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Energy Systems Integration Group is a non-profit educational association that
provides workshops, resources and education on the evolving electricity and energy
systems.

ESIG supports engineers, researchers, technologists, policymakers and the public with
the transformation of energy systems in a way that is economic, reliable, sustainable,
thoughtful and collaborative.

m “ L 4 www.ESIG.energy


https://twitter.com/EnergySystemsIG
https://twitter.com/EnergySystemsIG
https://www.facebook.com/EnergySystemsIG/
https://www.facebook.com/EnergySystemsIG/
https://www.linkedin.com/company/10488472/
https://www.linkedin.com/company/10488472/

Agenda

* Part O: Prologue

* Part I: The Math

* Part Il: People and the Environment

e Part lll: The Interconnections Seam Study
e Part IV: What does this mean?

e Part V: What should be done?

* Appendix: Want to learn more?
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Eastern Renewable Generation Integration Study (RTx30)
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NextEra Analytics helps industries reach decarbonization goals
using physics, data science, and software
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Session Goals

* Be able to define an Integrated Resource Plan
* |[dentify data and tools used in an Integrated Resource Plan
* Explain why Integrated Resource Plans are imperfect

* Identify a few challenges associated with planning for
renewables

* Learn about some examples of Integrated Resource Plans
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Integrated Resource Plan

* Definition: is an economic and engineering process that uses various

tools and data to ensure reliable and least-cost electric service to
customers.
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Distributed Energy Resource Integrated Resource Plan
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Let’s break it down

Five questions answered in an integrated resource plan
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Image courtesy of NREL
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Source: National Renewable Energy Laboratory Annual Technology Baseline (2018), http://atb.nrel.gov
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https://www.syfy.com/syfywire/neil-degrasse-tyson-explains-what-sets-cosmos-apart-at-nycc

1t is...but
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We can’t study every possible future.
We must make choices.

Realm of possible scenarios
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What does this mean?

* The data we use to model the power system are imperfect.

* Our methods are incapable of considering all of the conditions that

could exist.

* We as regulators, engineers, scientists, artists, and consumers have

different interpretations of safe, reliable, affordable, and clean.
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Cost and Reliability are determined using math

* L east-cost

e Ca pltal costs n; CapacityN,, , « (fer, » (regmult,, , » capcost, + gridconnect,) + fomN,)
qeQ
* Variable costs min. YO chgh + o sup + ¢ sd
t k
* Reliable

P.t,
* Resource Adequacy LOLP=Y; p[C, =Ci]-P[L>C;]=Z4-,’—(;(")

. N
* System Security 0=—P, + Y |Vi||Vi|(Gix cos 6is + By sin i)
k=1
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AC Power Flow Production Cost Capacity Expansion
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AC Power Flow Production Cost Capacity Expansion
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Major Publications from these domains

e Capacity Expansion Modeling
* Renewable Electricity Futures Study:
https://www.nrel.gov/analysis/re-futures.html

* Production Cost Modeling

» Eastern Renewable Generation Integration Study:
https://www.nrel.gov/grid/ergis.html

e AC Power Flow
» Definition and Classification of Power System Stability
https://ieeexplore.ieee.org/document/1318675
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I.5. electricity use and economic growth, 1950 - 2040
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Utilities have a problem: the public wants 100% renewable
energy, and quick

The industry is groping for ways to talk the public down.
By David Roberts | @drvox | david@vox.com | Updated Oct 11, 2018, 9:19am EDT

Consumer preferences

constantly

American as apple pie. | Shutterstock

Renewable energy is hot. It has incredible momentum, not only in terms of deployment and
costs but in terms of public opinion and cultural cachet. To put it simply: Everyone loves
renewable energy. It's cleaner, it's high-tech, it's new jobs, it's the future.
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https://www.pinterest.com/pin/419468152766504074/?lp=true

Battery Bonanza
Global energy storage rising to one terawatt in two decades

1,000 Gigawatts

Batteries are

0
| | |
2017 2020 2030 2040

Bloomberg NEF Bloomberg



We're going to
need all of this
technology
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Daily patterns drive T

demand and supply

=

https://www.youtube.com/watch?v=hVymyJ9g5a0



Energy Needs and Supply

Change with the Seasons

https://svs.gsfc.nasa.gov/4452
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US Hydro Generation Resources




Major US Fossil Resource Plays







Greatest Solar Resource
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US Transmission System and B2B HVDC Ties
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Comprehensive Economic and

Reliability Analysis

CGT-Plan
— lowa State University

— Capital and operating costs 2024- | Dynamicisteady State Production Cost Planning
2038

— Generation and transmission system N
for 2038

PLEXOS Metro

— NREL " e

— Operating costs 2038 e

— Hourly unit commitment and
economic dispatch .

