbia_Artelys 171,497,551 GravityX 186,997,477
3 NU_Columbia_Artelys 169,919,107 GMI-GO 170,851,464 Pearl Street Technologies 161,876,057 GMI-GO 170,848,944
4 Pearl Street Technologies 161,876,057 Electric Stampede 167,721,694 Gordian Knot 147,298,696 Electric Stampede 167,210,475

5 Gordian Knot 146,323,898 Pearl Street Technologies 161,876,057 GravityX 143,962,648 Pearl Street Technologies 161,876,057

6 GOT-BSI-OPF 107,881,004 magos 161,253,968 GOT-BSI-OPF 107,881,004 magos 161,253,968
7 GMI-GO 99,578,006 ARPA-e Benchmark 146,356,600 GMI-GO 99,593,494 ARPA-e Benchmark 146,340,636
8 magos 72,760,192 GOT-BSI-OPF 108,837,590 magos 72,760,192 Monday Mornings 115,001,830
9 ARPA-e Benchmark 49,947,791 Gordian Knot 108,414,227 Monday Mornings 47,645,573 GOT-BSI-OPF 108,837,590
10 Monday Mornings 42,000,595 Monday Mornings 105,517,759 ARPA-e Benchmark 47,329,390 SUGAR-CMU 103,781,578
11 SUGAR-CMU 32,697,483 SUGAR-CMU 103,993,746 SUGAR-CMU 32,664,818 Gordian Knot 102,942,572
12 GERS USA 24,048,950 GERS USA 22,746,121 GERS USA 23,414,842 GERS USA 25,354,657
13 CasePower 0 CasePower 0 CasePower 0 CasePower 0
14 GO-SNIP 0 GO-SNIP 0 GO-SNIP 0 GO-SNIP 0
15 M&H Grid Solutions 0 M&H Grid Solutions 0 M&H Grid Solutions 0 M&H Grid Solutions 0

https://gocompetition.energy.gov/challenges/challenge-2/Leaderboards/Trial3



https://gocompetition.energy.gov/challenges/challenge-2/Leaderboards/Trial3

2.

Talk Outline

Learning AC OPF solutions very quickly

(Note: our GO competition solution does not necessarily have anything to do with this section,
| just used it as a motivating factor for this talk).

A\
2 ol
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g\‘(; GRIFFINLab
Main idea:

Let’s lower emissions and cost just
through updating grid software.



~ 7 GRIFFINLab
Main Idea: Optimizing is hard. s

— Can we obtain the solution to an optimization problem without actually solving one?

. 9
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AC Optimal Power Flow (OPF) can comprise a
nonconvex problem with thousands of
constraints and variables.

No wonder basically no grid operators use it for
optimizing generator dispatch!
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g
How does it work? .2, GRIFFINLab

— Can we obtain the solution to an optimization problem without actually solving one?

[Current Paradigm \

Obtain initial guess
(flat start? Solve a DC OPF? —
Line search?)




How does it work?

Q
.94, GRIFFINLab

— Can we obtain the solution to an optimization problem without actually solving one?

[Current Paradigm

Didn’t converge?

—

Line search?)

Obtain initial guess
(flat start? Solve a DC OPF?

—

A 4

Solve. Linearize/convexify?
Invert matrices?
Iterate? Tune parameters?

~




g
How does it work? .2, GRIFFINLab

— Can we obtain the solution to an optimization problem without actually solving one?

(" Current Paradigm Didn’t converge? )
Obtain initial guess Solve. Linearize/convexify?
(flat start? Solve a DC OPF? > Invert matrices? »  Obtain optimal solution
Line search?) Iterate? Tune parameters?

Can we use historical OPF runs to inform future optimizations?

“the volume of data being generated in the power sector has grown tremendously....
the majority of data is either not logged, or they are overwritten very quickly!”

1 H. Akhavan-Hejazi and H. Mohsenian-Rad, “Power systems big data analytics: An assessment of paradigm shift barriers and prospects,” Energy Reports, 2018.



g
How does it work? .2, GRIFFINLab

— Can we obtain the solution to an optimization problem without actually solving one?

