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Abstract
We demonstrate that an Internet of Things (IoT) bot-

net of high wattage devices–such as air conditioners and
heaters–gives a unique ability to adversaries to launch
large-scale coordinated attacks on the power grid. In
particular, we reveal a new class of potential attacks on
power grids called the Manipulation of demand via IoT
(MadIoT) attacks that can leverage such a botnet in order
to manipulate the power demand in the grid. We study
five variations of the MadIoT attacks and evaluate their
effectiveness via state-of-the-art simulators on real-world
power grid models. These simulation results demonstrate
that the MadIoT attacks can result in local power outages
and in the worst cases, large-scale blackouts. Moreover,
we show that these attacks can rather be used to increase
the operating cost of the grid to benefit a few utilities in
the electricity market. This work sheds light upon the in-
terdependency between the vulnerability of the IoT and
that of the other networks such as the power grid whose
security requires attention from both the systems security
and power engineering communities.

1 Introduction
A number of recent studies have revealed the vul-

nerabilities of the Internet of Things (IoT) to intrud-
ers [21, 49, 50]. These studies demonstrated that IoT de-
vices from cameras to locks can be compromised either
directly or through their designated mobile applications
by an adversary [12, 28, 43]. However, most previous
work has focused on the consequences of these vulnera-
bilities on personal privacy and security. It was not until
recently and in the aftermath of the Distributed Denial
of Service (DDoS) attack by the Mirai botnet, compris-
ing six hundred thousand compromised devices targeting
victim servers, that the collective effect of the IoT vul-
nerabilities was demonstrated [12]. In this paper, we re-
veal another substantial way that compromised IoT de-
vices can be utilized by an adversary to disrupt one of the
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Figure 1: The MadIoT attack. An adversary can disrupt the
power grid’s normal operation by synchronously switching
on/off compromised high wattage IoT devices.

most essential modern infrastructure networks, the power
grid.

Power grid security standards are all based on the as-
sumption that the power demand can be predicted reliably
on an hourly and daily basis [62]. Power grid operators
typically assume that power consumers collectively be-
have similarly to how they did in the past and under simi-
lar conditions (e.g., time of the day, season, and weather).
However, with the ubiquity of IoT devices and their poor
security measures (as shown in [12]), we demonstrate that
this is no longer a safe assumption.

There has been a recent trend in producing Wi-Fi en-
abled high wattage appliances such as air conditioners,
water heaters, ovens, and space heaters that can now be
controlled remotely and via the Internet [3] (for the power
consumption of these devices see Table 1). Even older
appliances can be remotely controlled by adding Wi-Fi
enabled peripherals such as Tado◦ [8] and Aquanta [2]. A
group of these devices can also be controlled remotely or
automatically using smart thermostats or home assistants
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such as Amazon Echo [1] or Google Home [4]. Hence,
once compromised, any of these devices can be used to
control high wattage appliances remotely by an adversary
to manipulate the power demand.

In this paper, we reveal a new class of potential attacks
called the Manipulation of demand via IoT (MadIoT) at-
tacks that allow an adversary to disrupt the power grid’s
normal operation by manipulating the total power de-
mand using compromised IoT devices (see Fig. 1). These
attacks, in the extreme case, can cause large scale black-
outs. An important characteristic of MadIoT attacks is
that unlike most of previous attacks on the power grid,
they do not target the power grid’s Supervisory Control
And Data Acquisitions (SCADA) system but rather the
loads that are much less protected as in load-altering at-
tacks studied in [11, 41].

It is a common belief that manipulating the power de-
mands can potentially damage the power grid. However,
these speculations have mostly remained unexamined un-
til our work. We are among the first to reveal realis-
tic mechanisms to cause abrupt distributed power de-
mand changes using IoT devices–along with Dvorkin and
Sang [24], and Dabrowski et al. [19]. Our key contribu-
tion is to rigorously study the effects of such attacks on
the power grid from novel operational perspectives (for
more details on the related work see Section 6).

We study five variations of the MadIoT attacks and
demonstrate their effectiveness on the operation of real-
world power grid models via state-of-the-art simulators.
These attacks can be categorized into three types:

(i) Attacks that result in frequency instability:
An abrupt increase (similarly decrease) in the power
demands–potentially by synchronously switching on or
off many high wattage IoT devices–results in an imbal-
ance between the supply and demand. This imbalance in-
stantly results in a sudden drop in the system’s frequency.
If the imbalance is greater than the system’s threshold, the
frequency may reach a critical value that causes genera-
tors tripping and potentially a large-scale blackout. For
example, using state-of-the-art simulators on the small-
scale power grid model of the Western System Coordi-
nating Council (WSCC), we show that a 30% increase in
the demand results in tripping of all the generators. For
such an attack, an adversary requires access to about 90
thousand air conditioners or 18 thousand electric water
heaters within the targeted geographical area. We also
study the effect of such an attack during the system’s re-
starting process after a blackout (a.k.a. the black start)
and show that it can disrupt this process by causing fre-
quency instability in the system.

(ii) Attacks that cause line failures and result in cas-
cading failures: If the imbalance in the supply and de-
mand after the attack is not significant, the frequency of

Table 1: Home appliances’ approximate electric power usage
based on appliances manufactured by General Electric [3].

Appliance Power Usage (𝑊 )
Air Conditioner 1,000
Space Heater 1,500
Air Purifier 200
Electric Water Heater 5,000
Electric Oven 4,000

the system is stabilized by the primary controller of the
generators. Since the way power is transmitted in the
power grid (a.k.a. the power flows) follows Kirchhoff’s
laws, the grid operator has almost no control over the
power flows after the response of the primary controllers.
Hence, even a small increase in the demands may result
in line overloads and failures. These initial line failures
may consequently result in further line failures or as it is
called, a cascading failure [54]. For example, we show
by simulations that an increase of only 1% in the de-
mand in the Polish grid during the Summer 2008 peak,
results in a cascading failure with 263 line failures and
outage in 86% of the loads. Such an attack by the ad-
versary requires access to about 210 thousand air condi-
tioners which is 1.5% of the total number of households in
Poland [58]. During the Summer peak hours when most
of the air conditioners are already on, decreasing their
temperature set points [61] combined with the initiation
of other high wattage appliances like water heaters, can
result in the same total amount of increase in the demand.

We also show that an adversary can cause line failures
by redistributing the demand via increasing the demand
in some places (e.g., turning on appliances within a cer-
tain IP range) and decreasing the demand in others (e.g.,
turning off appliances within another IP range). These at-
tacks, in particular, can cause failures in important high
capacity tie-lines that connect two neighboring indepen-
dent power systems–e.g., of neighboring countries.

(iii) Attacks that increase operating costs: When the
demand goes above the day-ahead predicted value, con-
servatively assuming that there would be no frequency
disturbances or line failures, the grid operator needs to
purchase additional electric power from ancillary ser-
vices (i.e., reserve generators). These reserve generators
usually have higher prices than the generators commit-
ted as part of day ahead planning. Therefore, using the
reserve generators can significantly increase the power
generation cost for the grid operator but at the same time
be profitable for the utility that operates the reserve gen-
erators. For example, we show by simulations that a 5%
increase in the power demand during peak hours by an
adversary can result in a 20% increase in the power gen-
eration cost. Hence, an adversary’s attack may rather be
for the benefit of a particular utility in the electricity mar-
ket than for damaging the infrastructure.
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The MadIoT attacks’ sources are hard to detect and dis-
connect by the grid operator due to their distributed na-
ture. These attacks can be easily repeated until being ef-
fective and are black-box since the attacker does not need
to know the operational details of the power grid. These
properties make countering the MadIoT attacks challeng-
ing. Nevertheless, we provide sketches of countermea-
sures against the MadIoT attacks from both the power
grid and the IoT perspectives.

Overall, our work sheds light upon the interdepen-
dency between the vulnerability of the IoT and that of
other networks such as the power grid whose security re-
quires attention from both the systems security and the
power engineering communities. We hope that our work
serves to protect the grid against future threats from in-
secure IoT devices.

The rest of this paper is organized as follows. Sec-
tion 2 provides a brief introduction to power systems. In
Section 3, we introduce the MadIoT attack and its vari-
ations, and in Section 4, we demonstrate these attacks
via simulations. In Section 5, we present countermeasure
sketches against the MadIoT attacks. Section 6 presents
a summary of the related work, and Section 7 discusses
the limitations of our work. Finally Section 8 provides
concluding remarks and recommendations. The central
results of the paper are self-contained in the above sec-
tions. We refer the interested reader to the appendix for
an overview of recent blackouts and their connection to
MadIoT attacks, and additional experimental results.

2 Power Systems Background
In this section, we provide a brief introduction to power

systems. For more details, refer to [26, 27, 31, 62].

2.1 Basics
Power systems consist of different components (see

Fig. 2). The electric power is generated at power gen-
erators at different locations with different capacities and
then transmitted via a high voltage transmission network
to large industrial consumers or to the lower voltage dis-
tribution network of a town or a city. The power is then
transmitted to commercial and residential consumers.

The main challenges in the operation and control of the
power systems are in the transmission network. More-
over, since a distributed increase in power demand does
not significantly affect the operation of the distribution
network, we ignore the operational details of the distribu-
tion network and only consider it as an aggregated load
within the transmission network. The term power grid
mainly refers to the transmission network rather that the
distribution network.

The transmission network can have a very complex
topology. Each intersection point in the grid is called a

Electricity 
Generator

Transformers 
step up voltage

Transmission 
Network

Transformers
step down

voltage

Distribution 
Network

Electricity
Consumers 
or Loads

Figure 2: Main components of a power system.

bus which is a node in the equivalent graph.1 Some of
the buses may be connected to the distribution network
of a city or a town and therefore represent the aggregated
load within those places.

The instantaneous electric power generation and con-
sumption are measured in watts (𝑊 ) and are calcu-
lated based on electric voltages and currents. Al-
most all the power systems deploy Alternating Cur-
rents (AC) and voltages for transmitting electric power.

Figure 3

This means that the electric cur-
rent and voltage at each location
and each point in time are equal to
𝐼(𝑡) =

√
2𝐼rms cos(2𝜋𝑓𝑡 + 𝜃𝐼 ) and

𝑉 (𝑡) =
√
2𝑉rms cos(2𝜋𝑓𝑡 + 𝜃𝑉 ), in

which 𝑓 is the nominal frequency of the
system, and 𝐼rms,𝑉rms and 𝜃𝐼 ,𝜃𝑉 are the
root mean square (rms) values and the
phase angles of the currents and voltages, respectively.
In the U.S., Canada, Brazil, and Japan the power system
frequency is 60𝐻𝑧 but almost everywhere else it is
50𝐻𝑧.

Given the voltages and the currents, the active, re-
active, and apparent power amplitudes absorbed by a
load can be computed as 𝑃 = 𝑉rms𝐼rms cos(𝜃𝑉 −𝜃𝐼 ), 𝑄 =
𝑉rms𝐼rms sin(𝜃𝑉 − 𝜃𝐼 ), and 𝑆 = 𝑉rms𝐼rms, respectively.
cos(𝜃𝑉 −𝜃𝐼 ) is called the power factor of a load.

2.2 Power Grid Operation and Control
Stable operation of the power grid relies on the persis-

tent balance between the power supply and the demand.
This is mainly due to the lack of practical large scale elec-
trical power storage. In order to keep the balance between
the power supply and the demand, power system oper-
ators use weather data as well as historical power con-
sumption data to predict the power demand on a daily
and hourly basis [27]. This allows the system operators
to plan in advance and only deploy enough generators to
meet the demand in the hours ahead without overloading
any power lines. The grid operation should also comply
with the 𝑁 −1 security standard. The 𝑁 −1 standard re-
quires the grid to operate normally even after a failure in
a single component of the grid (e.g., a generator, a line,
or a transformer).

In power systems, the rotating speed of generators cor-

1The terms “bus” and “node” can be used interchangeably in this
paper without loss of any critical information.
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Figure 4: Normal and abnormal frequency ranges in North
America. The figure is borrowed from [60].

respond to the frequency. When the demand gets greater
than the supply, the rotating speeds of the turbine gen-
erators’ rotors decelerate, and the kinetic energy of the
rotors are released into the system in response to the ex-
tra demand. Correspondingly, this causes a drop in the
system’s frequency. This behavior of turbine generators
corresponds to Newton’s first law of motion and is calcu-
lated by the inertia of the generator. Similarly, the supply
being greater than the demand results in acceleration of
the generators’ rotors and a rise in the system’s frequency.

This decrease/increase in the frequency of the sys-
tem cannot be tolerated for a long time since frequencies
lower than the nominal value severely damage the gener-
ators. If the frequency goes above or below a threshold
value, protection relays turn off or disconnect the gen-
erators completely (see Fig. 4 for normal and abnormal
frequency ranges in North America). Hence, within sec-
onds of the first signs of decrease in the frequency, the
primary controller activates and increases the mechani-
cal input which increases the speed of the generator’s ro-
tor and correspondingly the frequency of the system [26].

Despite stability of the system’s frequency after the
primary controller’s response, it may not return to its
nominal frequency (mainly due to the generators gener-
ating more than their nominal value). Hence, the sec-
ondary controller starts within minutes to restore the sys-
tem’s frequency. The secondary controller modifies the
active power set points and deploys available extra gen-
erators and controllable demands to restore the nominal
frequency and permanently stabilizes the system.

2.3 Power Flows
The equality of supply and demand is a necessary con-

dition for the stable operation of the grid, but it is far from
being sufficient. In order to deliver power from genera-
tors to loads, the electric power should be transmitted by
the transmission lines. The power transmitted on each
line in known as the power flow on that line.

Unlike routing in computer networks, power flows are

almost entirely determined and governed by Kirchhoff’s
laws given the active and reactive power demand and sup-
ply values. Besides the constraints on the power flows en-
forced by Kirchhoff’s laws, there are other limiting con-
straints that are dictated by the physical properties of the
electrical equipment. In particular, each power line has a
certain capacity of apparent power that it can carry safely.

Unlike water or gas pipelines, the capacity constraint
on a power line is not automatically enforced by its phys-
ical properties. Once the power supply and demand val-
ues are set, the power flows on the lines are determined
based on Kirchhoff’s laws with no capacity constraints in
the equations. Thus, an unpredicted supply and demand
setting may result in electric power overload on some of
the lines. Once a line is overloaded, it may be tripped by
the protective relay, or it may break due to overheating–
which should be avoided by the relay. Hence, the system
operator needs to compute the power flows in advance–
using the predicted demand values and optimal set of gen-
erators to supply the demand–to see if any of the lines will
be overloaded. If so, the configuration of the generators
should be changed to avoid lines overload and tripping.

2.4 Voltage Stability

Besides power line thermal limits, the power flows on
the lines are limited by their terminating buses’ voltages.
The voltages at the buses are controlled by maintaining
the level of the reactive power (𝑄) supply. Voltage in-
stability or as it is called voltage collapse occurs when
the generated reactive power becomes inadequate. This
is mainly due to changes in system configurations due to
line failures, increase in active or reactive power demand,
or loss of generators. Voltage collapse should be stud-
ied using 𝑉 -𝑄 (characterizing the relationship between
the voltage at the terminating bus of a line to the reactive
power flow) and 𝑃 -𝑉 (characterizing the relationship be-
tween the voltage at the terminating bus of a line to the
active power flow) analysis which is beyond the scope of
this paper, but for more details see [62, Chapter 7].

Voltage collapse results in the infeasibility of the power
flow equations. Hence, it can be detected when the power
flow solver fails to find a solution to the power flow equa-
tion (usually after an initial change in the system). In
such scenarios, the grid operator is forced to perform load
shedding (i.e., outage in part of the grid) in order to re-
cover the system from a voltage collapse and make the
power flow equations feasible again. Hence, even fail-
ures in a few lines or an increase in the active/reactive
power demands may result in large scale outages around
the grid due to voltage collapse.
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Figure 5: Estimated number of homes with smart thermostats in
North America in millions. Data is obtained from Statista [56].

3 Attacking the Grid Using an IoT Botnet
In this section, we reveal attack mechanisms that can

utilize an IoT botnet of high wattage devices to launch a
large-scale coordinated attack on the power grid.

3.1 Threat Model
We assume that an adversary has already gained access

to an IoT botnet of many high wattage smart appliances
(listed in Table 1) within a city, a country, or a continent.
Since most of the IoT devices are controlled using mo-
bile phone applications, access to users’ mobile phones
or corresponding applications can also be used to control
these devices [28]. This access can potentially allow the
adversary to increase or decrease the demand in different
locations remotely and synchronously. The adversary’s
power to manipulate the demand can also be translated
into watts (𝑊 ) using the numbers in Table 1 and based
on the type and the number of devices to which it has
access.

For example, if we consider only the houses with smart
thermostats in 2018 as shown in Fig. 5 and assuming that
each thermostat only controls two 1𝑘𝑊 air condition-
ers, an attacker can potentially control 35𝐺𝑊 of electric
power2–even a fraction of which is a significant amount.
Recall that in the case of the Mirai botnet, the attackers
could get access to about 600 thousand devices within a
few months [12].

The 35𝐺𝑊 is computed by only considering the ther-
mostats connected to a few air conditioners. By con-
sidering all the smart air conditioners as well as other
high wattage appliances such as water heaters, this value
would be much higher. Moreover, this amount will grow
in the future as the trend shows in Fig. 5.

We call the attacks under this threat model the
Manipulation of the demand via IoT (MadIoT) attacks.
In the next subsection, we provide the details of various
types of attacks that can be performed by an adversary.