— PNNL

— Develop a capability for future work

— Preliminary analysis of AC power flow

impacts NREL | 63



Geographic
Decomposition

e Respects regional operating
borders

* Advanced computation | —
methods solve in days, not
years e

* Represents information |
asymmetries between
operators
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Scenario D1 - PV
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High VG Case
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Scenario D2a - PV

Design 2a
High VG Case
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Scenano D2b - PY

Design 2b
High VG Case

NREC T 7



Scenario D3 - PV Scenario 03 - Transmission Expansion

Design 3
High VG Case
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Installed Capacity (GW)

2024 Base Case High VG Case |
DI | D2a D2b D3 | D1 | D2a | D2b D3

65

Coal
Hydro
Natural Gas| 443
Nuclear | 132
Solar | 64
Wind |

120
198
437
132
281
320

113
198
431
132
277
324

111
198
418
132
271
326

115
198
421
132
278
324
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O
(00

= B

(08
N

N
N

1
U

(@)
~N
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37
198
453
132
241
487

29
198
450
132
241
488

32
198
448
132
239
487
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This is how those

Designs




Is this decarbonization?

Base Case High VG Case
DI D2a D2b D3 | D1 D2a D2b D3

Fossil Fuel 36% 36% 36% 36%|26% 25% 25% 25%

R 28% 29% 29% 29%|38% 39% 39% 39%

€O, Free 63% 63% 63% 64%|73% 74% 74% 73%
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Difference in Generation (TWh)
N
Q (=]

5

Generation Difference

Base Case

--Load

B Curtailment
PV

=) CSP
" Wind
= Storage
Other

Gas CT
Hydro

B GascCC
Biomass
Geothermal
jui] Coal
= Nuclear

Difference in Generation (TWh)

Note smaller scale of the Base Case
* Nuclear changes under Base Case are an artifact of outage schedules.

80

60-

40-

20+

High VG Case

NREL | 77



The Interconnections Seam Study (D3)
03-02-2038 00:00

Base Case D3, Low Net Load




Combined El and WI Dispatch during
Low Net Load

Mar 02 Mar 03 Mar 04
12 AM 12 AM 12 AM

— Load

M curtailment
PV

B CSP
| Wind
B  storage
N Other
Gas CT

Hydro

N Gas CC
B Biomass
Geothermal

[ | Coal
B Nuclear

NREL | 79



The Interconnections Seam Study (d2a)
08-06-2036 00.00
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Combined El and WI Dispatch during

Peak Load

D2a

1000

— Load

800

B curtailment
PV

B csP

H Wind

B  storage

| Other
Gas CT

N

|

B

|

600

Hydro
Gas CC
Biomass
Geothermal
Coal
Nuclear
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Each design is Reliable from a Resource Adequacy perspective for the single year we studied.

All load is met while respecting reserve and transmission constraints that approximate N-1.

Increase transmission results in opportunities for expanded and more efficient capacity and energy markets.

Increased cross seam transmission enables efficient energy sharing.

NREL | 82



9:00




TOta I COStS 2024—2038 BCR = Change in Total non-Transmission Costs
( N PV S B) Change in Transmission Investment Costs

Example, D1 vs D2a Current Policy: 4.01/3.19=1.26

Base Case High VG Case

ECONOMICS, NPV $B D1 D2a Delta D2b Delta D3 Deltaj D1 D2a Delta D2b Delta D3 Delta
Line Investment Cost 23.5 26.69 '3.19 315 8 377 | 14.2 I 61.21 73.89 12.68 74.88 13.6/ 80.1 18.89
Generation Investment I

Cost 4936 4947 11 4925 -1.1 4942 704.03 703.32 -0.71 696.99 -7.04 700.51 -3.52
Fuel Cost 855.1 8527 -24 8512 -39 8456 -95 I 753.8 738.98 -14.82 737.3 -16.5 736.12 -17.68
Fixed O&M Cost 4164 4156 -0.8 4137 -2.7 4138 -2.6 I 455.6  450.2 -54 448.95 -6.65 450.23 -5.37
Variable O&M Cost 81 811 01 812 02 812 I 64.5 63.9 -06 6427 -0.23 6439 -0.11
Carbon Cost 0 0 0 0 0 0 0 I 171.1 1642 -69 1626 -85 1625 -8.6
Regulation-Up Cost 31.6 30.97 -0.63 3113 -0.47 30.02 -1.58| 3329 3163 -166 29.96 -3.33 26.63 -6.66
Regulation-Down Cost 45.1 442 -09 4442 -0.68 42.85 -2.26 I 4.76 452 -024 429 -047 381 -0.95
Contingency Cost 239 2342 -048 2354 -0.36 2271 -1 2 2441 2319 -1.22 2197 -244 1952 -4.89
Total Non-transmission I

Cost (Orange) 1,947.00 1,943.00 -4.01 1,937.70 -9.01 1,930.00 -16.34§2,211.49 2,179.94 -31.55 2,166.33 -45.16 2,163.71 -47.78

15-yr B/C Ratio I
(Orange/Green) 1.26 1.13 1.15 2.48 3.3 2.52

NREL | &4



Benefits

All designs produce benefits that exceed
costs.