[Current Paradigm Didn’t converge? N
Obtain initial guess Solve. Linearize/convexify?
(flat start? Solve a DC OPF? > Invert matrices? »  Obtain optimal solution
Line search?) Iterate? Tune parameters?

s T T EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE BN
I Proposed Paradigm |
| |
|
I Train Machine Learning I
I model offline on historical I
I OPF runs :
: ]



g
How does it work? .2, GRIFFINLab

— Can we obtain the solution to an optimization problem without actually solving one?

[Current Paradigm Didn’t converge? \
Obtain initial guess Solve. Linearize/convexify?
(flat start? Solve a DC OPF? > Invert matrices? »  Obtain optimal solution
Line search?) Iterate? Tune parameters?

s T T EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE BN
I Proposed Paradigm |
I Obtain candidate I
: Train Machine Learning Input new loads Inference optimal solution |
I model offline on historical - — . I

OPF runs (no matrix inversions.) (potential post-processing |
: for feasibility). |
]
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Does this actually work? 28 GRIFFINLab

July 2020: A. Velloso and P. Van Hentenryck obtain negligible feasibility and optimality gaps (under 0.1%) for
Security Constrained DC OPF on a 1,888 bus network in less than two seconds?.

Sept. 2019: A. Zamzam and K. Baker obtain feasible AC OPF solutions with negligible optimality gaps 6-20x faster
than a state of the art solver3.

Dec. 2020: H. Lange, B. Chen, M. Berges, and S. Kar solve difficult AC OPF problems (with binary commitment
variables) by using deep learning and the Holomorphic Embedded Load Flow method (HELM)*

2 A. Velloso and P. Van Hentenryck, “Combining Deep Learning and Optimization for Security-Constrained Optimal Power Flow,”
https://arxiv.org/abs/2007.07002, July 2020.

3 A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast AC optimal power flow,” IEEE SmartGridComm, https://arxiv.org/abs/2861719, 2019.

4 H. Lange, B. Chen, M. Berges, and S. Kar, “Learning to Solve AC Optimal Power Flow by Differentiating through Holomorphic Embeddings,”
https://arxiv.org/pdf/2012.09622.pdf Dec. 2020
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5
Why 1S It po\/\/erfu|? 9", GRIFFINLab

- We can convexify or linearize the hard equations (e.g. the AC power flow equations) to solve these
problems quickly, but convexifying generally makes us lose information

- Neural networks can represent nonconvex, complicated relationships between variables
- Inference (the process of making a prediction) mostly involves applying functions, multiplying, and adding

—> It’s an approximation, but it can be a damn good one
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Emulate the solver itself?

., GRIFFINLab

— Train a neural network to emulate iterations from the Matpower Interior Point Solver (MIPS)

Generate training data by storing MIPS iterations
for various loading scenarios

Input: Current candidate solution x(k) and
system loads (real and reactive)

Output: Next candidate solution x(k+1)

x (k)

Real and
Reactive
Loads

inear

x(k+1) =

Vk+1
Ok‘—i—l

k+1
i)



Ny
ldea: Use a NN to iterate 2, GRIFFINLab

Both Newton-Raphson and Learning-Boosted Newton Raphson are fixed point iterations:

Key Idea:
x(k+1) =

7 -\
7O

X7\
;?(“}/

x (k) A & ;,':i It may be easier to learn what direction to
y: »V.V y {Pg“ move in than to directly learn an optimal
N‘” X Qi+ . e
4"‘}\.1'& solution from an initial point

Real and
Reactive
Loads

OA\\\'V/

8 K. Baker, “A Learning-boosted Quasi-Newton Method for AC Optimal Power Flow,” https://arxiv.org/abs/2007.06074, Workshop on machine learning for
engineering modeling, simulation and design @ NeurlPS 2020.