3.2 MadIoT Attack Variations
MadIoT attacks can disrupt the normal operation of the

power grid in many ways. Here, we present the most im-

2For the sake of comparison, this amount is equal to 7% of the entire
U.S. 2017 Winter peak demand (about 500𝐺𝑊 ) [10].

portant and direct ways that such attacks can cause dam-
age to the grid (summarized in Table 2):

1. Significant frequency drop/rise: As briefly described
in Section 2, the normal operation of the power grid relies
on the persistent balance between the supply and demand.
Thus, an adversary’s approach could be to disrupt this
balance using an IoT botnet. An adversary can leverage
an IoT botnet of high-wattage devices and synchronously
switch on all the compromised devices. If the resulting
sudden increase in the demand is greater than a thresh-
old, which depends on the inertia of the system, it can
cause the system’s frequency to drop significantly before
the primary controllers can react. This consequently may
result in the activation of the generators’ protective relays
and loss of generators, and finally a blackout. Sudden de-
crease in the demand may also result in the same effect
but this time by causing a sudden rise in the frequency.

An adversary can further increase its success by strate-
gic selection of the timing of an attack using the online
data available via the websites of Independent System
Operators (ISOs)3 (e.g., daily fuel mix and live updates
of the demand values.) For example, we know that as the
share of renewable resources in the power generation in-
creases, the inertia of the system decreases. Therefore,
an attack that is coordinated with the time that renewable
penetration is highest, is more effective in causing large
changes in the frequency. Similarly, an attack during the
peak hours can result in a slow yet persistent frequency
drop in the system. Such an attack may exhaust the con-
troller reserves and force the system operator to perform
load shedding. This may result in power outages in sev-
eral parts of the system if the situation is handled well
by the operator, or in a large-scale blackout if it is mis-
handled and the system’s frequency keeps dropping. Ac-
cording to the European Network of Transmission Sys-
tem Operators for Electricity (ENTSOE) guidelines, if
the frequency of the European grid goes below 47.5𝐻𝑧

or above 51.5𝐻𝑧, a blackout can hardly be avoided [25].

2. Disrupting a black start: Once there is a blackout,
the grid operator needs to restart the system as soon as
possible. This process is called a black start. Since the
demand is unknown at the time of a black start, restarting
the whole grid at the same time may result in frequency
instability and system failure again. Hence, in a black
start, the operator divides the system into smaller islands
and tries to restart the grid in each island separately. The
islands are then connected to increase the reliability of
the system.

Since the grid is partitioned into smaller islands at

3The system operators are given different names in different coun-
tries and continents, but here for the sake of simplicity, we refer to all
of them as ISOs.
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Table 2: MadIoT attack variations. The botnet size is in bots/𝑀𝑊 which is the number of bots required to perform a successful
variation of the MadIoT attack, if the total demand in the system is 1𝑀𝑊 . All the bots are assumed to be air conditioners.

# Goal Attack action Initial impact Botnet size Simulation results
1 Grid frequency rise/drop Synchronously switching on/off all the bots Generation tripping 200–300 Figs. 8,7,9

2 Disrupting grid re-start
Synchronously switching on all the bots
once the power restarts after a blackout

Generation tripping 100–200 Fig. 11

3 Line failures and cascades Synchronously switching on or off the bots
in different locations

Lines tripping 4–10 Figs. 12,13,15

4 Failure in tie-lines
Synchronously switching on (off) the bots in

importing (exporting) end of a tie-line
Tie-lines tripping 10–15 Fig. 16

5 Increasing the operating cost
Slowly switching on the bots during power

demand peak hours
Utilizing power

generation reserve 30–50 Fig. 17

the time of a black start, the inertia of each part is low
and therefore the system is very vulnerable to demand
changes. Thus, an adversary can significantly hinder the
black start process by suddenly increasing the demand us-
ing the IoT botnet once an island is up. This can cause a
large frequency disturbance in each island and cause the
grid to return to the blackout state.

3. Line failures and cascades: Recall from Section 2.3
that the power flows in power grids are determined by
the Kirchhoff’s laws. Therefore, most of the time, the
grid operator does not have any control over the power
flows from generators to loads. Once an adversary causes
a sudden increase in the loads all around the grid, assum-
ing that the frequency drop is not significant, the extra
demand is satisfied by the primary controller. Since the
power flows are not controlled by the grid operator at this
stage, this may result in line overloads and consequent
lines tripping.

After initial lines tripping or failures, the power flows
carried by these lines are redistributed to other lines based
on Kirchhoff’s laws. Therefore, the initial line failures
may subsequently result in further line failures or, as it is
called, a cascading failure [54]. These failures may even-
tually result in the separation of the system into smaller
unbalanced islands and a large-scale blackout.

Moreover, failure in a few lines accompanied by an in-
crease in the power demand may result in a voltage col-
lapse (recall from Section 2.4) which consequently would
force the grid operator to perform load shedding. Hence,
in some steps during the cascade, there are more outages
due to load shedding.

An adversary may also start cascading line failures by
redistributing the loads in the system by increasing the
demand in a few locations and decreasing the demand in
others in order to keep the total demand constant. This
redistribution of the demand in the system may result in
line failures without causing any frequency disturbances.
The advantage of this attack is that it may have the same
effect without attracting a lot of attention from the grid
operator. It can be considered to be a stealthier version

of the demand increase only attack.

4. Failures in the tie-lines: Tie-lines between the ISOs
are among the most important lines within an intercon-
nection. These tie-lines are usually used for carrying
large amounts of power as part of an exchange program
between two ISOs. Failure in one of these lines may re-
sult in a huge power deficit (usually more than 1𝐺𝑊 ) in
the receiving ISO and most likely a blackout due to the
subsequent frequency disturbances or a large-scale out-
age due to load shedding by the grid operator.

Due to their importance, the tie-lines can be the tar-
get of an adversary. An adversary can observe the actual
power flows on the tie-lines through ISOs’ websites, and
target the one that is carrying power flow near its capac-
ity. In order to overload that line, all the adversary needs
to do is to turn on the high wattage IoT devices in the
area at the importing end of the line and turn off the ones
at the exporting end (using the IP addresses of the de-
vices).4 This can overload the tie-line and cause it to trip
by triggering its protective relay.

5. Increasing the operating cost: When the demand
goes above the predicted value, the ISO needs to purchase
additional electric power from ancillary services (i.e., re-
serve generators). These reserve generators usually have
a higher price than the generators committed as part of
the day ahead planning. Thus, using the reserve genera-
tors can significantly increase the power generation cost
for the grid operator but at the same time be profitable for
the utility that operates the reserve generator.

Hence, the goal of an adversary’s attack may be to ben-
efit a particular utility in the electricity market rather than
to damage the infrastructure. The adversary can achieve
this goal by slowly increasing the demand (e.g., switch-
ing on a few devices at a time) at a particular time of the
day and in a certain location. Moreover, it may reach out

4A sudden increase in the demand, only at the importing end of the
tie-line, may also result in its overload. This is due to the fact that once
there is an imbalance between the supply and demand, all the generators
within an interconnection (whether inside or outside of the particular
ISO) respond to the imbalance which consequently results in an increase
in the power flow on the tie-line.
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to utilities to act in their favor in return for a payment.

Overall, the above attacks demonstrate that an adver-
sary as described in Section 3.1 has tremendous power to
manipulate the operation of the grid in many ways which
were not possible a few years ago in the absence of IoT
devices.

3.3 Properties and Defensive Challenges
The MadIoT attacks have unique properties that make

them very effective and at the same time very hard to de-
fend against. In this subsection, we briefly describe some
of these properties.

First, the sources of the MadIoT attacks are very hard
to detect and disconnect by the grid operator. The main
reason is that the security breach is in the IoT devices, yet
the attack is on the power grid. The grid operator cannot
easily detect which houses are affected since it only sees
the aggregation of the distributed changes in the demand
around the grid. At the same time, the attack does not
noticeably affect the performance of the IoT devices, es-
pecially if the smart thermostat is attacked. Moreover,
the attack may not be noticeable by the households since
the changes are temporary and can be considered as part
of the automatic temperature control.

Second, the MadIoT attacks are easy to repeat. An ad-
versary can easily repeat an attack at different times of
the day and different days to find a time when the attack
is the most effective. Moreover, this repeatability allows
an adversary to cause a persistent blackout in the power
grid by disrupting the black start process as described in
the previous subsection.

Third, the MadIoT attacks are black-box. An adversary
does not need to know the underlying topology or the de-
tailed operational properties of the grid, albeit it can use
the high-level information available on the ISOs’ web-
sites to improve the timing of its attack. It can also use
the repeatability of these attacks and general properties
of the power grids to achieve and perform a successful
attack.

Finally, power grids are not prepared to defend against
the MadIoT attacks, since abrupt changes in the demand
are not part of the contingency list that grid operators are
prepared for. As mentioned in Section 2, power grids
are required to operate normally after a failure in a single
component of the grid (the 𝑁 −1 standard). Therefore,
the daily operation of the grid is planned such that even a
failure in the largest generator does not affect its normal
operation.

The scenarios predicted by the 𝑁 −1 standard, how-
ever, are quite different from the scenarios caused by the
MadIoT attacks. Although an increase in the demand can
be similar to losing a generator from the supply and de-
mand balance perspective, these two phenomena result

in completely different power flows in the grid. Hence,
although losing a generator may not result in any is-
sues as planned, increase in the demands by an adver-
sary may result in many line overloads. Moreover, the
imbalance caused by an adversary may surpass the im-
balance caused due to losing the largest generator, and
therefore results in unpredicted frequency disturbances.
For example, the capacity of the largest operating gener-
ator in the system may be 1𝐺𝑊 (usually a nuclear power
plant) which can be surpassed by an attack comprising
more than 100 thousand compromised water heaters.

Despite these difficulties, we provide sketches of coun-
termeasures against the MadIoT attacks in Section 5.

3.4 Connection to Historical Blackouts
There have been several large-scale blackouts in the

past two decades around the world. Although these
events were not caused by any attacks, the chain of events
that led to these blackouts could have been initiated by a
MadIoT attack. For example, the initial reactive power
deficit in Ohio in 2003 leading to the large-scale blackout
in the U.S. and Canada [60], and the failures in the tie-
lines connecting Italy to Switzerland in 2003 leading to
the complete shutdown of the Italian grid [59], could have
been caused by MadIoT attacks. Most of these events
happened beacuse the systems’ operators were not pre-
pared for the unexpected initial event. Hence, the Ma-
dIoT attacks could result in similar unexpected failures.
We reviewed a few of the recent blackouts in the power
grids around the world and demonstrated how an adver-
sary could have caused similar blackouts. The details of
these events are relegated to Appendix A.

4 Experimental Demonstrations
In this section, we demonstrate the effectiveness of

the MadIoT attacks on real-world power grid models via
state-of-the-art simulators. Recall that the MadIoT at-
tacks are black-box. Therefore, the outcome of an at-
tack highly depends on the operational properties of the
targeted system at the time of the attack (e.g., genera-
tors’ settings, amount of renewable resources, and power
flows). We emphasize this in our simulations by chang-
ing the power grid models’ parameters to reflect the daily
changes in the operational properties of the system.

4.1 Simulations Setup
Our results are based on computer simulations. In par-

ticular, we use the MATPOWER [65] and the Power-
World [7] simulators. MATPOWER is an open-source
MATLAB library which is widely used for computing the
power flows in power grids. PowerWorld, on the other
hand, is an industrial-level software suite that is widely
used by the industry for frequency stability analysis of
power systems. We used the academic version of Power-
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Figure 6: The WSCC 9-bus system. The generators at buses 2
and 3 are the buses with inertia, and the generator at bus 1 is a
slack bus with no inertia. The slack bus is a bus in the system
that can change its generation to make the power flow equations
feasible. The load buses are buses 5, 6, and 8. We consider two
operational settings of the WSCC system: (a) high inertia, in
which both generators 2 and 3 have inertia constants (𝐻) equal
to 15𝑠, and (b) low inertia, in which generators 2 and 3 have in-
ertia constants equal to 5𝑠 and 10𝑠, respectively [51, Chapter 3].
In all the simulations, the IEEE type-2 speed-governing model
(IEEE-G2) is used for the generators [44].

World.
For frequency stability analysis in PowerWorld, to the

best of our knowledge, there are no large-scale real-world
power grids available for academic research. Hence, for
evaluating the effects of the MadIoT attacks on the sys-
tem’s frequency, we use the WSCC 9-bus grid model that
represents a simple approximation of the Western System
Coordinating Council (WSCC)–with 9 buses, 9 lines, and
315𝑀𝑊 of demand [35]. Despite its small size, due to
the complexity of power systems transient analysis, it is
widely used as a benchmark system [22, 48, 52].

For evaluating the effects of MadIoT attacks on the
power flows, however, we use the Polish grid which is one
of the largest and most detailed publicly available real-
world power grids. To the best of our knowledge, there
are no other real power grids at this scale and detail avail-
able for academic research.5We use the Polish grid data
at its Summer 2004 peak–with 2736 buses, 3504 lines,
and 18GW of demand–and at its Summer 2008 peak–with
3120 buses, 3693 lines, and 21GW of demand. Both are
available through the MATPOWER library.

Since the total demand in the WSCC system is
315𝑀𝑊 , but the total demand in the Polish grid is about
20𝐺𝑊 , for comparison purposes, we focus on the per-
centage increase/decrease in the demand caused by an
attack instead of the number of switching on/off bots.
However, if we assume that all the bots are air condition-
ers, 1𝑀𝑊 change in the demand corresponds simply to

5Topologies of other power grids may also be available through uni-
versity libraries, but they are limited to the topology with no extra in-
formation on the operational details.

(a) (b)
Figure 7: Frequency disturbances due to unexpected demand
increases in all the load buses in the WSCC system caused by an
adversary, ignoring generators’ frequency cut-off limit (shown
by red dashed line). Increase by (a) 23𝑀𝑊 and (b) 30𝑀𝑊 .

switching on/off 1,000 bots. Therefore, we can define the
normalized botnet size in bots/𝑀𝑊 to be the number of
bots required to perform a successful variation of the Ma-
dIoT attack, if the total demand in the system is 1𝑀𝑊 .
By this definition, it is easy to see that to increase the
demand of any system by 1%, an adversary requires 10
bots/𝑀𝑊 .

4.2 Frequency Disturbances
In this subsection, we evaluate the first two MadIoT

attack variations described in Section 3.2. We consider
two operational settings of the WSCC system: (a) high
inertia and (b) low inertia (for details see Fig. 6).

4.2.1 200–300 Bots per 𝑀𝑊 Can Cause Sudden
Generation Tripping

In order to show the frequency response of the system
to sudden increases in the demand, we simulated the in-
crease of (a) 23𝑀𝑊 and (b) 30𝑀𝑊 in all the loads for
the high inertia and low inertia cases. These values can
roughly be considered as 20% and 30% increases in the
load buses, respectively. We similarly studied the fre-
quency response of the system to sudden decreases of the
demand. Figs. 7 and 8 present the results.

As mentioned in Section 2, the generators are protected
from high and low frequency values by protective relays.
These values depend on the type of a generator as well as
the settings set by the grid operator. Here, we assume the
safe frequency interval of 58.2𝐻𝑧 and 61.2𝐻𝑧 which is
common in North America (see Fig. 4). Once a generator
goes below or above these values, it gets disconnected
from the grid by protective relays.

As can be seen in Figs. 7(b) and 8(b), sudden increase
or decrease in the load buses by 30% or 20%, respectively,
cause the system’s frequency to go below or above the
frequency cut-off limits. Hence, an adversary requires
200–300 bots/𝑀𝑊 , or in this case 60–90 thousand bots,
to perform these attacks.

As can be seen, however, the drop/rise in frequency
is higher in the low inertia case (as predicted). There-
fore, there are cases in which the frequency may go be-
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(a) (b)
Figure 8: Frequency disturbances due to unexpected demand
decreases in all the load buses in the WSCC system by an ad-
versary, ignoring generators’ frequency cut-off limit (shown by
red dashed line). Decrease by (a) 15𝑀𝑊 and (b) 20𝑀𝑊 .
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Figure 9: Frequency disturbances due to unexpected demand
changes in all the load buses in the WSCC system by an adver-
sary, considering generators’ frequency cut-off limits (shown
by red dashed lines). (a) Demand increase of 30𝑀𝑊 and (b)
demand decrease of 20𝑀𝑊 .

low/above the critical frequency in the low inertia case
but may remain in the safe interval in the high inertia
case (see Figs. 7(a) and 8(a)). This suggests that an at-
tack that is not effective today, may be effective tomorrow
if the system’s inertia is lower due to a higher rate of re-
newable generation.

In Figs. 7 and 8, the frequency cut-off limits of the
generators are ignored. Hence, the generators are kept
online even when the frequency goes beyond the safe
operational limits. In reality, however, these generators
are disconnected from the grid by the protective relays.
Fig. 9 presents the frequency response of the system when
the protective relays are enabled for the cases shown in
Figs. 7(b) and 8(b). As can be seen, the grid completely
shuts down and the simulations stop in less than 10 sec-
onds due to disconnection of the generators.

Simulation results in this subsection demonstrate that
the effectiveness of an attack in causing a critical fre-
quency disturbance depends on the attack’s scale as well
as the system’s total inertia at the time of the attack.

4.2.2 100–200 Bots per 𝑀𝑊 Can Disrupt the Grid
Re-start

Once there is a blackout, the grid operator needs to
restart the system as soon as possible (a.k.a. a black start).
As mentioned in Section 3.2, due to frequency instability
of the system at the black start, the restarting process is

Figure 10: The WSCC 9-bus system during the black start.

usually done by restarting the grid in parallel in discon-
nected islands and then reconnecting the islands.

Fig. 10 shows one way of partitioning the WSCC sys-
tem into two islands. We assume that initially the grid
operator could restart the two islands and stabilize the
frequency at 60𝐻𝑧. Then, before the two islands are re-
connected, an adversary increases the demand at all the
load buses with the same amount (see Fig. 11).

The attack is performed at time 30 and the two islands
are reconnected at time 50. As can be seen in Fig. 11(a),
when there are no attacks, the two islands are reconnected
with an initial small disturbance in the frequency and then
the system reaches a stable state.