Results should be viewed directionally, not
definitively.

Comparisons are made to D1, which includes
significant AC expansion, but no cross seam
expansion.

Full asset life is assumed to be 35 years, over
the long run, the benefit may be significantly
higher.

Not appropriate to assume 2038 savings will
stay the same until retirement, they may
increase or decrease depending on the rest
of the system.

- Benefit-to-Cost Ratio 2024-2038

Base Case High VG Case
D1 - -
D2a 1.26 2.48
D2b 1.13 3.3
D3 1.15 2.52
___|Production Cost Savings 2038 ($B)
Base Case High VG Case
D1 - -
D2a -0.8 -3.5
D2b -1.1 -3.8
D3 -2.5 -1.9

NREL | 85



Findings

There is substantial value to increasing the transfer capability between the
interconnections, status quo on the existing B2Bs is the least desirable.

Cross seam transmission has a substantial impact on the location, size, and
type of wind and solar.

— The “best” wind (Eastern Interconnection) and “best” solar (Western
Interconnection).

Cross-seam transmission enables substantial energy & operating reserve
sharing on diurnal and seasonal basis.

Additional benefits (and costs) may exist, i.e. frequency response and
resilience to extreme events.
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Data is critical, but it's never perfect

* Chronological data sets are needed

Solar resource

for load and generation Thermal generation

Wind resource

Load
Hydro

e Simple averages don’t work

e Data must be time synchronous U .

Fuel prices
° Uncertainty space has grown

* You need to do more scenarios

Energy Systems Integration Group 9)
Charting the Future of Energy Systems Integration and Operations E S I G




There is no super model

AC Power Flow Production Cost Capacity Expansion

* The various aspects of reliability and
cost require different
tools/approaches

* Data is the great unifier

 Model resolution matters, but don’t
get hung up on the nitty gritty i o

* All models are wrong, some are
helpful

Energy Systems Integration Group 9)
Charting the Future of Energy Systems Integration and Operations E S I G




You don’t need a Super Computer

* NREL showed us the art of the possible, and documented new
algorithms to solve big problems

* At NextEra Analytics we are deploying many of these technologies on
regional problems to deliver answers in minutes, not days

* Cloud computing can be used to decrease model uncertainty, control
for data quality issues, and accelerate the transition to a modern grid

e Just because a tool promises Artificial Intelligence, doesn’t mean it’s
Applied Intelligence

AW
~ fl'\ -
Energy Systems Integration Group Q)
Charting the Future of Energy Systems Integration and Operations E S I G




-ive Questions to ask of an Integrated
Resource Plan

1. What simplifications were made to the transmission network and generator

representations?
2. Who reviewed the work?
3. What tools did they use to evaluate cost and reliability?

4. How does the analysis account for the weather?

5. What scenarios were considered?

NEY
-~ @ -
Energy Systems Integration Group =/
Charting the Future of Energy Systems Integration and Operations E S I G
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1) Build everywhere

* Diversity is critical to giving everyone a ro}e in the future
* It helps with cost allocation ( | o
* Reduces variability at all time scales
* Our power system needs an overhaul dueito age, let’s bulld the rlght new stuff

- Grld scale and- d1$tr1buted scale resource have Co lemenMy chafraicterlstlcs




4 > . 3 e
g - -—-—-\‘ a7 T \
= A ( \
/ / \ | 4
" 1
-

- 4

4 2) Boost the network
A

. * Adding the first 10% of renewable energy was easy

7 * Modern tech allows us to make the most of the existing network

: Increz_lsinlg the network transfer capability everywhere is essential to
allowing large scale sharing, reliability, and resiliency

* Electricity is too important to skimp on the network
. : i q
A




3) Join the
iInterconnections

* Electricity is the only commodity without
a national supply chain

I

ORHTHE

* Managing the seasons and large scale :
distributed generation can’t be done with
storage alone

» Even California needs to import avocados
sometimes

G A IR A e N e AN e TR A B A N A A e N e e e Al A e PN e

https://www.terrawatts.com/seams-transgridx-2018.pdf



" 4) Scale hybrid power plants

* Renewables are no longer simple consumers of reliability services

« With a little software and a little storage they can operate like the perfect =~ ""]
generator —
* Hybrids don’t have to be co-located; we can make thermostats, EVs, and grid ,"‘-""g
scale plants work intelligently in tandem or isolation Ty %
iY
_'1 .