https://arxiv.org/abs/2007.06074

: : T \MT,GRIFFINI.ab
Optimality and Feasibility gaps

MEAN ABSOLUTE ERROR ACROSS TESTING DATASET

Eose MAE: Voltage MAE: Active | MAPE:
Magnitude (pu) | Power (MW) | Cost (%)
S 30-bus 0.004 pu 0.64 MW 0.29%
=3 300-bus 0.009 pu 10.47 MW 0.65%
S 500-bus 0.099 pu 0.62 MW 0.66%
g 1,354-bus | 0.019 pu 7.55 MW 1.16%
& 30
©)
DWWV M AN A o WYy L TABLE IV
20/ AN TAN v ™A ,,\I" m\N\m\\l\M\[ j‘!‘ s wj\w V""\’N\"V\W \f\\,ﬂ,\/\ TIME TO CONVERGENCE FOR EACH NETWORK.
"0 40 60 8 100 120 140 160 180 200 Case Mean Max Variance
Scenario Time (s) | Time (s) | in Time (s)
30-bus MIPS 0.04 0.41 4.52e-04
Fig. 2. Predicted generation values for 200 test scenarios (colors) and actual ol-bus. NN 0.6 042 220605
optimal values (black dashed line) for the IEEE 30-bus system 300-bus MIPS LO9 10.87 2.09
' 300-bus NN 0.03 0.42 0.001
500-bus MIPS 1.46 2.96 0.49
500-bus NN 0.08 0.45 3.25e-4
1,354-bus MIPS | 7.64 19.89 15.55
1,354-bus NN 0.34 0.69 0.0016




. . . . @\‘{; GRIFFINLab
Real-time optimal solution tracking

800 x
Slack-bus generator tracking optimal solutions
700 | (black dashed line) for the IEEE-500 bus system.
600 MATPOWER MIPS solver takes a couple seconds
= 00| to solve, meaning its optimal generation
= setpoints are outdated in between solutions.
400 |
The learning-boosted method provides
300 | " |~ = True optimal approximate optimal solutions in less than a
—— Learning-boosted . . .
| —  MATPOWER second, making it more appropriate for real-
200 . 0 15 20 o5 30 time optimization.

Time (sec)
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., GRIFFINLab
Convergence

Takes more iterations to converge because each iteration is using an approximate direction,
but each iteration is faster

TABLE 1V
TIME TO CONVERGENCE FOR EACH NETWORK.

500-bus 1,354-bus
= K0 =aariio-boosd C Mean Max Variance
- . C—= MOIONED ot Time (s) | Time (s) | in Time (s)
30-bus MIPS 0.04 0.41 4.52e-04
200 2000 30-bus NN 0.06 0.42 3.53e-04
"] 300-bus MIPS 1.09 10.87 2.09
3 . 300-bus NN 0.03 0.42 0.001
= s - 500-bus MIPS 1.46 2.96 0.49
; 500-bus NN 0.08 0.45 3.25e-4
50, 500 | 1,354-bus MIPS | 7.64 19.89 15.55
i e R 1,354-bus NN 0.34 0.69 0.0016
5 10 15 20 25 30 5 10 15 20
Iteration Iteration

k+1

Fig. 3. Norm of x — x* for two scenarios in the 500-bus (left) and

1,354-bus (right) systems.
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N
What about feasibility? 2%, GRIFFINLab

Subset of predicted

\ variables
\‘l["\ X(k:i) - Power flow solver
x (k) é‘(ﬁ‘{“}‘y/ pue
Y, k41
WA A e

ﬂ» 9
#@.l\

Real and
Reactive
Loads

Feasible and (generally)
close to optimal solution

K. Baker, “Emulating AC OPF solvers for Obtaining Sub-second Feasible, Near-Optimal Solutions,” https://arxiv.org/pdf/2012.10031, Dec. 2020

29
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How fast is this?