Fig. 11(b) shows the frequency of the system after
20𝑀𝑊 increase in all the load buses at time 30. In this
case, the frequency goes slightly below the minimum safe
limit, but it is common in the black start process that the
generators’ lower (upper) frequency limits are set to lower
(higher) levels than usual. Hence, the system may reach
a stable state in this case as well.

As can be seen in Fig. 11(c), a 30𝑀𝑊 increase in all
the loads causes a large disturbance in the frequency, but
as the two islands are reconnected the system’s frequency
is completely destabilized. These substantial deviations
from safe frequency ranges can cause serious damage to
the generators and are not permitted even in the black
start process. Hence, in this case the system returns to
the blackout stage. Even if the grid operator decides not
to reconnect the two islands due to the frequency distur-
bances, Fig. 11(d) shows a significant drop in the sec-
ond island’s frequency that results in disconnection of the
generators. Therefore, even if the big drop in frequency
of island 1 (1𝐻𝑧 below the safe limit) is acceptable dur-
ing the black start, island 2 goes back to the blackout state.

For comparison purposes and to reflect on the role of
the operational properties of the system on the outcome
of an attack, we repeated the same set of simulations
with different maximum power outputs for the genera-
tors’ governors (see Fig. B.1 in the appendix). We ob-
served that under the new settings, demand increases of
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Figure 11: Frequency disturbances during the black start due
to unexpected increases in all the load buses by an adversary,
ignoring generators’ frequency cut-off limits (shown by red
dashed lines). (a) Normal black start in the absence of an adver-
sary. (b) Demand increases of 20𝑀𝑊 at the load buses before
the reconnection of the two islands. (c) Demand increases of
30𝑀𝑊 at the load buses before the reconnection of the two is-
lands. (d) Demand increases of 30𝑀𝑊 at the load buses with-
out attempting to reconnect the two islands due to frequency
instabilities.

up to 10𝑀𝑊 results is a successful black start, unlike the
previous case which could handle demand increases of
20𝑀𝑊 at all the loads. Hence, an adversary requires at
least 100–200 bots/𝑀𝑊 , or in this case 30–60 thousand
bots, to increase the demand at all the loads by 10–20%
and disrupt the black start. Here again we observe that
the operational properties of the grid play an important
role in the outcome of an attack.

4.3 Line Failures and Cascades
In this subsection, we demonstrate the effectiveness of

the third and the fourth variations of the MadIoT attacks
described in Section 3.2. For simulating the cascading
line failures, we use the MATLAB code developed by
Cetinay et al. [18]. We had to slightly change the code to
make it functional in the scenarios studied in this paper.
To evaluate the severity of the cascade, we define outage
as the percent of the demand affected by the power outage
at the end of the cascade over the initial demand.

4.3.1 Only 10 Bots per 𝑀𝑊 Can Initiate a Cascad-
ing Failure Resulting in 86% Outage

As described in Section 3.2, once an adversary causes
a sudden increase in the demand, if it does not result in
a major frequency drop, the primary controllers at gen-
erators are automatically activated to compensate for the
imbalance in the supply and demand. Despite balancing
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Figure 12: The cascading line failures initiated by a 1% increase
in the demand in the Polish grid 2008 by an adversary (colors
show the cascade step at which a line fails). It caused failures
in 263 lines and 86% outage.
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Figure 13: The cascading line failures initiated by a 10% in-
crease in the demand in the Polish grid 2004 by an adversary
(colors show the cascade step at which a line fails). It caused
failures in 11 lines and 46% outage.

the supply and demand, since this balancing is unplanned,
it may cause line overloads.

To demonstrate this, we assume that an adversary in-
creases the demand at all the load buses by 1%. We also
assume that all the generators contribute proportionally
to their capacities to compensate for this sudden increase
in the demand. This attack results in a single line fail-
ure in the Polish grid 2004 but no outages. However, as
can be seen in Fig. 12, the same attack on the Polish grid
2008 results in the cascade of line failures that lasts for
5 rounds, causes 263 line failures, and 86% outage. The
1% increase in the total demand in the Polish grid 2008
is roughly equal to 210𝑀𝑊 , requiring the adversary to
access to 10 bots/𝑀𝑊 which is about 210 thousand air
conditioners in this case. This number is equal to 1.5%
of the total number of households in Poland [58].

Since the Polish grid 2004 showed a good level of ro-
bustness against the 1% increase attack, we re-evaluated
its robustness against a 10% increase in the demand.
Fig. 13 shows the resulting line failures and the subse-
quent cascade caused by this attack. It can be seen that
this attack causes much more damage with 11 line fail-
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Figure 14: Histogram of the Polish grid lines’ power flow to
capacity ratio in Summer 2004 compared to Summer 2008.

ures and 46% outage. Despite the effectiveness of the
second attack, the Polish grid 2004 shows greater level
of robustness than the Polish grid 2008 even under a 10-
time stronger attack. Although this may be due to many
factors such as online generator locations and their val-
ues, topology of the grid, and even number of lines [54],
one possible factor is how initially saturated the power
lines are.

Fig. 14 presents the histogram of the Polish grid lines’
power flow to capacity ratio in Summer 2004 compared
to Summer 2008. There are about 10% more lines with
flow to capacity ratio below 0.1 in the Polish grid 2004
compared to the Polish grid 2008. Consequently, there
are more lines with power flow to capacity ratio greater
than 0.3 in the Polish grid 2008 than in the Polish grid
2004 (to see the locations of the near saturated lines see
Fig. B.2 in the appendix). This clearly demonstrates that
a small increase in the demand is more likely to cause line
overloads in the Polish grid 2008 than in the Polish grid
2004 (as observed in Figs.12 and 13).

Overall, as in the previous subsection, the results
demonstrate that the effectiveness of an attack depends
on the status of the grid at the time of the attack. How-
ever, unlike the large botnet size (about 300 bots/𝑀𝑊 )
required to cause a blackout from frequency instability in
the system, we observe here that even botnet size of 10
bots/𝑀𝑊 can result in a significant blackout depend-
ing on the grid’s operational properties. Albeit the black-
outs caused by frequency instabilities happen much faster
(within seconds) than those caused by cascading line fail-
ures (within minutes or even hours).

4.3.2 Only 4 Bots per 𝑀𝑊 Can Initiate a Cascad-
ing Failure Resulting in 85% Outage by Redis-
tributing the Demand

Another way of causing line failures and possibly cas-
cading line failures in the grid is by redistributing the
demand without increasing the total demand. As men-
tioned in Section 3.2, the advantage of this attack is that
it may have a similar effect to the demand increase attack
without attracting the grid operators’ attention due to fre-
quency disturbances.

Here, an adversary focuses only on the loads with de-
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Figure 15: The cascading line failures initiated in the Polish grid
2008 by redistributing the demand by an adversary. Demand of
the loads buses with demand greater than 20𝑀𝑊 are changed
by with a Gaussian distribution with zero mean and standard
deviation 1𝑀𝑊 (colors show the cascade step in which a line
fails). It caused failures in 77 lines and 85% outage.

mand greater than 20𝑀𝑊 . This can be estimated by the
adversary from the total number of IoT bots in a city or
a town. The number of bots is correlated with the popu-
lation of an area and therefore the total demand. Hence,
an adversary detects these load buses and decreases or in-
creases the demands by a random value such that the total
demand increase and decrease sum up approximately to
zero. We assume this can be done by randomly increasing
or decreasing the demand by a Gaussian random variable
with zero mean and selected standard deviation.

Again, the Polish grid 2004 showed a great level of
robustness against these attacks. Even if an adversary
decreases or increases the demand randomly by a Gaus-
sian random variable with zero mean and standard devia-
tion 10𝑀𝑊 at loads with demand greater than 20𝑀𝑊 ,
it only results in three line failures without any outages.
However, the same attack with 10-time smaller changes,
results in serious damage to the Polish grid 2008. As
can be seen in Fig. 15, making only small changes with
standard deviation of 1𝑀𝑊 at load buses with demands
greater 20𝑀𝑊 results in cascading line failures with
77 line failures and outage of 85%. The total absolute
value of the demand changes in this attack was about
80𝑀𝑊 which means that an adversary only requires 4
bots/𝑀𝑊 , or in this case 80 thousand bots, to perform
such an attack.

Although these changes are made randomly, due to the
stealthy nature of these attacks they can be repeated with-
out attracting any attention until they are effective.

4.3.3 Only 15 Bots per 𝑀𝑊 Can Fail a Tie-line by
Increasing (Decreasing) the Demand of the Im-
porting (Exporting) ISOs

In order to demonstrate an attack on the tie-lines as de-
scribed in Section 3.2, since we do not have access to the
European grid or the U.S. Eastern Interconnection, we
modified the Polish grid 2008 in a principled manner to
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Figure 16: Tie-line vulnerabilities in the partitioned Polish grid
2008. (a) The ratios of tie-lines’ power flows to their nominal
capacity. (b) Failures in the tie-lines between the yellow area
and the light blue area caused by decreasing the demand by 1.5%
in the former and increasing the demand by 1.5% in the latter
by an adversary. Failed lines are shown in black.

represent a few neighboring ISOs in Europe connected by
a few tie-lines.

First, we used a spectral clustering method to partition
the Polish grid into 5 areas with a few connecting tie-
lines. This is done using MATLAB’s Community De-
tection Toolbox [34, 36]. Since the Polish grid does not
inherently have 5 areas, however, the number of tie-lines
between areas is slightly more than those of the European
grid or Eastern Interconnection. Therefore, we removed
one fifth of the tie-lines. In order to make the power flows
feasible then, we reduced the total supply and demand
by 60% and increased the capacity on the lines that were
overloaded.

Fig. 16(a) shows the modified grid along with the ratios
of tie-lines’ power flows to their nominal capacities. As
can be seen, similarly to the real grid operation, some of
these tie-lines are carrying power flows near their capac-
ities. These lines–which can be detected through some
of the ISOs’ websites [5]–are the most vulnerable to this
variation of the MadIoT attacks.

For example, as can be seen in Fig. 16(a), the two lines
that are connecting the yellow area to the light blue area
are carrying power flows near their capacities. Therefore,
increasing the demand in the light blue area and decreas-
ing the demand in the yellow area (corresponding to the
direction of the power flow on the lines) can potentially
result in those lines tripping. It can be seen in Fig. 16(b)
that a 1.5% decrease in the demand of the yellow area and
a 1.5% increase of the demand in the light blue area by
an adversary results in the failure of the two tie-lines (ad-
ditional attacks on the other tie-lines are demonstrated in
Figs. B.3(a) and B.3(b) in the appendix). Hence, an ad-
versary can cause a failure in a tie-line by only a botnet
of size 15 bots/𝑀𝑊 , or in this case 60 thousand bots (30
thousand bots at each end of the tie-line).

Since the tie-lines usually carry substantial amounts of
power, failure in these lines can result in cascade of line
failures in other lines and eventually in disconnection of
an ISO from the interconnection. Such a disconnection
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Figure 17: Increase in the operating cost of the Polish grid 2004
by an adversary. The initial demand is 10% higher than the
original demand during the Summer 2004 morning peak. (a)
If the operating costs of the reserve generators are linear func-
tions 𝑐1(𝑥) = 100𝑥, and (b) if the operating costs of the reserve
generators are quadratic functions 𝑐2(𝑥) = 5𝑥2 +100𝑥.

may result in a huge imbalance in the supply and demand
values and in uncontrollable frequency drop leading to an
inevitable blackout.

Attacks on the tie-lines are an effective approach when
an adversary has a limited number of bots. By discon-
necting an ISO from its neighboring ISOs, an adversary
can cause a huge demand deficit in the targeted ISO and
possibly a large-scale blackout.

4.4 Increasing the Operating Cost
In this final subsection, we evaluate the last variation of

the MadIoT attacks described in Section 3.2. In this vari-
ation of the attacks, an adversary increases the demand
not to necessarily cause a blackout, but rather to signifi-
cantly increase the operating cost of the grid in favor of a
utility in the electricity market.

4.4.1 50 Bots per 𝑀𝑊 Can Increase the Operating
Cost by 20%

For these simulations, we use the Polish grid in Sum-
mer 2004. However, in order to mainly focus on the cost
related issues, we increase the line capacities to make sure
that the attack causes no line overloads. To simulate the
system in its peak demand state, we increase the initial
demand by 10% to make the demand before the attack
close to the online generators’ generation capacity.

We assume that the sudden increase in the demand
caused by the attack can temporarily be handled by the
primary controller and no large frequency drops as in
Section 4.2 happen in any of the scenarios here. There-
fore, our focus is on the cost of the required reserve gen-
erators for providing the additional power and returning
the system’s frequency back to 60𝐻𝑧 (or 50𝐻𝑧).

We consider two cases, one with 5 reserve generators,
and the other one with 10. We also consider two possible
cost functions for the reserve generators: 𝑐1(𝑥) = 100𝑥
and 𝑐2(𝑥) = 5𝑥2 + 100𝑥, in which 𝑥 is in 𝑀𝑊 and the
𝑐𝑖(𝑥)s are in $∕ℎ𝑟. The linear and quadratic cost func-
tions are the most common functions for approximating
the generation costs [62, Chapter 3]. The 𝑐1(𝑥) is selected
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similarly to cost function of the high-cost online genera-
tors in the grid before the attack and the 𝑐2(𝑥) is selected
to capture the start-up cost of the reserve generators as
well as their higher cost compared to the online genera-
tors.

Fig. 17 shows the increase in the total cost given the
two cost functions. As can be seen, in the worst-case sce-
nario, a 5% increase in the demand–which requires 50
bots/𝑀𝑊 , or in this case 1 million bots–can result in
about a 20% increase in the operating cost of the grid
(see the yellow line in Fig. 17(b)). This is four times
higher than the best-case scenario (see the orange line in
Fig. 17(a)) which is similar to the normal increase in the
operating cost when no reserve generators are needed.

We observe that the effectiveness of the attack in in-
creasing the cost depends on the total number of reserve
generators as well as their generation cost functions.

5 Countermeasure Sketches
Although we are not aware of any rigorous counter-

measures against the MadIoT attacks, in this section, we
briefly provide a set of suggestions both in the power grid
operation side and in the IoT design side to reduce the ef-
fectiveness of these attacks.

5.1 Power Grid Side
One of the most important properties of the MadIoT

attacks, as mentioned in Section 3.3, is that grid op-
erators, in general, are not prepared for these types of
attacks. Hence, these types of attacks are not part of
the contingency list of the power grid operators. Our
first suggestion is for the grid operators to consider the
MadIoT attacks in their contingency list and prepare for
them. Such preparations can be directly incorporated into
their already existing day-ahead planning tools to ensure
that their systems have for example enough inertia (or
spinning reserve) and the power lines have enough ex-
tra capacity to minimize the effects of a potential attacks.
Although this might initially increase the grid operating
cost, by developing more efficient planning tools and ap-
plying recent advances in designing virtual inertia for
power systems [32], these costs can be reduced in the fu-
ture. Thus, our suggestion for system operators is to push
for more research in that direction in order to make their
systems more robust to potential MadIoT attacks.

To minimize costs, the grid operators should also have
an accurate estimate of the total number of high wattage
IoT devices in their system and accordingly the scale of a
potential attack, without being overprotective.

Since this is a new type of attack, enabled by the ubiq-
uity of IoT devices, our last suggestion for the systems
operators is to revisit their online data and to find secure
ways to release their data without revealing any critical
information that can be used by an adversary to improve

the effectiveness of an attack.

5.2 IoT Side
The security challenges facing IoT devices are much

more difficult to deal with. There are many ways an ad-
versary can access a smart appliance. An adversary can
directly get access to the device, or get access to the mo-
bile phone, tablet, or a thermostat that controls that de-
vice, or with the ubiquity of digital home assistant de-
vices such as Amazon Alexa or Google Home, an ad-
versary can control smart appliances by getting access to
these devices. Any of these devices can be a breaching
point for an adversary. Hence, coherent security mea-
sures are needed to protect almost all the devices within
a home network against an adversary.

Thus, in the IoT side, more research is required to study
the vulnerability of IoT devices and networks, and to pro-
tect them against cyber attacks.

6 Related Work
The security and vulnerability of the IoT against cyber

attacks has been widely studied [21,42,45,50,53,57,63].
In a recent study of the DDoS attack by the Mirai bot-
net [12], Antonakakis et al. showed that due to poor secu-
rity measures in the IoT devices, such as easy to guess de-
fault passwords, an attacker could get access to about 600
thousand devices from cameras to DVRs and routers in a
very short period. Similar studies had previously shown
that Honeywell home controllers (including thermostats)
could easily be compromised due to a pair of bugs in their
authentication system [6]. It was also shown by Hernan-
dez et al. that the lack of proper hardware protections
in Nest thermostats allows attackers to install malicious
software on these devices [33]. The vulnerability of Ar-
duino Yun microcontrollers–used in some IoT devices–to
cyber attacks was also revealed by Pastrana et al. [47].

In an interesting recent work [64], Zhang et al. demon-
strated that home assistant devices can be controlled by
an adversary using inaudible voice commands. In an-
other recent work [49], Ronen et al. demonstrated that the
smart lights within a city can potentially be compromised
by creating a worm that can affect all the lamps using
Zigbee. The security of mobile applications that control
IoT devices has also been studied [28, 43]. In a compre-
hensive work [28], Fernandes et al. studied security of
all Samsung-owned SmartThings apps and demonstrated
that due to the security flaws in these applications, they
could perform attacks like disabling vacation mode of a
smart home. Naveed et al. also demonstrated that mali-
cious apps on Android devices can freely mis-bond with
any external IoT devices and control them [43].