RS " ) A G ]
Wy st L



5) Share

The economy needs to spend trillions on
modernizing the electric grid, and even
more if we want to decarbonize all energy

* Everyone can benefit, and we will all need
to pay something

* Our differences are the key to our success;
by finding complementary goals and
resource profiles we can be more efficient
and competitive

* Work with regulators on common sense
cost allocation, i.e. Shared Use
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Renewable resources are more than

sufficient in quantity

Combined land-based and offshore wind resource supply
curve, based on estimated costs in 2012

30

— L8] N
(& o (&)

LCOE (2013¢/kWh)

o

o

o

1,000 2,000 3,000 4,000 5,000 6,000 7,000
Capacity (GW)

M Land-based [l Offshore Shallow [l Offshore Mid [l Offshore Deep
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Capacity credit of VG declines rapidly with

penetration

80%
— N\ Power

~Portland General

70%

e Mills and Wiser - CA Case Study
QO
60% e WWSIS

50% ~—Pelland

Jones - E3 Intersolar

40% | —— RWBeck- Tracking

- RWBeck- Flat
30%

Capacity Credit (%Nameplate)

20%
10%

0%
0% 5% 10% 15% 20% 25% 30% 35%

Solar PV Penetration Rate

Dashed lines are average (fleet-wide) capacity credit while solid lines are
marginal capacity credit.
Source: Adapted from Mills and Wiser, 2012 NREL | 100



...and curtailment increases

60%
==g==Base (BAU) Case
509% - =®=Increased Operational Flexibility
=== Add DR
==t Add 1500 MW Storage and DR
0% 1 Add 1500 MW Storage
=g Add 6000 MW storage
30% - w=fe=Add Exports

20%

California case study

Annual Margilnal Solar Curtailment

10%

0% & T
8% 10% 12% 14% 16% 18% 20% 22% 24% 26% 28% 30% 32% 34%
Annual Solar Energy Penetration

T T T T T T 1

Source: Denholm et al., 2016
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This creates an economic and technical challenges

for variable generation

80 -~

70

60

50 -

40 | gmmBase (BAU)

30 = === Increased Operational Flexibility \

=i=Add DR e
20 - ‘Add 1500 MW Storage
=i Add 1500 MW Storage and DR

10 g Add Exports
wege= Add 6000 MW storage

Generation (5/MWh)

Total PV Value per unit of Potential

0 1 | T T T T
12% 14% 16% 18% 20% 22% 24% 26% 28% 30% 32% 34%
Annual Solar Energy Penetration

Source: Denholm et al., 2016 NREL | 102



Top 10 Resource to Learn More

FERC Energy Market Primer: https://www.ferc.gov/market-
oversight/guide/energy-primer.pdf

FERC Reliability Primer: https://www.ferc.gov/legal/staff-
reports/2016/reliability-primer.pdf

Eastern Renewable Generation Integration Study:
http://www.nrel.gov/docs/fy160sti/64472.pdf

Denholm, et al. “The Role of Energy Storage with Renewable
Electricity Generation” NREL/TP-6A2-47187:
http://www.nrel.gov/docs/fy100sti/47187.pdf

Ela et al. Operating Reserves and Variable Generation:
http://www.nrel.gov/docs/fyl1osti/51978.pdf

Denholm et al. Over-generation from Solar in California: a field
guide to the duck chart:
http://www.nrel.gov/docs/fy160sti/65023.pdf

Energy Systems Integration Group

Charting the Future of Energy Systems Integration and Operations

10.

A Wider Horizon:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5753335

Milligan et al. Operational Analysis and Methods for Wind
Integration Studies
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=59346
24

Wholesale Electricity Market Design Initiatives in the United
States: Survey and Research Needs
https://www.epri.com/#/pages/product/3002009273/?lang=en-
uUs

“Expansion Planning for Electrical Generating Systems: A
Guidebook”, International Atomic Energy Agency, Technical

Reports, 1984
http://www.energycommunity.org/documents/IAEATRS241.pdf
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https://www.ferc.gov/market-oversight/guide/energy-primer.pdf
https://www.ferc.gov/legal/staff-reports/2016/reliability-primer.pdf
http://www.nrel.gov/docs/fy16osti/64472.pdf
http://www.nrel.gov/docs/fy10osti/47187.pdf
http://www.nrel.gov/docs/fy11osti/51978.pdf
http://www.nrel.gov/docs/fy16osti/65023.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5753335
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5934624
https://www.epri.com/#/pages/product/3002009273/?lang=en-US
http://www.energycommunity.org/documents/IAEATRS241.pdf

Google:

“ESIG Toward 100%”

Contact me:

aaron.bloom@nexteraanalytics.com