., GRIFFINLab

Average Solve

Percent Solve

> Solves in similar time to DC OPF and is
even faster for large networks

Network OPF Type Time (s) Success (%)
AC OPF ‘ 5
w/Flat Start 0.069 s 100%
AC OPF ‘ ,
w/DC Start 0.079 s 100%
AC OPF ‘

30-bus w/PF Start 0.068 s 100%
NN with PF | 0.050 s 100%
DC OPF 0.010 s 100%
AC OPF ‘ g
w/Flat Start 3.26 s 100%
AC OPF ‘
w/DC Start 334 s 100%
AC OPF ‘ =

500-bus w/PF Start 315 5 100%
NN with PF | 0.12 s 100%
DC OPF 0.12 s 100%
AC OPF , :
w/Flat Start 20.12 s 59.4%
AC OPF ‘
w/DC Start 11.63 s 59.4%
AC OPF ‘ o

1354-bus w/PF Start 10.64 s 59.8%
NN with PF | 025 s 98.00%
DC OPF 033 s 100%

Is more robust than other ways of
warm-starting AC OPF

(many papers on this topic only perturb the
base loading scenario +/-10 or 20%. Here, we
perturbed the loads +/-40%, which created
many “difficult to converge” scenarios)

30



How optimal is this?

Network Average Average Worst Worst
Gap: NN | Gap: DC | Gap: NN | Gap: DC
30-bus 0.20% 1.46% 0.31% 1.82%
500-bus 2.70% 5.30% 10.12% 16.22%
1354-bus | 0.09% 1.40% 0.20% 1.73%

(across 500 test loading scenarios)

WV
2 ol

DC OPF is often used to determine market clearing
prices and LMPs. This is currently an “acceptable”

optimality gap in industry.

31



Tradeoffs . GRIFFINLab

Average Optimality Gap (%) mfam DC
== NN

== AC OPF

- golve time compared to AC OPF (%)

ol | ]

0.5

(AC OPF was warm-started with a power flow
Failed Solves (%) Solutlon)

32



Talk Outline A orarrinten

3. Using learning to obtain distributed DC OPF solutions faster

Joint work led by the National Renewable Energy Laboratory (NREL) in Golden, Colorado

“Learning-Accelerated ADMM for Distributed DC Optimal Power Flow,”
D Biagioni, P Graf, X Zhang, AS Zamzam, K Baker, J King, IEEE Control Systems Letters, 2020



Why DC O PF? ?\‘(7, GRIFFINLab

DC OPF is used to dispatch generators in many existing power markets

Telling operators to make the jump to AC OPF (especially using a neural network)
might be a bit too unrealistic — maybe we can speed up DC OPF first

Balancing areas have to coordinate tie-line flows and still have to solve large-scale
DC OPF problems — can we start solving these faster (faster than 5 minutes?)



Many benefits to more autonomy in grids

Central Question: How to use Al/ML to
enable autonomous control of future
power grids?

More specifically, how to enable control

paradigms that:

* Are distributed and/or decentralized

* Preserve privacy of subsystems

* Leverage data-driven methods to
increase performance, improve
scalability, and the like

YT
Solar Arrays
Power Plant »

L i
| &~ Communications

Smart
f Substation
Smart Grid
Sensor/
Control

3 /'
> \
>

Wind Farm\
Ultra High 2% \
Efficiency /

Building ™~

Energy
Storage



A spectrum of modalities for distributed control

DC Optimal Power Flow

Model-Based min 3 fi(e)

s.t. H,0,+ ) Hou0ou+8 —ds =05, Vs
u

Enforces physical constraints

g, <8 <&, Vs Convex optimization
£s S Ksas + ZKsuosu S ?sa VS

0., — E..0. Vs,u Distributed (local) decisions

Preserve privacy

Hybrids

Learn directly from data

Reinforcement Learning

1 Reward r
Agent DNN policy

To(S, @)
Model-Free

S

Take action a Environment

N0
parameter 6

Observe state s




A spectrum of modalities for distributed control

Hybrids

Learning-Accelerated ADMM
(This Talk)

Enforces physical constraints

Convex optimization

Distributed (local) decisions

Preserve privacy

Learn directly from data




Centralized DC OPF : Linearized AC OPF

Cost minimization

Power balance

Generation limits

Voltage angle limits

Bus partitioning

S
i > fe(gs)

S

s=1

Hses =+ ZHsuesu 4 s — ds — 087

gs S gs S gs)
f, <K.0,+ > K0, <,

Osu — Esueu

(gl7d17 01)

(927 d27 02)

(g3,ds,03)