Power systems’ vulnerability to failures and attacks has
been widely studied in the past few years [14, 17, 18, 23,
54]. In a recent work [29], Garcia et al. introduced Har-
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vey, malware that affects power grid control systems and
can execute malicious commands. Theoretical methods
for detecting cyber attacks on power grids and recover-
ing information after such attacks have also been devel-
oped [15, 20, 37, 39, 40, 55]. However, most of the previ-
ous work has focused on the attacks that directly target the
power grid’s physical infrastructure or its control system.

The interdependency between failures in power grids
and communication networks, and their propagation has
also been recently studied [16, 38, 46], but these works
focused on attacks and failures that target both the power
grid’s and the communication network’s physical infras-
tructure at the same time.

Load altering attacks on smart meters and large cloud
servers has been first introduced by Mohsenian et al. [41].
Their work was mostly focused on the cost of protect-
ing the grid against such attacks at loads. In contrast,
we have analyzed the consequence of such attacks and
introduced practical ways that they can be performed.
Amini et al. [11] have also recently studied the effects
of load altering attacks on the dynamics of the system
and ways to use the system’s frequency as feed-back to
improve an attack. In two very recent papers, Dvorkin
and Sang [24], and Dabrowski et al. [19] independently
revealed the possibility of exploiting compromised IoT
devices to disrupt normal operation of the power grid.
Dvorkin and Sang [24] modeled their attack as an opti-
mization problem for the attacker–with complete knowl-
edge of the grid–to cause circuit breakers to trip in the
distribution network. In contrast, we have focused on
black-box attacks on transmission networks. Dabrowski
et al. [19] studied the effect of demand increases caused
by remotely activating CPUs, GPUs, hard disks, screen
brightness, and printers on the frequency of the European
power grid. To the best of our knowledge, however, the
work presented in this paper provides the most coherent
and complete study on the effects of potential attacks on
the power grid using high wattage IoT devices.

There is another line of research that focuses on pri-
vacy of the customers in the presence of smart power me-
ters which is beyond the scope of our paper [30].

7 Limitations and Future Work
In this work, we have analyzed the potential conse-

quences of the MadIoT attacks on the operation of the
power grid. However, our study has some limitations, and
by addressing them one can provide a clearer picture of
the threats facing the grid now and in the future. First, as
mentioned in Section 4, we have only used publicly avail-
able data sets that may not exactly reflect the characteris-
tics of all existing power grids. Therefore, the number of
bots listed in Table 2 may not be enough to cause signifi-
cant damage to all power grids. More detailed analysis of
MadIoT attacks should be performed by system operators

with access to the details of their systems.
Second, in our studies, we have not fully considered

the existing control mechanisms for minimizing the sub-
sequent effects of an initial failure (e.g., preventive load-
shedding mechanisms). Hence, our cascading failures
analysis may only reflect the worst case scenario.

Third, some of these high wattage IoT devices like air
conditioners, have very large capacitors. Hence, it takes
these devices 10 to 15 seconds to reach their maximum
capacities. Therefore, it might be challenging to cause an
abrupt increase in the demand and subsequently sudden
drop in the frequency using these devices. Nevertheless,
other smart devices like water heaters that are resistive
loads can still be used for such purposes. Moreover, other
varieties of the MadIoT attacks that do not require syn-
chronicity on the scale of seconds (e.g., line failures) can
still be performed using air conditioners.

Finally, unlike DDoS attacks, for the MadIoT attacks,
the IoT bots should all be geographically located within
boundaries of a power system. Hence, although the num-
bers of bots in Table 2 are achievable considering recent
botnet sizes (e.g., the Mirai botnet), it might be much
more challenging to reach these numbers within a tar-
geted geographical location.

8 Conclusions
We have studied the collective effects of vulnerable

high wattage IoT devices and have shown that once com-
promised, an adversary can utilize these devices to per-
form attacks on the power grid. We have revealed a new
class of attacks on the power grid using an IoT botnet
called Manipulation of demand via IoT (MadIoT) attacks.
We have demonstrated via state-of-the-art simulators that
these attacks can result in local outages as well as large-
scale blackouts in the power grid depending on the scale
of the attack as well as the operational properties of the
grid. Moreover, we have shown that the MadIoT attacks
can also be used to increase the operating cost of the grid
to benefit a few utilities in the electricity market.

We hope that our work raises awareness of the signifi-
cance of these attacks to grid operators, smart appliance
manufacturers, and systems security experts in order to
make the power grid (and other interdependent networks)
more secure against cyber attacks. This is especially crit-
ical in the near future when more smart appliances with
the ability to connect to the Internet are going to be man-
ufactured. In particular, our work leads to following rec-
ommendations for the research community:

Power systems’ operation: Power systems’ operators
should rigorously analyze the effects of potential MadIoT
attacks on their systems and develop preventive methods
to protect their systems. Initiating a data sharing plat-
form between academia and industry may expedite these
developments in the future.
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IoT security: As shown by both presented MadIoT at-
tacks and the Mirai botnet, insecure IoT devices can have
devastating consequences that go far beyond individual
security/privacy losses. This necessitates a rigorous pur-
suit of the security of IoT devices, including regulatory
frameworks.

Interdependency: Our work demonstrates that inter-
dependency between infrastructure networks may lead to
hidden vulnerabilities. System designers and security an-
alysts should explicitly study threats introduced by in-
terdependent infrastructure networks such as water, gas,
transportation, communication, power grid, and several
other networks.
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Appendix
A Historical Blackouts Details

In this appendix, we briefly review a few of the recent
blackouts in the power grids around the world to further
demonstrate the potential effectiveness of the MadIoT at-
tacks.

A.1 The 2003 Blackout in the U.S. and
Canada

The August 14, 2003, blackout in the U.S. and
Canada is one of the largest blackouts in history. It af-
fected an area with an estimated 50 million people and
61,800𝑀𝑊 of power in the states of Ohio, Michigan,
Pennsylvania, New York, Vermont, Massachusetts, Con-
necticut, New Jersey and the Canadian province of On-
tario. According to the aftermath report [60], the fail-
ure started with a generator failure in Ohio due to an un-
derpredicted reactive load to serve high air conditioning
demand. After the initial failure, the Ohio grid opera-
tors were forced to import power which caused more line
failures due to overloads and lines touching nearby trees.
Within hours, the line failures cascaded and caused fail-
ure in major tie-lines between ISOs. This resulted in dis-
connection of the Eastern interconnection into East and
West parts which caused further frequency and voltage
instabilities and a large-scale blackout. The details of the
events leading to the blackout can be found in [60].

How an adversary could have initiated a similar sce-
nario? In a relatively hot summer day (but not the hottest
day), an adversary could have initiated the same event by
overloading the Ohio system by increasing the reactive
power demand by remotely starting several air condition-
ers. This could cause an unexpected shortage in reactive
power generation and possibly the same generator failure
and consequent voltage collapse events.

A.2 The 2003 Blackout in Italy
The September 28, 2003, blackout was the most se-

rious blackout in Italy and caused an outage almost ev-
erywhere in Italy. At around 3pm in the afternoon, Italy
was importing 3,610𝑀𝑊 and 2,212𝑀𝑊 of power from
Switzerland and France, about 600𝑀𝑊 and 400𝑀𝑊

above their scheduled exchange agreements, respectively.
At this time, one of the tie-lines between Switzerland and
Italy tripped due to an overload and touching a tree. This
resulted in an overload in another tie-line between the two
countries and tripping of the second line. After, the sec-
ond line failure, further lines between Italy and France,
Austria, and Slovenia tripped due to overloads and caused
the Italian grid to be disconnected from the continental
European grid. This resulted in a huge imbalance be-
tween supply and demand within Italy and a frequency
drop that could not be recovered despite further aggres-

sive load shedding. The details of the events leading to
this blackout can be found in [59].

How an adversary could have initiated a similar sce-
nario? An adversary could actively monitor the power
flow on the tie-lines through European grids’ websites
and overload the tie-lines by increasing power demand in
Italy and possibly decreasing power demand in Switzer-
land or France. This could have resulted in the failure of
the same tie-lines and subsequent failures.

A.3 The 2011 Blackout in Arizona-
Southern California

The September 8, 2011, Arizona-Southern California
affected approximately 2.7 million people. It started with
a single high voltage line failure due to a fault which re-
distributed power towards the San Diego area on a hot
day during hours of peak demand. Within minutes this
redistribution of power resulted in more line and trans-
former failures (which are modeled as line failures in sim-
ulations in the previous section) and eventually separa-
tion of the San Diego area from rest of the Western Inter-
connection. This separation resulted in a huge imbalance
between the supply and demand in the San Diego area and
a frequency drop which caused generation tripping and a
blackout. The details of the events can be found in [9].

How an adversary could have initiated a similar sce-
nario? An adversary could have caused the same initial
line failure (which was operating within 78% of its capac-
ity) by increasing the demand in the San Diego area and
possibly reducing the demand in Arizona.

A.4 The 2016 Blackout in South Australia
The September 28, 2016, blackout in South Australia

affected approximately 1 million customers. Extreme
weather conditions on September 28 caused failure in
three transmission lines. Following these failures, there
was a 456𝑀𝑊 reduction in wind generation in the South
Australia grid which resulted in an increase in imported
power and further tripping of the tie-lines. As a result,
the South Australia grid was separated from rest of the
Australian grid. This resulted in 900𝑀𝑊 imbalance is
supply and demand, and a sudden drop in the frequency
which caused a blackout in the system. The details of
these events can be found in [13].

What is special about this blackout is that a big portion
of the electric power in South Australia in generated by
wind turbines and solar panels (about 75%) which have
very low inertia. This is the main reason for the very
quick drop in the frequency after the separation of the
South Australian grid from the rest of the interconnec-
tion, without the grid operator having a chance to respond
to the imbalance by load shedding. This event, in particu-
lar, shows that in places or times that renewable resources
have a higher share of the power generation, the grid is
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much more vulnerable to the MadIoT attacks that cause
sudden increases in the demand.

How an adversary could have initiated a similar sce-
nario? Due to the low inertia of the South Australian
grid, the sudden increase in the demand by an adversary
in the area should be compensated by the tie-lines. This,
depending on the amount of the increase, can potentially
result in the overload of the tie-lines and their failure.
Once they fail and the system is islanded, it may collapse
because of the supply and demand imbalance and a quick
frequency drop.

B Extra Simulations and Details
In this appendix, we present supplemental simulation

results.
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Figure B.1: Frequency disturbances during the black start due
to unexpected increases in all the load buses by an adversary (as
described in Section 4.2.2), ignoring generators’ frequency cut-
off limits (shown by red dashed lines). The maximum power
outputs for the generators’ governors are different in this figure
from that of the generators in Fig. 11. (a) Normal black start
operation in the absence of an adversary. (b) Demand increases
of 10𝑀𝑊 at the load buses before the reconnection of the two
islands. (c) Demand increases of 20𝑀𝑊 at the load buses be-
fore the reconnection of the two islands. (d) Demand increases
of 30𝑀𝑊 at the load buses before the reconnection of the two
islands.
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Figure B.2: Polish grid lines’ power flow to capacity ratio in (a)
Summer 2004 and (b) Summer 2008.
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Figure B.3: Tie-line vulnerabilities in the partitioned Polish
grid 2008. (a) Failures in the tie-lines between the yellow area
and the purple area caused by decreasing the demand by 1% in
the former and increasing the demand by 1% in the latter. All
the failed lines are shown in black. (b) Failures in several tie-
lines caused by decreasing the demand by 1% in the yellow area
and increasing the demand by 0.3% in the purple, dark blue, and
light blue areas. All the failed lines are shown in black.
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Protecting the Grid against MAD Attacks
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Abstract—Power grids have just recently been shown to be vulnerable to MAnipulation of Demand (MAD) attacks using high-wattage IoT
devices. In this paper, we introduce two forms of defenses against line failures caused by these attacks: (1) we develop two algorithms
named SAFE and IMMUNE for finding efficient operating points for generators during the normal operation of the grid such that no lines
are overloaded instantly after any potential MAD attacks, and (2) assuming lines can temporarily tolerate overloads, we develop efficient
methods to verify in advance if such overloads can quickly be cleared by changing the operating points of the generators after any
attacks. We then define the novel notion of αD-robustness for a grid indicating that line overloads can either be prevented or cleared
after any attacks based on the two forms of introduced defenses if an adversary can increase/decrease the demands by at most α
fraction. We demonstrate that practical upper and lower bounds on the maximum α for which a grid is αD-robust can be found efficiently
in polynomial time. Finally, we evaluate the performance of the developed algorithms and methods on realistic power grid test cases.

Index Terms—Power grid, IoT, cyber attacks, demand manipulation, control
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1 INTRODUCTION

POWER grids, as one of the most essential infrastructure
networks, have been repeatedly shown in the past

couple of years to be vulnerable to cyber attacks. The most
infamous example of these attacks was on Ukrainian grid
that affected about 225,000 people in December 2015 [1].
However, smaller scale attacks on regional power grids
have been shown in a recent report to be more common
and pervasive [2]. As indicated in the report, “Hackers are
developing a penchant for attacks on energy infrastructure because
of the impact the sector has on people’s lives” [2].

Because of this ever-growing threat, there has been a
significant effort by researchers in recent years to protect the
grid against cyber attacks. These efforts have been mainly
focused on potential attacks that directly affect different
components of power grids’ Supervisory Control And Data
Acquisition (SCADA) systems. Many system operators pre-
fer to completely disconnect their SCADA systems from the
Internet in the hope that their systems remain unreachable
to hackers.

Despite these efforts, the power demand side of the grid
operation which is not controlled by SCADA has been
neglected to be directly susceptible to attacks in security
assessments due to their predictable nature. However, as
we [3] and Dabrowski et al. [4] have recently revealed,
the universality and growth in the number of high-wattage
Internet of Things (IoT) devices, such as air conditioners and
water heaters, have provided a unique way for adversaries
to disrupt the normal operation of power grid, without any access
to the SCADA system [5], [6]. In particular, an adversary with
access to sufficiently many of such high-wattage devices
(i.e., a botnet), can abruptly increase or decrease the total de-
mand in the system by synchronously turning these devices
on or off, respectively. We call these attacks MAnipulation
of Demand (MAD) attacks (see Fig. 1).

An abrupt increase/decrease in the total demand re-
sults in abrupt drop/rise in the system’s frequency. If this

Authors are with the Department of Electrical Engi-
neering at Princeton University, Princeton, NJ. Emails:
{ssoltan,pmittal,poor}@princeton.edu.

Aggregated 
Demand Increase

Line 
Overload

Transmission Network

Distribution 
Network

Remotely Turning 
ON/OFF Devices

Automatic 
Generation 

Increase

Fig. 1: The MAD attack. An adversary with access to an
IoT botnet of high-wattage devices can remotely and syn-
chronously switch on/off these devices in order to change
power flows on the lines in power transmission network
and cause line overloads and failures.

drop/rise is significant, generators will be automatically
disconnected from the grid and a large scale blackout occurs
within seconds [3], [4]. If the drop/rise in the frequency is
not significant, the extra demand/generation can automat-
ically be compensated by generators’ primary controllers,
and the frequency of the system will be stabilized. As a
result of this automatic change in the generation–and de-
mand by the adversary–the power flows in the transmission
network change based on power flow equations. Since the
power flows are not controlled by the grid operator at this
stage, this change in the power flows may result in line
overloads and consequent line-trippings. These initial line
failures can initiate a cascading line failure and result in a
large scale blackout in the grid [3]. For example, it has been
demonstrated that only a 1% increase in the demands at
certain scenarios may initiate a cascading failure leading to
86% power outage in the system.

The grid operator can protect the grid against initial
drop/rise in the system’s frequency caused by a MAD attack
by ensuring that the system has enough inertia (mostly
through rotating generators) and there is enough available
spinning reserve (i.e., generators have enough extra gener-
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ation capacity) [3]. However, protecting the grid against
possible line overloads and failures after a MAD attack,
which is the main focus of this paper, is more analytically
and computationally challenging. Such defenses require the
grid operator to analyze all possible MAD attacks and
their consequences on the power flows and select operat-
ing points for the generators (i.e., their power generation
output) to satisfy the power demands such that no lines are
overloaded after any MAD attacks.

We first focus on finding operating points (namely robust
operating points) with the minimum cost for the genera-
tors such that no lines are overloaded after the automatic
primary response of the generators to any MAD attacks.
Since changes in power flows after a MAD attack directly
depend on generators’ operating points, finding the opti-
mal operating points for the generators requires solving a
nonconvex and nonlinear optimization problem which is
hard in general. Despite this hardness, we develop two
algorithms named Securing Additional margin For genera-
tors in Economic dispatch (SAFE) Algorithm and Iteratively
MiniMize and boUNd Economic dispatch (IMMUNE) Al-
gorithm for finding suboptimal yet robust operating points
for the generators efficiently. The SAFE Algorithm provides
robust operating points for the generators by solving a
single Linear Program (LP). The IMMUNE Algorithm, on
the other hand, requires a few iterations until it converges,
but it provides robust operating points with lower costs than
the ones obtained by the SAFE Algorithm.

In situations that the operating cost of the grid in a robust
state is costly (or no robust operating points exists due to
lack of enough resources), the grid operator may decide to
allow temporary line overloads–by increasing thresholds on
circuit breakers–in the case of a MAD attack, and clear the
overloads during the secondary control. During the secondary
control, which comes right after the automatic primary con-
trol, the grid operator can directly change generators’ oper-
ating points in order to bring back the system’s frequency to
its nominal value and clear any line overloads. To make sure
that line overloads can be cleared during the secondary con-
trol, the grid operator needs to verify in advance whether
for any potential MAD attack, there exist operating points
for the generators satisfying demands such that no lines
are overloaded (namely, the grid is secondary controllable).
However, due to the extent of the attack space, checking all
possible attack scenarios is numerically impossible. Hence,
we develop several predetermined control policies that can
be used to verify the secondary controllability of the grid in
most scenarios with no false positives.

We then evaluate the robustness of grids against MAD at-
tacks with different magnitudes. The magnitude of an attack
can be determined by the fraction of demand (denoted by α)
that the adversary can increase or decrease at each location.
We call a grid αD-robust if either line overloads can be
prevented (i.e., robust operating points exists for generators)
or they can be cleared during the secondary control (i.e.,
grid is secondary controllable) after any MAD attacks by an
adversary that can change the demands by at most α fraction.
In general, finding the maximum α such that a given grid is
αD-robust, is hard. However, by focusing on grid secondary
controllability and the developed predetermined control
policies, we provide efficient methods to compute practical

upper and lower bounds for the maximum α in polynomial
time.

Finally, we numerically evaluate the performance of
the developed algorithms and controllers. For example,
in New England 39-bus system, we show that the SAFE
and IMMUNE Algorithms find operating points for the
generators with at most 6 and 2 percent increase in the
total operating cost such that the grid is robust against
MAD attacks of magnitude α = 0.08. We also evaluate the
performance of the developed methods for approximating
the maximum α that grid is αD-robust and show that for
example in New England 39-bus system, the provided lower
and upper bounds are tight and are equal to the maximum
αmax = 0.0962.

To the best of knowledge, our work is the first to study
the effects of potential MAD attacks on the power flows
in the grid and provide efficient preventive algorithms to
avoid line failures after the primary control response, and
also efficient methods to verify if the line overloads can be
cleared during the secondary control. These algorithms and
methods can be adopted by grid operators to protect their
systems against MAD attacks now and in the near future.

The rest of this paper is organized as follows: Section 2
provides related work and Section 3 presents a brief in-
troduction to the power system’s operation and control.
In Section 4, we introduce the MAD attacks and provide
their basic properties. In Section 5, we present the SAFE and
IMMUNE algorithms and in Section 6, we provide efficient
methods for verifying secondary controllability of a grid.
Section 7 provides methods to evaluate the robustness of
grids against MAD attacks and Section 8 presents numerical
results. Finally, Section 9 provides concluding remarks and
future directions. To improve the readability of the paper,
some of the proofs are moved to Section 10.

2 RELATED WORK

Power systems’ vulnerability to failures and attacks has
been widely studied in the past few years [7], [8], [9], [10],
[11], [12]. In a recent work [13], Garcia et al. introduced
Harvey malware that affects power grid control systems and
can execute malicious commands. Theoretical methods for
detecting cyber attacks on power grids and recovering in-
formation after such attacks have also been developed [14],
[15], [16], [17], [18], [19], [20], [21], [22]. Another related type
of cyber attacks called load redistribution attacks has been
studied by Yuan et al. [23]. However, these type of attacks
change only the measurements at the loads in order to force
the grid operator into problematic corrective actions rather
than actually changing the loads as have been studied in
our work. Overall, most of the previous work on protecting
the grid against attacks have focused on attacks that directly
target the power grid’s physical infrastructure or its control
system.

The possibility of load altering attacks on smart meters
and large cloud servers has been first introduced by Mohse-
nian et al. [24]. Their work was mostly focused on minimiz-
ing the total cost of protecting the loads (which is not always
possible, especially for distributed IoT devices) against such
attacks. Amini et al. [25] have also recently studied the
effects of load altering attacks on the system’s dynamics
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and ways to use the system’s frequency as a feedback to
improve an attack. However, until very recently, practical
ways to perform such attacks in a large-scale and their
consequences on power flows were not fully studied [3].
Hence, little attention has been given to protecting the grid
against line failures caused by these type of attacks.

In three very recent papers, Dvorkin and Sang [26],
Dabrowski et al. [4], and our work [3] revealed the possi-
bility of exploiting compromised IoT devices to manipulate
the demands and to disrupt the normal operation of the
power grid. Dvorkin and Sang [26] modeled their attack as
an optimization problem for the adversary—with complete
knowledge of the grid—to cause circuit breakers to trip in
the distribution network. Dabrowski et al. [4] studied the
effect of demand increases caused by remote activation of
CPUs, GPUs, hard disks, screen brightness, and printers
on the frequency of the European power grid. In [3], we
analyzed the effects of sudden increase and decrease in
the demand via an IoT botnet of high-wattage devices
from various operational perspectives and demonstrated
that besides frequency instability, such attacks can also
result in widespread cascading line failures in the transmis-
sion network leading to large-scale blackouts. Nevertheless,
practical preventive defenses against possible line failures
caused by these attacks have not been developed yet.

Finally, while there have been extensive efforts in re-
cent years to develop efficient algorithms for solving the
Optimal Power Flow (OPF) problem [27], [28], [29] and its
different variations including Security Constrained OPF (SC-
OPF) [30] (which considers grid robustness against possible
line outages) and Chance Constrained OPF (CC-OPF) [31]
(which considers uncertainty in the output of the renewable
resources), since these works do not consider grid robust-
ness against adversarial changes in the demands, our work
is different from previously studied variations of the OPF
problem. Moreover, the second part of this work deals with
secondary controllability of the grid after an attack which is
a totally different problem from the OPF and its variations.

3 MODEL AND DEFINITIONS

In this section, we provide a brief introduction to power
systems’ operation and control. Our focus is on the power
transmission network.

Throughout this paper, we use bold uppercase characters
to denote matrices (e.g., A), italic uppercase characters to
denote sets (e.g., V ), and italic lowercase characters and
overline arrow to denote column vectors (e.g., ~θ). For a
matrix Q, Qi denotes its ith row, qij denotes its (i, j)th entry,
and QT denotes its transpose. For a column vector ~y, ~yT

denotes its transpose, and ‖~y‖1 :=
∑n
i=1 |yi| is its l1-norm.

For a variable x, sgn(x) denotes its sign, and x and x denote
its upper and lower limits, respectively. For a vector ~y, for
simplicity of notation, we drop the vector sign ~ in denoting
vectors of upper and lower limits on the entries of ~y as y and
y, respectively. Finally, ~e1, . . . , ~en denote the fundamental
basis of Rn and ~1 =

∑n
i=1 ~ei denotes the all ones vector.

3.1 Power Flows
Power flows are governed by a set of differential equa-
tions. In the steady-state, using phasors, these differential

equations can be reduced to a set of algebraic equations
on complex numbers known as Alternating Current (AC)
power flow model. Due to the nonlinearity of AC power
flow equations and the computational complexity of solving
these equations, in practice and in day-ahead power grid
contingency analysis and planning, the linearized version
of these equations known as Direct Current (DC) power flow
model is widely being used [27]. Hence, in this work, we
also use the DC power flow model for our analysis. This
allows us to focus on the complexities of MAD attacks
instead of nonlinearity of AC power flows. Nevertheless,
the main ideas of the algorithms developed in this work can
be extended to the AC power flow model as well (e.g.,
by combining them with the recently introduced convex
relaxation methods for solving the AC Optimal Power Flow
(ACOPF) problem [28]), albeit not effortlessly.

We represent the power grid by a connected directed
graph G = (V,E) where V = {1, 2, . . . , n} and E =
{e1, . . . , em} are the set of nodes and edges corresponding
to the buses and transmission lines, respectively (the definition
implies |V | = n and |E| = m). Each edge e is a set of
two nodes e = (i, j). (Direction of the edges are arbitrary.)
~pd ≥ 0 and ~pg ≥ 0 denote the vector of power demand and
supply values, respectively. Accordingly, ~p = ~pg− ~pd denotes
the vector of total supply and demand values. Since the sum
of supply should be equal to the sum of demand,

~1T ~p = 0, (1)

in which ~1 is an all ones vector. In the DC model, lines are
also assumed to be purely reactive, implying that each edge
e = (i, j) ∈ E is characterized by its reactance xe = xij > 0.

Given the power supply/demand vector ~p ∈ Rn×1 and
the reactance values, the vector of power flows on the lines
~f ∈ Rm×1 can be computed by solving the following linear
equations:

A~θ = ~p, (2)

YDT ~θ = ~f, (3)

where ~θ ∈ Rn×1 is the vector of voltage phase angles
at nodes, D ∈ {−1, 0, 1}n×m is the incidence matrix of G
defined as,

dik =


0 if ek is not incident to node i,
1 if ek is coming out of node i,
−1 if ek is going into node i,

Y := diag([1/xe1 , 1/xe2 , . . . , 1/xem ]) is a diagonal matrix
with diagonal entries equal to the inverse of the reactance
values, and A = DYDT is the admittance matrix of G.1

Since A is not a full-rank matrix, we follow [8] and use
the pseudo-inverse of A, denoted by A+ to solve (2) as ~θ =
A+~p. Once ~θ is computed, ~f can be computed from (3) as
~f = YDTA+~p. For the convenience of notation, we define
B := YDTA+. Hence, ~f = B~p.

3.2 Power Grid Operation
Stable operation of the power grid relies on the persistent
balance between the power supply and demand. In order

1. The admittance matrix A is also known as the weighted Laplacian
matrix of the graph [32] in graph theory.
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to keep the balance between the power supply and the
demand, power system operators use weather data as well
as historical power consumption data to predict the power
demand on a daily and hourly basis [33]. This allows
the system operators to plan in advance and only deploy
enough generators to meet the demand in the hours ahead
without overloading any power lines. This planning ahead
consists of two parts: unit commitment and economic dispatch.

In unit commitment which is mainly performed daily,
the grid operator selects a set of generators to commit their
availability during the day-ahead operation of the grid. But
the actual operating points of the generators (i.e., generation
outputs) are determined by the operator during the day and
in the process known as economic dispatch. The main goal of
the operator during economic dispatch is to ensure reliable
operation of the grid with minimum power generation cost.
When feasibility of the power flows is also considered dur-
ing economic dispatch, the process is also known as Optimal
Power Flow (OPF) problem. Since in practice feasibility of
power flows is always being considered, these two terms
can be used interchangeably most of the times.

In this work, we mainly focus on ensuring the robustness
of the grid during the economic dispatch. Extending our
methods to the unit commitment process is beyond the
scope of this paper and is part of the future work. Hence,
here we assume that the set of available generators are
given. The main challenge is to obtain a favorable operating
point for these generators.

3.2.1 Optimal Power Flow
In the OPF problem, given the vector of predicted demand
values ~pd, the grid operator needs to find the operating
point vector ~pg for the generators such that supply matches
the demand (i.e., ~1T ( ~pg − ~pd) = 0), the operating and
physical constraints are satisfied, and the operating cost of
the generators are minimized.

In particular, each line fij has a thermal power flow
limit fij limiting the amount of power that a line can safely
carry. If the power flow on a line goes above this limit
(i.e., overloads), in most of the cases, it will be tripped by
a circuit breaker in order to keep the line from breaking due
to overheating. Hence, during the normal operation of the
grid

|fij | ≤ fij , ∀(i, j) ∈ E. (4)

The amount of power that each generator pgi is generating is
also limited by a maximum (pgi) and a minimum (pgi) value.
If there are no generators at node i, then pgi = pgi = 0.
Hence,

pg ≤ ~pg ≤ pg. (5)

The generation cost at each generator is a given by a cost
function ci(x) in $/hr. Given these cost functions, the OPF
problem can be formulated as follows:

min
~θ,~f, ~pg

n∑
l=1

cl(pgl), (6)

s.t. (1), (2), (3), (4), (5),

~p = ~pg − ~pd.

Several methods for finding an optimal solution to (6)
depending on the cost functions exist in the literature [27].

Here, we assume that the cost functions are convex and
therefore the OPF problem can be solved optimally in
polynomial time. Our main focus in Section 5 is on how to
add additional constraints to the OPF problem to ensure grid
robustness against MAD attacks without making the problem
nonconvex.

3.3 Frequency control
In power systems, the rotating speed of generators corre-
sponds to the frequency. When demand becomes greater
than supply, the rotating speeds of turbine generators’ rotors
decelerate, and the kinetic energy of the rotors is released
into the system in response to the extra demand. Corre-
spondingly, this causes a drop in the system’s frequency.
This behavior of turbine generators corresponds to New-
ton’s first law of motion and is calculated by the inertia of
the generators. Similarly, the supply being greater than the
demand results in acceleration of the generators’ rotors and
a rise in the system’s frequency.

This decrease/increase in the frequency of the system
cannot be tolerated for a long time since frequencies lower
than their nominal value severely damage the generators.
If the frequency goes above or below a threshold value,
protection relays turn off or disconnect the generators
completely. Hence, in case of a demand increase, within
seconds of the first signs of a decrease in the frequency,
the primary controllers at generators activate and increase
the mechanical input to the generators which increase the
speed of the generator’s rotor and correspondingly the gen-
erator’s output and frequency of the system [34]. The rate
of decrease/increase in the frequency of the system, before
activation of the primary controllers, directly depends on
the total inertia of the system. Systems with a higher number
of rotating generators have higher inertia and therefore are
more robust against sudden demand changes or generation
losses.

The rate of increase in the output generation of generator
i during the primary control is determined by its governor
droop characteristic denoted by Ri [35, Chapter 9]. In particu-
lar, after a change in the total demand by S∆pd , the primary
controller of each generator i increases its output with rate
1/Ri until the total generation is equal to the demand
again. In particular, if none of the generators reach their
generation limit, each generator iwill increase its generation
by 1/Ri × S∆pd/(

∑n
l=1 1/Rl). The amount of power that

generators can provide during the primary control is called
the spinning reserve of the generators.

Despite the stability of the system’s frequency after
the primary controllers’ response, it may not return to
its nominal value (since generators generating more than
their generating set points). Hence, the secondary controller
starts within minutes to restore the system’s frequency. The
secondary controller modifies the power set points and de-
ploys available extra generators and controllable demands
to restore the nominal frequency and permanently stabilizes
the system.2 Fig. 2 presents an example of the way frequency
of the system changes after a sudden increase in the demand
(or loss of generation) at time 0.

2. Part of these controls can be done during the tertiary control.
However, for simplicity and without loss of generality we refer to them
as the secondary control.
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Fig. 2: A sample frequency response of the power grid to a
sudden increase in the demand (or loss of generation).

4 MAD ATTACKS

In this work, we follow the threat model that we have
initially introduced in [3]. In particular, we assume that
an adversary has already gained access to an IoT botnet
of many high-wattage smart appliances within a city, a
country, or a continent. Such access can potentially allow the
adversary to increase or decrease the demand at different
locations remotely and synchronously at a certain time. We call
the attacks under this threat model the MAnipulation of the
Demand (MAD) attacks.

Since the focus of this work is to develop defenses
against MAD attacks rather than dealing with complexities
of performing such an attack (as extensively studied in [3]),
we abstract the threat model by the adversary’s power to
manipulate the demands at each node. In particular, we
assume the demand changes at node l by an adversary
are bounded by −∆pdl ≤ ∆pdl ≤ ∆pdl. Notice that from
defensive point of view, there are no differences between
an adversary with the total knowledge of the system (a.k.a
white-box attacks) and an adversary with no knowledge of
the system (a.k.a black-box attacks), since the operator needs
to make sure that the grid is robust against any possible
attacks.

The initial effect of a MAD attack, as described in
Section 3.3 is on the frequency of the system. However,
the system operator can make the system robust against
frequency disturbances caused by MAD attacks by ensuring
that enough generators with inertia and spinning reserve
are committed to operate during the unit commitment pro-
cess [3]. The minimum required inertia and spinning reserve
should be computed based on the potential attack size and
the properties of the grid. Devices that provide virtual
inertia such as batteries, super-capacitors, and flywheels
can also be integrated into the system to increase the total
inertia [36].

Hence, the main challenge in protecting the grid against
the initial effects of MAD attacks is at the hardware level.
However, the effects of MAD attacks are not limited to
frequency disturbances. Recall from Section 3.1 that the
power flows in power grids are determined uniquely given
supply and demand values. Therefore, most of the time, the
grid operator does not have any control over the power
flows from generators to loads. Once an adversary causes
a sudden increase in the loads all around the grid, assuming
that the frequency drop is not significant, the extra de-
mand is satisfied automatically by generators through their

primary controllers as described in Section 3.3. Since the
power flows are not controlled by the grid operator at this
stage, this change in supply and demand may result in line
overloads and consequent line-trippings [3].

If the primary controllers’ response results in line over-
loads, assuming that these overloads can barely be tolerated
for a short period of time, these line overloads can be cleared
during the secondary control. However, the system operator
needs to ensure in advance that possible line overloads can
indeed be cleared during the secondary control after any
MAD attacks.

In this work, we focus on the effects of MAD attacks on
the power flow changes on the lines which are more challenging
from the system planning perspective. Our objectives are: (i) to
develop algorithms for finding efficient operating points for the
generators during the economic dispatch such that no lines are
overloaded after the primary control response to any potential
MAD attacks, and (ii) to design methods to efficiently examine
if line overloads after the primary control–if any–can be cleared
during the secondary control.

Notice that we assume the system have enough inertia
and reaches a steady-state after the primary controllers’ re-
sponse to a MAD attack (as in Fig. 2). Moreover, since power
lines can normally withstand sudden but momentary power
surges, in analyzing power flows after a contingency, the
transient power flows are usually neglected [27]. Therefore,
it is reasonable to use the steady-state power flow equations
as described in Section 3.1 for our analysis.

5 POWER FLOWS: PRIMARY CONTROL

In this section, we provide two algorithms for finding oper-
ating points for the generators during the economic dispatch
process such that no lines are overloaded after the automatic
response of the primary controllers to any MAD attacks. We
call such operating points, robust operating points.

5.1 Power Flow Changes

In this subsection, we present a couple of examples in order
to demonstrate the complexity of power flow analysis after
the primary controller’s response to a MAD attack.

First, as can be seen in Fig. 3 the relationship between the
power flow changes on the lines and the demand changes is
not intuitive. For example, flow on line (2, 3) is maximized
when only the demand at node 3 increases (Fig. 3(c)),
whereas when demands at both nodes 1 and 3 increase, flow
on line (2, 3) increases less (Fig. 3(d)).