ADMM for Distributed DC OPF

pgrentedtagrngn (g0, 00,00} = argmin fulge) + A (0 —80) + 100~ 8L
gs,05,05,€Cs 2
Consensus update §£Z+1) — % (gg’fj‘l) i Esu9£k+1))
AL = X p (00400~ o

Private decisions
* Generation
* Voltage angles for internal buses

Public decisions
* Voltage angles for partition buses (via shared lines)

Each partition considers external voltage angles on tie
lines as a local decision variable, one copy per partition

ADMM forces consensus on these shared variables



ADMM as Dynamical System

ADMM is an iterative algorithm 50

 Known to be slow esp. for high accuracies, and
* Rateis sensitive to step size parameter (p)

Dual value
o

When we look at primal and dual variables as a function g 00 —- 617
of iteration, it looks like a steady-state dynamical system £ 02
>
304
Convergence < steady state of an ODE (?) | ] | | | | | |
0 50 100 150 200 250 300 350

ADMM iteration (k)

(There is theory to support this)

So, why not try to predict these converged values and
speed up convergence by appropriate warm starting?



Core ldea: Predict converged ADMM values given

the first K

We can treat this as a supervised learning problem

How to generate training data?
* Learn from the past: use fully converged ADMM iterations

 Learn from an oracle: solve the centralized problem to get
optimal primal/dual values

Dual value

Bus voltage

50— 0\
_/ | —_— A = Al
O_/ % /.\ =
) ~.~
v’
_50_
0.09 01
~0.2
—0.4
0 50 100 150 200 250 300 350

ADMM iteration (k)




Learning-Accelerated ADMM

n . Output = A" 0
Algorithm 1: Learning Accelerated-ADMM 1

Input: DC-OPF ADMM problem specification;
K-step RNN to predict converged A%, 0.,

su?

Dense <€ —

Output: Distributed solution to DC-OPF Dencele Dense

Set k<0

while ADMM not converged do 1 hX
if £ = K then pK-3 pK-2 pE-1

Predict converged values: A’ , 8., se—> GRU  —> GRU  — GRU

Overwrite dual variables: A « A*

Overwrite consensus variables: ESZ) ~0,, 1 T 1 T I 1
Execute ADMM iteration S elqnupeu:C . DS 10w o LS
k—k+1

end

Fig. 9. RNN architecture consists of a single Gated Recurrent Unit layer
operating on concatenated inputs, followed by dense prediction layers with
two-headed linear outputs.



Results on three networks

(K = 4; predicted values injected in fourth iteration)

| wmm 14-bus LA-ADMM s O —— 14-bus LA-ADMM
- > —— 14-bus ADMM
. 400 = 14-bus ADMM = \
3 Train size: 1000 1011
200+ 2
[a)
0 103
150
= 118-bus LA-ADMM I = 10% —— 118-bus LA-ADMM
100 ™= 118-bus ADMM e —— 118-bus ADMM
= = @
3 Train size: 4000 21071
£ 504 ©
[a)
0 103
1/
1001 mmm 2848-bus LA-ADMM - 10 —— 2848-bus LA-ADMM
W 2848-bus ADMM 3 —— 2848-bus ADMM
€ )
5 P 2 10-1
g so{ Train size: 40,000 30
a
0 : 1073 +— y y y v T
s = 0 20 40 60 80 100
Log rel. err. ADMM iteration

Fig. 4. Histograms showing the log;, relative error in the objective cost, Fig. 5. Residual error as function of ADMM iteration. Solid lines indicate

compared with the optimal value, for ADMM and LA-ADMM after 100 the mean across all runs in the test set while the shaded areas indicate +1
iterations. LA-ADMM significantly accelerates convergence for the 14- and ~ Standard deviation from the mean.

118-bus test cases and mitigates the worst-case examples in the 2848-bus

examples.



Conclusions

Inefficient grid operations results in increased emissions, cost, and decreased reliability

In addition to upgrading and installing additional hardware, upgrading the algorithms
can help us achieve better grid operations



GRIFFIN i
‘ " Baker research group @ CU Boulﬁ §

Thank you! Questions?

Kyri Baker, www.kyrib.com
Kyri.baker@colorado.edu
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