Another important factor affecting the amount of power
flow changes on the lines is the amount of spinning reserve
at each generator. For example, as can be seen in Fig. 4, an
increase in the demand at node 1 by 3 units may result in
power flow decrease on line (2, 3) if all the generators have
enough spinning reserves (Fig. 4(a)). The same scenario,
however, results in power flow increase on line (2, 3), if only
generators 2 and 4 have spinning reserves (Fig. 4(b)).

Fig. 5 presents the relationship between power flow
changes on lines (2, 3) and (5, 3) versus power demand
increase at node 1 during two different spinning reserve
availability scenarios in the grid shown in Fig. 3(a). As can
be seen in Fig. 5(a), if all generators have enough spinning
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Fig. 3: An example demonstrating that increasing all demands may not necessarily result in the maximum flow on the
lines. (a-b) Initial setting and power flows, (c) power flows if demand at bus 3 increases, and (d) power flows if demand at
both buses 1 and 3 increases. All generators have the same droop characteristic and they all have enough spinning reserve.
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Fig. 4: Dependency of power flow changes on the location
of the spinning reserves. (a) If all generators have spinning
reserves, demand increase at bus 1 results in power flow
decrease on line (2, 3). (b) If only generators 2 and 4 have
spinning reserves then demand increase at bus 1 results
power flow increase on line (2, 3).
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Fig. 5: Power flows on lines (5, 3) and (2, 3) in the grid
shown in Fig. 3(a) as demand at bus 1 increases. (a) If all
the generators have enough spinning reserve, and (b) if
generator 5 has only 1 unit of spinning reserve.

reserve the power flows change monotonically with the
demand change. However, as can be seen in Fig. 5(b),
limited spinning reserve at generator 5 results in a nonlinear
relationship between the power flows and the demand
change.

Following the examples provided in this subsection, it
is clear that power flow changes on the lines after a MAD
attack highly depend on the initial operating point of the
grid and is a nonlinear problem in most cases. Despite
the difficulties, however, in the next two subsections, we
provide efficient algorithms for finding efficient and robust
operating points for the generators.

5.2 SAFE Algorithm
In order to avoid line overloads after the primary control
response to a potential MAD attack, the grid operator needs

to compute the maximum possible power flow changes on
the lines following an attack (based on ∆pdl values) and
enforce the power flows on the lines in OPF to be below their
capacity minus the maximum possible changes. As shown
in the previous subsection, however, the maximum power
flow changes on the lines depend on the operating point
of the generators and their spinning reserve. Therefore, one
cannot compute the maximum power flow changes on the
lines independent of the operating points to be used in the
OPF problem.

One way to circumvent this problem, is to enforce all
the generators to have enough spinning reserves to keep
the relationship between the power flow changes and de-
mand changes linear (as in Fig. 5(a)), and use this linear
relationship to compute the maximum power flow changes
on the lines based on the operating point of the generators.
These values can then be added to the OPF problem without
making the problem nonlinear and nonconvex. Recall that
since here we use DC power flows with convex cost func-
tions, the OPF problem is convex. Hence, when we mention
the nonconvexity of the problem, it is due to additional
constraints on the power flows.

For each load i, define ~vi = [vi1, vi2, . . . , vin]T to de-
note the primary controllers’ response to a unit demand
increase at load i. If all generators have enough spinning
reserve, each generator j will increase its generation by
vij := (1/Rj)/(

∑n
l=1 1/Rl) to compensate for a unit de-

mand increase at node i (as described in Section 3.3). Hence,
by defining ~wi := ~vi − ~ei (recall from Section 3 that ~ei is the
ith fundamental basis of Rn) one can compute the change in
the flow of line e = (i, j) solely in terms of changes in the
demands (∆pdis):

∆fij = 1/xij(A+
i −A+

j )
n∑
l=1

∆pdl ~wl. (7)

Recall that −∆pdl ≤ ∆pdl ≤ ∆pdl based on the grid
operator’s estimation of the adversary’s power. Hence, the
maximum flow change on line (i, j) can be computed using
(7) as:

∆fmax
ij = 1/xij

n∑
l=1

∆pdl|(A+
i −A+

j )~wl|, (8)

since for each l, ∆pdl can be selected by the adversary to
be equal to −∆pdl, if (A+

i − A+
j )T ~wl < 0, and equal to

∆pdl, if (A+
i − A+

j )~wl ≥ 0. Now, to ensure that no lines
are overloaded after a MAD attack, all the system operator
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needs to do is to replace the capacity of each line (i, j) in the
OPF problem by fij−∆fmax

ij . The only other constraint that
needs to be added to the OPF problem is to make sure that
each generator iwith 0 < 1/Ri has enough spinning reserve
to increase its generation according to its governor droop.
For this, define S∆pd :=

∑n
l=1 ∆pdl. Hence, each generator’s

operating point should be within the following limits:

∀1 ≤ i ≤ n :

pgi +
1/Ri∑n
l=1 1/Rl

S∆pd ≤ pgi ≤ pgi −
1/Ri∑n
l=1 1/Rl

S∆pd . (9)

Therefore, the robust OPF problem can be written as
follows:

min
~θ,~f, ~pg

n∑
l=1

cl(pgl), (10)

s.t. (1), (2), (3), (8), (9),

|fij | ≤ fij −∆fmax
ij , ∀(i, j) ∈ E

~p = ~pg − ~pd.

We call the algorithm for finding a robust operating
point for generators by limiting their operating points—to
be able to analytically compute ∆fmax

ij s—and solving (10),
the Securing Additional margin For generators in Economic
dispatch (SAFE) Algorithm. Since this algorithm limits the
operating points of the generators by adding conditions (9)
to the OPF problem, it is obvious that it may not obtain the
minimum cost robust operating points for the generators. In
the next subsection, we provide an algorithm, albeit com-
putationally more expensive, for finding robust operating
points for the generators without limiting their operating
points—as in (9).

5.3 IMMUNE Algorithm
In (7), we assumed that none of the generators reach their
maximum/minimum capacity as they increase/decrease
their generation according to their droop characteristics.
However, by allowing some generators to reach their max-
imum/minimum capacity, one may find robust operating
points for the generators with a lower cost.

In this subsection, for brevity and to avoid repetition, we
assume that the total demand change S∆pd :=

∑n
i=1 ∆pdi

can only be positive. Hence, we focus mainly on the genera-
tors’ maximum capacity. However, the same set of equations
can similarly be derived for the case S∆pd < 0 which should
also be considered separately in computing the maximum
power flow changes on the lines. In particular, whenever
there is a minimization/maximization problem with S∆pd ≥
0 constraint, one should also solve a similar optimization
problem with S∆pd < 0 and take the minimum/maximum
of the optimal value of the two optimization problems. In
Section 8, we consider both cases for numerical evaluations.

Once a generator reaches its maximum capacity, it can-
not increase its generation anymore, and therefore other
generators should generate more to compensate for the
extra demand. The following lemma provides the amount
each generator generates based on its spinning reserve and
governor droop characteristic to compensate for the extra
demand after a MAD attack.

Lemma 1. Suppose generators are ordered such that if i < j,
Ri(pgi− pgi) ≤ Rj(pgj − pgj). Define ti := Ri(pgi− pgi) and
Si :=

∑i
l=1 tl/Rl +

∑n
l=i+1 ti/Rl. If Si < S∆pd ≤ Si+1,

to compensate for the extra demand, generators 1 to i reach
their maximum capacity and each generator j > i generates

1/Rj∑n
l=i+1 1/Rl

(
S∆pd −

∑i
l=1(pgl − pgl)

)
.

In general, as demonstrated in Figs. 4 and 5, due to
power generation limits, power flow on a line may not
change monotonically as demand changes in a specific
node–as in (7). Hence, the maximum change in the power
flows cannot be found in a closed form as in (8). However,
one may be able to find an upper bound on the maximum
power flow change on a line.

Upper bounds on the maximum power flow changes
after a MAD attack can be computed by assuming the
worst case initial operating points and also assuming that
generators can be arbitrarily assigned to provide extra re-
quired generation. In particular, an upper bound ∆̂fij for
the power flow changes on line (i, j) can be computed by
finding the worst initial operating points for the generators
~pg and the worst possible way to increase the power gener-
ations ∆ ~pg (in oppose to the automatic primary controller’s
response) in response to the worst possible way to increase
the demands by an adversary ∆ ~pd as follows:

∆̂fij := max
~pg, ~∆pd, ~∆pg

∣∣∣1/xij(A+
i −A+

j )( ~∆pg − ~∆pd)
∣∣∣ (11)

s.t. ~1T ( ~pg − ~pd) = 0,

~1T ( ~∆pg − ~∆pd) = 0,

−∆pdl ≤ ∆pdl ≤ ∆pdl, 1 ≤ l ≤ n
pg ≤ ~pg ≤ pg,
0 ≤ ∆pgl ≤ pgl − pgl, 1 ≤ l ≤ n,
S∆pd ≥ 0.

Optimization (11) is a Linear Program (LP) that can be
solved efficiently for each line (i, j). Using these upper
bounds, we can limit the power flows on the lines in the OPF
problem (6) as |fij | ≤ fij− ∆̂fij to leave enough margin for
the lines in case of a MAD attack. Hence, the solution to the
following modified OPF problem provides robust operating
points for the generators:

min
~θ,~f, ~pg

n∑
l=1

cl(pgl), (12)

s.t. (1), (2), (3), (5),

|fij | ≤ fij − ∆̂fij , ∀(i, j) ∈ E
~p = ~pg − ~pd.

Enforcing the power flows on all the lines, such as (i, j),
to be less than fij − ∆̂fij as in (12) ensures that none of the
lines will be overloaded after a potential MAD attack. How-
ever, the solution to (12) may not provide the optimal robust
operating points for the generators since ∆̂fijs only provide
an upper bound on the maximum power flow changes on
the lines. To achieve more efficient robust operating points,
we introduce an iterative algorithm that solves the OPF
problem and updates the lines’ required safety margins to
ensure that none of the lines get overloaded after a MAD
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attack. We will then use the upper bounds ∆̂fijs to prove
that the algorithm will converge to a local optimal solution.

First, given the operating points pg1, . . . , pgn to the OPF
problem, the maximum power flow change on line (i, j)
(denoted by ∆fmax

ij ) after an attack can be computed based
on the power flow solution ~f = YDTA+~p by solving the
following optimization problem:

∆fmax
ij = max

~∆pd

sgn(fij)
(

1/xij

n∑
l=1

−∆pdl(a
+
il − a

+
jl)

(13)

+ 1/xij

n∑
l=1

fl(S∆pd)(a+
il − a

+
jl)
)

s.t. −∆pdl ≤ ∆pdl ≤ ∆pdl, 1 ≤ l ≤ n
S∆pd ≥ 0.

in which fl(·)s denote piecewise linear functions that deter-
mine the extra output of the generators based on the total
demand change S∆pd . Since we assumed that pg1, . . . , pgn
are given, functions fl(·) can be uniquely determined using
Lemma 1. sgn(fij) in the objective of (13) is to ensure that
the maximum changes are in the direction of increase in the
power flow on line (i, j). Hence, for all lines ∆fmax

ij ≥ 0.3

Lemma 2. Optimization (13) can be solved in polynomial time
for each (i, j) ∈ E.

Proof: Without loss of generality, assume that gener-
ators are ordered such that t1 ≤ t2 ≤ · · · ≤ tn as defined
in Lemma 1. It is easy to see that by using Lemma 1 and
defining S0 := 0, one can solve (13) in different linear
regions of fl(·)s by considering additional conditions for
S∆pd (for 0 ≤ z < n):

Sz ≤ S∆pd < Sz+1. (14)

Under condition (14), fl(·)s can be determined as follows:

fl(S∆pd) =

pl − pl l ≤ z,
1/Rl

(
S∆pd

−
∑z

w=1(pw−pw)
)

∑n
w=z+1 1/Rw

l > z.
(15)

Hence, all the fl(·) are either constant or linear functions
in (13) and therefore (13) can be solved efficiently using LP.
Hence, by solving (13) at most n times (once for every condi-
tion (14) for different z) ∆fmax

ij can be found in polynomial
time.

After computing ∆fmax
ij values, one can use them to

verify if any of the lines will be overloaded after an attack
(e.g., by checking if fij < |fij |+∆fmax

ij ). If yes, then update
the required margins for the lines that may get overloaded
in the OPF problem to ensure that those lines will not be
overloaded. The OPF problem can then be solved again
with new power flow margins for the lines and the process
continues until no additional updates for the line margins
are required at the obtained operating point (which means
that the obtained operating point is robust). We call this
algorithm Iteratively MiniMize and boUNd Economic dis-
patch (IMMUNE) Algorithm (summarized in Algorithm 1).

3. Notice that for computing the maximum power flow changes on
the lines, the S∆pd < 0 case should also be considered separately to see
if it results in a larger power flow change than the one obtained from
(13). However, as we mentioned at the beginning of the subsection, here
we only consider S∆pd ≥ 0 for the brevity of presentation.

Algorithm 1: Iteratively MiniMize and boUNd
Economic dispatch (IMMUNE)

Input: G

1: flag = 1
2: Define cij := fij for all (i, j) ∈ E
3: while flag do
4: Solve the OPF problem (6) such that

∀(i, j) ∈ E : |fij | ≤ cij
5: if OPF is not feasible then
6: return none
7: Compute ∆fmax

ij by solving (13) for all (i, j) ∈ E
8: flag = 0
9: for (i, j) ∈ E do

10: if fij < |fij |+ ∆fmax
ij then

11: cij = fij −∆fmax
ij

12: flag = 1
13: return pg1, pg2, . . . , pgn

Lemma 3. If (12) is feasible, then the IMMUNE Algorithm
converges to a local optimum solution.

Lemma 3 provides a sufficient condition such that the
IMMUNE Algorithm converges to a local optimum. How-
ever, even if (12) is not feasible, the system operator can still
run the IMMUNE Algorithm to obtain a local optimum so-
lution if the OPF problem remains feasible at each iteration
of the algorithm.

We can also provide an upper bound on the number of
iterations that IMMUNE algorithm requires to converge. For
this reason, the algorithm needs to change discrete changes
to the capacities at each iteration.

Lemma 4. If the IMMUNE Algorithm changes cij at each
iteration by a discrete amount such as cij = max{bfij −
∆fmax

ij c, fij − ∆̂fij}, then it terminates in at most
O(
∑

(i,j)∈Ed∆̂fije) iterations.

Corollary 1. If generators’ cost functions are linear and F(n)
indicates the running time of the LP solver of choice with n
variables (e.g., simplex or ellipsoid algorithms), the IMMUNE
Algorithm terminates in O(mF(n)(

∑
(i,j)∈Ed∆̂fije)).

Following a similar idea, one can decrease the run-
ning time of the IMMUNE algorithm by applying more
aggressive update rules for the capacities in line 11 of
the algorithm. For example, line 11 can be replaced by
cij = 0.9(fij −∆fmax

ij ) or cij = 0.95(fij −∆fmax
ij ). We call

these variations of the IMMUNE Algorithm, IMMUNE-0.9,
and IMMUNE-0.95. In Section 8.2, we numerically evalu-
ate and compare the performance of these algorithms and
demonstrate that more aggressive update rules result in
faster convergence.

One favorable property of the IMMUNE Algorithm is
that it can be easily parallelized. This parallelization can be
used to simultaneously compute ∆fmax

ij for all the lines at
each iteration in order to expedite the algorithm.

If the OPF problem becomes infeasible in any iteration of
the IMMUNE Algorithm, there are two ways to circumvent
the issue: (i) By considering higher temporary limits for the
lines (e.g., 1.1fij) which is a common practice in power
systems operation, but the operator needs to ensure that
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Fig. 6: Complexity of secondary controller problem. (a)
Secondary controller problem setting, (b) an attack that
maximizes the demand, and (c) an attack that minimizes the
demand at one node and maximizes the demand at another
node.

line overloads can be cleared during the secondary control,
or (ii) by returning to the unit commitment problem and
change the list of committed generators to make sure (12)
is feasible. We will address the first approach in the next
section in detail. However, the second approach is beyond
the scope of this paper and is part of our future work.

6 POWER FLOWS: SECONDARY CONTROL

In cases that primary control cannot prevent line overloads,
the system operator has to clear these overloads during the
secondary control instead. In such cases, the operator needs
to make sure in advance that after the primary control’s
response to a MAD attack, there are operating points for
the generators such that the demand can be supplied with
no line overloads (i.e., the secondary controller can clear
the overloads). Assuming that the maximum and minimum
reachable demands at node i by an adversary are pdi and
pdi, respectively, this problem can be defined as the secondary
controller problem:

Secondary controller problem: For any pd1, pd2, . . . , pdn that
∀1 ≤ i ≤ n : pdi ≤ pdi ≤ pdi, are there operating points
pg1, . . . , pgn for the generators such that ∀1 ≤ i ≤ n : pgi ≤
pgi ≤ pgi, ~1T ( ~pg − ~pd) = 0, and no lines are overloaded?

Definition 1. A grid is called secondary controllable if the
answer to the secondary controller problem is yes.

Notice that operating cost of the generators are not important
during the secondary control since the secondary controller
activates only after a potential attack and the operator needs
to bring back the grid to its normal state as soon as possible
at any cost. Fig. 6 provides an example of the secondary
controller problem. As can be seen in Fig. 6(b), when the
demands are all equal to their maximum level after a MAD
attack, the demand can be supplied by generators with no
line overloads. However, as presented in Fig. 6(c), when
the demand is increased to its maximum level at one node
and decreased to its minimum at another one, there is no
possible way to supply the demand such that no lines are
overloaded. This example clearly evinces that the secondary
controller problem is not intuitive.

In the following subsections, we study the secondary
controller problem in detail and provide efficient algorithms
to verify the secondary controllability of a power system.

6.1 Maxmin Formulation

One way of verifying the secondary controllability of a
power system is by exploiting linear bilevel programs [37],
[38]. The secondary controller problem can be written in the
form of a max-min linear problem which is a special form
of linear bilevel programs as follows:

max
~pd

min
~pg,~q,~f,~θ

~1T ~q (16)

s.t. (1), (2), (3), (4), (5),

~p = ~pg − ~pd + ~q,

qi ≥ 0, 1 ≤ i ≤ n
pdi ≤ pdi ≤ pdi, 1 ≤ i ≤ n.

In optimization problem (16), vector ~pd should be selected
such that for the best possible selection of vector ~pg and
positive auxiliary vector ~q, the objective value is maximized.
The following proposition relates the solution of (16) to the
secondary controller problem.

Proposition 1. The optimal solution of (16) is 0 if, and only if,
the grid is secondary controllable.

Proof: If the optimal solution to (16) is 0, then for
any demand vector ~pd, the vector of generation values ~pg
can be selected such that ~1T ( ~pg − ~pd) = 0 and no lines are
overloaded. Hence, the grid is secondary controllable. Now
if the grid is secondary controllable, then for all demand
vectors ~pd, there exists a vector of generation ~pg such that
~1T ( ~pd − ~pd) = 0 and no lines are overloaded. Hence, the
auxiliary vector ~q can be selected to be equal to 0 by the
minimization part of (16) for any vector ~pd. Therefore, the
optimal solution to (16) would be 0.

Proposition 1 clearly demonstrates that solving (16) can
determine secondary controllability of a power system.
Moreover, when the optimal solution of (16) is greater than
0, the nonzero entries of the optimal vector ~q can reveal
the minimum extra generation required to ensure secondary
controllability of the system.

Despite many advantages of the formulation (16), the
max-min linear program is nonconvex [39] and proved
to be NP-hard [40]. Therefore existing efficient algorithms
for solving (16) only obtain local optimal solutions [38].
However, a local optimal solution of (16) with value 0 does
not guarantee the secondary controllability of the system
since the optimal solution may not be zero.

One way of solving (16) optimally, albeit in exponen-
tial running time, is through brute force search. Following
lemma demonstrates that to solve the secondary controller
problem, one needs to check only the extreme demand
points due to the convexity of the space of all possible
demand values and linearity of power flow equations.

Lemma 5. The grid is secondary controllable, if and only if for
all pd1, . . . , pdn such that pdi ∈ {pdi, pdi} there exist operating
points pg1, . . . , pgn for the generators such that ∀1 ≤ i ≤ n :
pgi ≤ pgi ≤ pgi, ~1T ( ~pg − ~pd) = 0, and no lines are overloaded.

On the other hand, for a given demand vector ~pd, it can
be verified in polynomial time whether there exist oper-
ating points for the generators that satisfy the secondary
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controller problem by solving the minimization part of (16)
using LP:

min
~pg,~q,~f,~θ

~1T ~q (17)

s.t. (1), (2), (3), (4), (5),

~p = ~pg − ~pd + ~q

qi ≥ 0, 1 ≤ i ≤ n.

If the optimum solution to (17) is not 0, then the op-
timal vector ~q can be used by the operator to make more
generators online for controllability of the grid. Hence by
solving (17) for all extreme demand vectors, one can verify
secondary controllability of a system in exponential running
time and also find how to make it controllable–if it is not–
based on obtained vectors ~q.

By focusing only on nodes with the largest demands, one
can approximately verify if for a subset of extreme points
there exist operating points for the generators satisfying
the secondary controller problem. In general, however, such
an approach may not be able to guarantee the secondary
controllability of a grid. Hence, in the next subsection, we
provide sufficient conditions to ensure secondary controllabil-
ity of a grid in polynomial time.

6.2 Predetermined Secondary Controllers

Despite the difficulty in exact determination of secondary
controllability of a grid, in this subsection, we introduce
and exploit suboptimal predetermined controllers to verify
controllability of a grid with no false positives (i.e., presented
methods cannot determine uncontrollability of a system).

In order to verify secondary controllability of the grid,
one can find the best predetermined way to set the genera-
tion values given a demand vector ~pd such that the maxi-
mum power flows over all demand vectors is minimized. In
particular, we define the ~β-determined controller as follows.

Definition 2 (~β-determined controller). For any demand vec-
tor ~pd, set ~pg = (

∑n
i=1 pdi)× ~β, for a vector ~β satisfying:

(i) ~β ≥ 0, (ii) ~1T ~β = 1, (iii) (
∑n
i=1 pdi)× ~β ≤ pg ,

(iv) (
∑n
i=1 pdi)× ~β ≥ pg .

Definition 3. A controller is called reliable, if for all feasible
demand vectors ~pd, it provides a vector of operating points for the
generators like ~pg such that |~f | = |B( ~pg − ~pd)| ≤ f .

Proposition 2. If there exists a vector ~β such that the ~β-
determined controller is reliable, then the grid is secondary con-
trollable.

For a vector ~β satisfying conditions (i-iv) in Definition 2,
define vectors ~wi

(β) := −~ei + ~β for 1 ≤ i ≤ n (as in
Section 5.2). The following lemma proves that maximum
flow on the lines over all feasible demand vectors, given a
~β-determined controller, can deterministically be computed.

Lemma 6. Given a ~β-determined controller, the maximum power
flow on each line ek over all possible demand vectors is:

max
pd≤ ~pd≤pd

|fk| =
∣∣∣∣∣
n∑
i=1

(pdi + pdi)

2
Bk ~wi

(β)

∣∣∣∣∣ (18)

+
n∑
i=1

(pdi − pdi)
2

|Bk ~wi(β)|.

The main question is now whether there exists a vector
~β such that the maximum power flows as determined in
(18) are less than their capacities? We prove that one can
examine this efficiently and in polynomial time by solving
the following optimization:

min
η,~β,~f

η (19)

s.t. (i-iv) in Definition 2,
~f = |BW(β)(pd + pd)/2|+ |BW(β)|(pd − pd)/2,
~f ≤ ηf,

in which matrix W(β) := [ ~w1
(β), . . . , ~wn

(β)]. The following
proposition demonstrates that (19) can be solved using LP
in polynomial time. Moreover, it indicates that the opti-
mal solution to (19) can provide the best vector ~β for
deterministically controlling the grid and its optimal value
demonstrates if the corresponding ~β-determined controller
is reliable.

Proposition 3. Optimization (19) can be solved using LP. More-
over, if the optimal value η∗ to (19) is less than or equal to 1, then
the ~β∗-determined controller obtained from the corresponding
solution is reliable, and therefore the grid is secondary controllable.

From (18), it can be seen that the formula for comput-
ing maximum flow on the lines consists of two separate
sums which can be controlled by different vectors and
obtained a better controller. Hence, one can define the (~γ, ~β)-
determined controller as follows.

Definition 4 ((~γ, ~β)-determined controller). For any demand
vector ~pd, set ~pg = (

∑n
i=1(pdi + pdi)/2) × ~γ + (

∑n
i=1(pdi −

pdi/2− pdi/2))× ~β, for vectors ~γ and ~β satisfying:

(i) ~β,~γ ≥ 0, (ii) ~1T~γ = ~1T ~β = 1,
(iii) (

∑n
i=1(pdi+pdi)/2)×~γ+(

∑n
i=1(pdi−pdi)/2)× ~β ≤

pg ,
(iv) (

∑n
i=1(pdi+pdi)/2)×~γ+(

∑n
i=1(−pdi+pdi)/2)×~β ≥

pg .

The (~γ, ~β)-determined controller generalizes the ~β-
determined controller (just set ~γ = ~β) and it is easy to
see that the maximum power flow on the lines over all
demand vectors, given a (~γ, ~β)-determined controller can
be computed similarly to (18) as follows:

max
pd≤ ~pd≤pd

|fk| =
∣∣∣∣∣
n∑
i=1

(pdi + pdi)

2
Bk ~wi

(γ)

∣∣∣∣∣ (20)

+
n∑
i=1

(pdi − pdi)
2

|Bk ~wi(β)|.
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Optimal (~γ, ~β)-determined controller can be found sim-
ilar to the optimal ~β-determined controller using an opti-
mization similar to (19) with a few small changes:

min
η,~γ,~β,~f

η (21)

s.t. (i-iv) in Definition 4,
~f = |BW(γ)(pd + pd)/2|+ |BW(β)|(pd − pd)/2,
~f ≤ ηf.

Again, as in the ~β-determined controller case, the
optimal value of (21) determines if the optimal (~γ, ~β)-
determined controller is reliable or not. Hence, the grid
operator can use (21) to efficiently determine the secondary
controllability of the grid, albeit obtaining false negatives in
some cases.

In Section 8, we numerically evaluate the performance
of the controllers introduced in this section. Before that,
however, we demonstrate that these controllers can be used
to efficiently provide lower bounds on the maximum scale
of a MAD attack for which the grid remains secondary
controllable.

7 αD-ROBUSTNESS

Power grids are required to withstand single equipment
failures (e.g., lines, generators, and transformers) with no
interruptions in their operation (a.k.a. N − 1 standard) [27].
Following N−1 standard, we define a new standard for the
grid operation to ensure its robustness against MAD attacks
called αD standard. It requires grid operators to either
prevent line overloads (as in Section 5) or be able to clear
them (as in Section 6) after a MAD attack by an adversary
that can change the demands by at most α fraction at each
node.4 We call a grid that conforms with this standard, αD-
robust.

In this section, for a given grid, we are interested in
finding the maximum α such that the grid is αD-robust.
We denote this value by αmax. Since ensuring that line
overloads can be cleared during the secondary control is less
restrictive than preventing them after the primary control,
we mainly focus on finding the maximum α such that the grid
is αD-robust based on its ability to clear line overloads after the
secondary control (i.e., grid’s secondary controllability).

As we described in the previous section, verifying the
secondary controllability of the grid for a given upper and
lower limits on the demands is hard. Hence, we cannot
expect to find the αmax efficiently. Nevertheless, in the next
two subsections, we develop efficient methods for obtaining
upper and lower bounds on αmax.

7.1 Upper Bound
Assume ~pd

† denotes the vector of predicted demand values.
For a given α, the demand vector ~pd resulted by a MAD
attack will be bounded by (1 − α) ~pd

† ≤ ~pd ≤ (1 + α) ~pd
†.

Now if a grid is αD-robust, it should particularly be robust
against the maximum demand attack. Hence, finding the

4. This is based on the assumption that the IoT bots are uniformly
distributed in an area. Therefore, an adversary’s ability to change the
demands is determined by the initial demand at each node.

maximum α for which the grid can handle the maximum
demand attack provides an upper bound for αmax. Such α
can be found efficiently by an LP:

max
α, ~pd, ~pg, ~f,~θ

α (22)

s.t. (1), (2), (3), (4), (5),

~pd = (1 + α)p†d,

~p = ~pg − ~pd.

Proposition 4. Assume α̂ denotes the optimal value of (22), then
αmax ≤ α̂.

The optimal value of (22) provides a good upper bound
for αmax and can be computed efficiently. One can also
consider ~pd = (1 − α)p†d to obtain another upper bound.
However, if we set ~pd = (1 − α)p†d in (22) instead of
~pd = (1 +α)p†d, it is easy to see that its optimal solution will
be α = 1. Hence, the case of ~pd = (1− α)p†d only provides a
trivial upper bound of αmax ≤ 1 (assuming pg = 0).

In the next subsection, we provide algorithms to find
lower bounds for α based on the controllers developed in
Section 6.2.

7.2 Lower Bound
To find a lower bound for αmax, we use the controllers
in Section 6.2 to limit the secondary controller’s ability
to change the generators’ operating points. Limiting the
secondary controller’s ability allows us to efficiently approx-
imate the maximum α, but because of this limitation, we
only obtain lower bounds for αmax.

First, assume that we limit the secondary controller to
the ~β-controller for a fixed ~β. We show that in this case the
maximum α can be found by solving a single LP. Assume
~pg
∗ is the optimal solution to (22) with value α̂ and set

~β = ~pg
∗/‖ ~pg∗‖1 (i.e., the controller only scales down the

generation compared to the maximum demand case). Using
(18), we show that the optimal value of the following LP
gives a lower bound for αmax:

max
α,~f

α (23)

s.t. (1 + α)(
n∑
i=1

p†di)× ~β ≤ pg,

(1− α)(
n∑
i=1

p†di)× ~β ≥ pg,

~β = ~pg
∗/‖ ~pg∗‖1,

~f = |BW(β) ~pd
†|+ |BW(β)|(α~pd†),

|fij | ≤ fij , ∀(i, j) ∈ E.

Proposition 5. The optimal solution α∗ of (23) can be found in
polynomial time using LP. Moreover, α∗ ≤ αmax.

Optimization (23) allows us to efficiently compute a
lower bound for αmax. However, similar to Section 6.2,
instead of fixing ~β, we can compute a ~β that results in
the largest possible lower bound. Due to the nonlinearity
of the problem, however, we cannot optimize ~β and found
maximum α in (23) simultaneously. The idea is to fix α,
compute the optimal ~β and η using (19), then update α
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Module 1: Lower Bound on αmax using (~γ, ~β)-
determined Controllers

Input: G, λ

1: α(0) = α̂
2: flag = 1
3: i = 0
4: while flag do
5: flag = 0
6: Compute the optimal value η, ~γ, and ~β of (21) for

pd = (1 + α(i)) ~pd
† and pd = (1− α(i)) ~pd

†

7: Set α(i+1) = α(i) + λ(1− η)
8: if |α(i+1) − α(i)| > 0.001 then
9: flag = 1

10: i = i+ 1
11: return α(γ,β) := α(i), ~γ, and ~β

using η and repeat the process until α does not change by
much. As in Section 6.2, we can use the (~γ, ~β)-determined
controller instead of the ~β-determined controller to improve
the obtained lower bound. The method is summarized in
Module 1. When γ = β, Module 1 provides a lower bound
on αmax like α(β) based on ~β-determined controllers.

Notice that λ in Module 1 should be set such that
updates to α at each iteration are neither too large that the
module falls into a loop, nor are too small that it takes a long
time to converge.

Proposition 6. When γ = β, for a good λ, Module 1 converges
to an α(β) value such that α(β) ≤ αmax. Moreover, α∗ ≤ α(β).
(Recall that α∗ is the optimal solution of (23).)

Proposition 7. For a good λ, Module 1 converges to an α(γ,β)

value such that α(γ,β) ≤ αmax. Moreover, α(β) ≤ α(γ,β).

In the next section, we numerically compare the upper
bound α̂, and lower bounds α∗, α(β), and α(γ,β) with αmax

in order to demonstrate the tightness of these bounds in
approximating αmax.

8 NUMERICAL RESULTS

In this section, we first numerically evaluate the perfor-
mance of SAFE and IMMUNE Algorithms developed in
Section 5. Then, we numerically evaluate the accuracy of
the upper and lower bounds developed in Section 7 in
approximating the maximum α such that the grid is αD-
robust (i.e., αmax).

8.1 Simulations Setup

For solving LP, we use CVX, a package for specifying
and solving convex programs [41], [42]. For computing the
optimal power flow part of the IMMUNE Algorithm, we
use MATPOWER [43] which is a MATLAB based library for
computing the power flows. We also exploit the power sys-
tem test cases available with this library for our simulations.
In particular, we use the IEEE 14-bus, 30-bus, and 57-bus test
systems, and the New England 39-bus system.

The line capacities are only provided for the IEEE 30-
bus and New England 39-bus systems. Hence, for the
other two systems, we set the capacities ourselves in two-
different ways: (i) following [9] for each line we set fi =

TABLE 1: Performance Evaluation of SAFE and IMMUNE
Algorithms on the New England 39-bus system. Cost values
are in $/hr. Numbers in parenthesis indicate the number of
iterations took the IMMUNE Algorithm to converge.
α OPF SAFE IMMUNE IMMUNE-0.95 IMMUNE-0.9

0.09 41264 - 43434 (7) 43805 (4) 43859 (3)
0.08 41264 43628 42394 (8) 42431 (3) 42982 (3)
0.07 41264 42665 41773 (5) 41991 (3) 42405 (3)
0.06 41264 42050 41492 (4) 41698 (3) 41534 (2)
0.05 41264 41668 41339 (10) 41421 (3) 41419 (2)
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Fig. 7: Percentage increase in operating cost of the grid in
order to make it robust against MAD attacks obtained by
SAFE and IMMUNE Algorithms versus the magnitude of
the attack (α) in New England 39-bus system.

max{1.2|f†i |,median(|~f†|)}, and (ii) set fi = 1.1 max(|~f†|),
in which ~f† are the power flows given the default supply
and demand values in the test systems. When the first
method is used for determining the capacities, it is indicated
by (f) in front of the grid name, and when the second
method is used, it is indicated by (u) (e.g., see Table 3).

8.2 Primary Control

In this subsection, we evaluate the performance of SAFE
and IMMUNE Algorithms on NEW England 39-bus and
IEEE 30-bus systems. We assume that (1 − α)p†di ≤ pdi ≤
(1+α)p†di and consider different α values to capture attacks
with different magnitudes (which depends on the number
of controlled bots by an adversary).

Table 1 compares the performance of SAFE and three
variations of the IMMUNE Algorithm for different α values.
Recall from Section 5.2 that IMMUNE-0.95 and IMMUNE-
0.9 are similar to the IMMUNE Algorithm but apply more
aggressive updates on the capacities in each iteration of the
algorithm. This, as mentioned in Section 5.2 and demon-
strated numerically here in Table 1, results in faster con-
vergence of the algorithm. Since the OPF problem does not
consider the robustness of the grid against MAD attacks, its
value is independent of the magnitude of an expected attack
(α).

As can be seen in Table 1 and as we expected, the
grid needs to be operated in a non-optimal operating point
in order to be robust against MAD attacks. The required
percentage increase in the operating cost of the grid ob-
tained by the SAFE and IMMUNE Algorithms versus α
are presented in Fig. 7. IMMUNE Algorithm results in the
least amount of increase in the operating cost. However,
since as demonstrated in Table 1, IMMUNE Algorithm takes
longer that IMMUNE-0.95 and IMMUNE-0.9 Algorithms to
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TABLE 2: Performance Evaluation of SAFE and IMMUNE
Algorithms on the IEEE 30-bus system. Cost values are
in $/hr. Numbers in parenthesis indicate the number of
iterations took the algorithm to converge.

α OPF SAFE IMMUNE
0.31 565.2 - - (3)
0.3 565.2 614.8 - (4)
0.28 565.2 571.6 569.6 (3)
0.26 565.2 565.32 565.22 (2)
0.22 565.2 565.2 565.2 (1)

converge, the system operator may prefer to use IMMUNE-
0.95 which performs approximately as well as the IMMUNE
Algorithm but converges faster. Notice that due to noncon-
vexity of the problem, a more aggressive update rule may
not necessarily result in a costlier operating point, as we see
here that IMMUNE-0.9 results in a lower operating cost than
IMMUNE-0.95 for α = 0.06.

It can also be seen that SAFE Algorithm performs rela-
tively well in finding a robust operating point of the grid
much faster than all variations of IMMUNE Algorithm
(recall from Section 5.3 that SAFE Algorithm requires only
to solve a single LP). However, it may become infeasible for
higher magnitude attacks (in this case for α = 0.09).

We repeated the simulations on the IEEE 30-bus system.
The results are presented in Table 2. First, it can be seen
that the IEEE 30-bus system can be protected against much
stronger attacks (α = 0.3) which demonstrates that different
grids may have different levels of robustness against MAD
attacks (we will make a similar observation in the secondary
control case in the next subsection). Unlike the New England
39-bus case, here the IMMUNE Algorithm does not con-
verge for the strongest attack (α = 0.3) rather than the SAFE
Algorithm. This demonstrates that each of these algorithms
may be useful in finding a robust operating point for the
grid in different scenarios–besides their running time and
optimality.

As can be seen in Table 2, in this case also, if the
IMMUNE Algorithm converges, it converges to a lower cost
operating point than the one obtained by the SAFE Algo-
rithm. Here, the IMMUNE Algorithm converged within a
few iterations. Therefore, there was no need to consider a
faster variation of the IMMUNE Algorithm as in the New
England 39-bus case.

Finally, it can be seen that for α = 0.31, none of the
algorithms can obtain a robust operating point for the grid.
We show in the next subsection that this case can be handled
by the secondary controller instead (assuming that lines can
handle temporary overloads).

8.3 Secondary Control
In order to evaluate the performance of the controllers
developed in Section 6.2, in this subsection, we focus on
their performance in approximating αmax as described in
Section 7.

Table 3 compares the maximum α obtained by different
methods in several test cases. As can be seen and proved
in Section 7, in all cases, α∗ ≤ α(β) ≤ α(γ,β) ≤ αmax ≤ α̂.
Notice that for the IEEE 57-bus system, since the brute force
search algorithm needs to solve (17) about 242 times for each
given α to determine the secondary controllability of the
grid, we could not exactly determine αmax. However, in the

TABLE 3: Lower and upper bounds for αmax.
Test case α∗ α(β) α(γ,β) αmax α̂
IEEE 14-bus(f) 0.058 0.1649 0.1906 0.2117 0.2117
IEEE 14-bus(u) 0.950 1.0243 1.1454 1.1479 1.1479
IEEE 30-bus 0.214 0.2851 0.3126 0.37 0.3717
NE 39-bus 0.039 0.0796 0.0962 0.0962 0.0962
IEEE 57-bus(f) 0.024 0.0307 0.0311 < 0.09 0.2
IEEE 57-bus(u) 0.128 0.2396 0.2864 - 0.3468
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Fig. 8: Number of iterations in Module 1 before it converges
versus its update step size λ in the IEEE 30-bus system.

case of IEEE 57-bus (f), after initial iterations of the brute
force search algorithm, we could determine that the grid is
not secondary controllable for 0.09 ≤ α as presented in the
table.

It can be seen that α̂ provides a very close upper bound
for αmax most of the time (except in IEEE 57-bus (f)). And
since it can be computed by a single LP, the numerical
results suggest that it is an efficient and reliable way to find
an upper bound for αmax. On the other hand, α∗ that can
also be computed efficiently by a single LP does not provide
a very close lower bound in the test systems that we studied
here. However, α(β) and α(γ,β) that require more time to be
computed, provide much better lower bounds. In particular,
in the case of New England 39-bus system α(γ,β) = α̂ which
implies that αmax = α(γ,β) = α̂.

Although finding α(β) and α(γ,β) requires solving an
LP in several iterations (as summarized in Module 1),
the number of iterations can be minimized by selecting a
good step size λ. For example, the number of iterations of
Module 1 versus λ is presented in Fig. 8 in the IEEE 30-
bus system. As can be seen, for the optimal λ (in this case
λ = 1.1), the module converges in 3 iterations. Hence, it can
find a good lower bound for α, as shown in Table 3, very
efficiently and in polynomial time (since it solves a single
LP at each iteration). A good λ can be found in practice
heuristically after the first few iterations and observing the
rate of changes.

Finally, as mentioned in Section 6, the secondary con-
trollability becomes more important when the primary con-
troller cannot prevent line overloads, but the overloads can
be tolerated for a short period of time. An example of such
scenario happens in IEEE 30-bus system and when α = 0.31.
As can be seen in Table 2, none of the SAFE and IMMUNE
Algorithms can find a robust operating point for the grid in
this case. However, as can be seen in Table 3, since this value
is less that αmax = 0.37, any line overloads can be cleared
by the secondary controller.



2327-4697 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2922131, IEEE
Transactions on Network Science and Engineering

14

8.4 Open Questions

As we observed in the previous two subsections, differ-
ent test systems demonstrate different levels of robustness
against MAD attacks. For example, as can be seen in Table 3,
the αmax for the IEEE 30-bus system is 0.37, whereas this
value for the New England 39-bus system is only 0.0962.
This difference in robustness can be due to the structure of
the network as well as the location of the generators and
loads. Analytically studying such features and developing
efficient algorithms to improve grid robustness by adding
extra lines to a system or build future generators at certain
locations would be interesting future research directions.

Another important observation from the numerical re-
sults is that the performance of the proposed algorithms
varies in different test systems. For example, in the New
England 39-bus system, the IMMUNE Algorithm success-
fully finds robust operating points for the generators for
different α values, whereas in the IEEE 30-bus system
the IMMUNE Algorithm may not converge for α = 0.3.
Moreover, as can be seen in Table 3, the approximation
algorithms for estimating αmax provide tight bounds for the
New England 39-bus system, whereas the bounds are not
tight for the IEEE 30-bus system. Hence, finding sufficient
conditions on the structure and properties of a test case
under which the approximation bounds are tight and the
IMMUNE Algorithm is guaranteed to converge to a locally
optimal solution would be important future research direc-
tions.

9 CONCLUSIONS

In this paper, we analyzed the effect of MAD attacks on
power flows in detail and presented SAFE and IMMUNE
algorithms for finding robust operating points for the gen-
erators during economic dispatch such that no lines are
overloaded after automatic primary control response to any
MAD attacks. Moreover, we demonstrated that in cases that
temporary overloads can be tolerated, the system operator
can approximately but efficiently verify in advance if line
overloads can be cleared during the secondary control after
any MAD attacks. Based on these two forms of defenses,
we defined αD-robustness notion and demonstrated that
upper and lower bounds on the maximum α for which the
grid is αD-robust can be found efficiently and in polynomial
time. We finally evaluated the performance of the developed
algorithms and methods, and showed that they perform
very well in practical test cases.

We believe that with universality and growth in the
number of high-wattage IoT devices and smart thermostats,
the probability of MAD attacks is increasing and there is an
urgent need for more studies on the potential effects of these
attacks and developing tools for grid protection. Our work
provides the first methods for protecting the grid against
potential line failures caused by newly discovered MAD
attacks via IoT devices. However, our work can be extended
in several directions. A natural direction is to extend the
developed results to the AC power flow model. A more
challenging research direction is to extend the methods to
unit commitment phase of the grid operation. Since regular
unit commitment problem is already a combinatorial prob-

lem, incorporating security constraints into that problem
will be a challenging task and part of our future work.

In the worst-case scenario that the scale of a MAD attack
is greater than grid robustness (i.e., adversary manipulates
the demands by greater than αmax factor), the grid operator
may not be able to clear the possible line overloads in a
timely manner. This can consequently force the overloaded
lines to trip leading to more line overloads and a cascading
failure in the system [3]. To prevent cascading failures in
such scenarios, the grid operator may apply common con-
trol algorithms such as optimal load-shedding [44] or power
grid intentional islanding [45]. However, since an adversary
can suddenly decrease the demands after an initial increase
in the demands, these control algorithms may not be effec-
tive in their classical form (e.g., sudden decrease in the de-
mands after load-shedding may result in a critical increase
in the frequency of the system). Hence, investigating ways to
improve these control algorithms to protect the grid against
MAD attacks in the worst-case scenarios is also part of our
future work.

10 OMITTED PROOFS

Proof of Lemma 1: First, notice that 1/Ri is the rate
with which generator i increases its generation to com-
pensate for the extra demand. Hence, ti denotes the time
that generator i reaches its maximum capacity if the total
supply does not meet the demand before ti. Accordingly,
generators reach their maximum capacity in the order of
their ti values from smallest to largest. Using this, it is
easy to see that Si is the total change in the generation
at time ti. Therefore, if Si < S∆pd , then generators 1 to i
will reach their maximum capacities before supply meets
the total demand. Moreover, since S∆pd ≤ Si+1, generators
i+1, . . . , n do not reach their capacities and each contribute
according to their droop characteristic to compensate for the
remaining S∆pd −

∑i
l=1(pgl − pgl).

Proof of Lemma 3: First, notice that for each line
(i, j) ∈ E and in each iteration of the IMMUNE Algorithm,
cij is not increasing. To see this, assume cij changes in the lth

iteration, and cold
ij and cnew

ij denote the value of cij before and
after the change, respectively. Since cij is changed, it means
that fij < |fij | + ∆fmax

ij . On the other hand, |fij | ≤ cold
ij .

Hence, fij < cold
ij + ∆fmax

ij or fij − ∆fmax
ij < cold

ij . Since
cnew
ij = fij −∆fmax

ij , therefore cnew
ij < cold

ij .
On the other hand, from (11), it is easy to verify that

after each iteration fij − ∆̂fij ≤ cij . Hence, cijs cannot
get smaller than the fixed values fij − ∆̂fij and since (12)
is feasible, the OPF problem remains feasible after each
iteration of the IMMUNE algorithm. Now since cijs are
non-increasing and limited by lower bounds, the algorithm
is guaranteed to remain feasible and converge to a local
optimum solution.

Proof of Lemma 4: In each iteration of the IMMUNE
algorithm, at least for a single line (i, j), the cij will be
updated. Otherwise, the algorithm should terminate (either
converges or become infeasible). On the other hand, since
∆̂fij is the maximum possible flow change on line (i, j),
the cij cannot get smaller than fij − ∆̂fij . Hence, since the
updates are discrete, in the worst case that only a single
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capacity is updated by a single unit at each iteration, the
algorithm can take at most

∑
(i,j)∈Ed∆̂fije iterations to

terminate.
Proof of Lemma 5: Assume ~pd

(1), ~pd
(2), . . . , ~pd

(2n) de-
note all possible extreme demand vectors. Now assume that
for each extreme demand vector ~pd

(i), there exists an oper-
ating vector ~pg

(i) for generators that satisfies the secondary
control conditions. We prove that for all demand vectors
~pd within the upper and lower limits also there exists an
operating vector ~pg that satisfies all the secondary controller
conditions. Since the space of all the demand vectors is
convex, each demand vector ~pd within the upper and lower
limits can be written as a convex combination of the extreme
points such as ~pd =

∑2n

i=1 βi ~pd
(i) in which ∀i : βi ≥ 0

and
∑2n

i=1 βi = 1. We show that ~pg =
∑2n

i=1 βi ~pg
(i) satisfies

all the secondary controller conditions. First, since ~pg is a
convex combination of ~pg

(i)s and they are within generators
upper and lower limits, so is ~pg . Second, it is easy to see that
~1T ( ~pg − ~pd) =

∑2n

i=1 βi~1
T ( ~pg

(i)− ~pd
(i)) =

∑2n

i=1 βi0 = 0. Fi-
nally, based on our assumptions, for each i: −f ≤ B( ~pg

(i) −
~pd

(i)) ≤ f . Hence, B( ~pg − ~pd) =
∑2n

i=1 βiB( ~pg
(i) − ~pd

(i)) ≤∑2n

i=1 βif = f . Similarly, −f ≤ B( ~pg − ~pd). Therefore,
~pg satisfies all the constraints of the secondary controller
problem. The reverse can also be similarly proved using
contradiction method.

Proof of Proposition 2: If there exists a vector ~β
that the ~β-determined controller is reliable, then for any
feasible demand vector ~pd, vector of operating points ~pg =

(
∑n
i=1 pdi)× ~β satisfies the demands (i.e., ~1T ( ~pg − ~pd) = 0)

and |~f | = |B( ~pg − ~pd)| ≤ f . Therefore, the grid is secondary
controllable.

Proof of Lemma 6: From the definition of ~wi
(β) vectors,

it is easy to verify that for a demand vector ~pd, the power
flow on line ek can be computed as fk =

∑n
i=1 pdiBk ~wi

(β).
For |fk| to be maximized, each pid should be either equal to
pdi or pdi based on signs of Bk ~wi

(β) and fk. On the other

hand, it is easy to see that pdi =
(pdi+pdi)

2 − (pdi−pdi)
2 and

pdi =
(pdi+pdi)

2 +
(pdi−pdi)

2 . So by considering only pdi ∈
{pdi, pdi}, fk can be computed as follows:

fk =
n∑
i=1

pdiBk ~wi
(β) =

n∑
i=1

( (pdi + pdi)

2
±

(pdi − pdi)
2

)
Bk ~wi

(β)

=
n∑
i=1

(pdi + pdi)

2
Bk ~wi

(β) +
n∑
i=1

(
±

(pdi − pdi)
2

)
Bk ~wi

(β).

From the equation above, it can be seen that the first part is
fixed but the second part can be selected based on the sign
of the first part in order to maximize |fk|. Hence, it is easy
to see that maximum value of |fk| is:

max
pd≤ ~pd≤pd

|fk| =
∣∣∣∣∣
n∑
i=1

(pdi + pdi)

2
Bk ~wi

(γ)

∣∣∣∣∣
+

n∑
i=1

(pdi − pdi)
2

|Bk ~wi(β)|.

Proof of Proposition 3: In order to solve (19) using LP,
one can define auxiliary vector ~u and matrix Q and replace

the constraint ~f = |BW(β)(pd + pd)/2|+ |BW(β)|(pd− pd)/2
in (19) with following set of inequalities:

~f = ~u+ Q(pd − pd)/2,
~u ≥ BW(β)(pd + pd)/2,

~u ≥ −BW(β)(pd + pd)/2,

Q ≥ BW(β), Q ≥ −BW(β),

in which the matrix inequalities are entry by entry. Now
it is easy to verify that since the optimization minimize η
and ~f ≤ ηf , in the optimal solution ~f will be minimized
and therefore ~u and Q will be equal to |BW(β)(pd + pd)/2|
and |BW(β)|, respectively. Hence using the above transfor-
mation, (19) can be solved using LP. It can be seen that if
the optimal solution η∗ to (19) is less than or equal to 1,
then since ~f is equal to the maximum power flow on the
lines over all possible demand vectors (and corresponding
generation operating points obtained by the ~β∗-determined
controller) and ~f ≤ η∗f ≤ f , the ~β∗-controller is reliable.
Hence, the grid is secondary controllable.

Proof of Proposition 4: Since in optimization (22) only
the maximum demand case (i.e., ~pd = (1 + α) ~pd

†) is being
verified to be satisfiable by the generators with no line
overloads, the optimal solution of (22) only provides an
upper bound for αmax.

Proof of Proposition 5: Using (18), it can be verified
that the maximum power flow on a line (i, j) over all
the demand vectors and corresponding generation vector
determined by the ~β-determined controller is equal to
|BW(β) ~pd

†|+ |BW(β)|(α~pd†). Hence, optimization (23) max-
imizes α such that the grid is αD-robust using the specified
~β-determined controller. On the other hand, since the oper-
ating points of the generators are limited to the operating
points obtained by the specified ~β-determined controller, it
is obvious that demand vectors that are controllable by this
controller are a subset of all controllable vectors. Hence, α∗

only provides a lower bound for αmax. Finally, it is also easy
to see that similar to the technique presented in the proof of
Proposition 3, optimization (23) can be solved using LP and
therefore α∗ can be computed in polynomial time.

Proof of Proposition 6: At each iteration, if α(i) > αmax,
then the solution η to (19) would be greater than 1. Hence,
if λ is small enough, 0 ≤ α(i+1) = α(i) + λ(1 − η) ≤ α(i).
Similarly, it can be shown that if α(i) < αmax, then α(i+1) >
α(i). On the other hand, for α(i) = αmax, the solution η
to (19) would be zero and α(i) = α(i+1) = αmax. Hence,
αmax is the only absorbing point for this algorithm which it
converges to (if λ is small enough).

Proof of Proposition 7: The convergence proof is sim-
ilar to the proof of Proposition 6. It is also easy to see that
since ~β-determined controllers are a special case of (~γ, ~β)-
determined controllers, α(β) ≤ α(γ,β).
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