

Taxes, Subsidies or Regulation: Why have Britain's carbon emissions from electricity halved?

Richard Green, Iain Staffell and Kate Ward

2 October 2019 - work in progress!

Some recent British data

Problem solved?

Some recent British data

Problem solved?

Some recent British data

Problem solved?

- How generation changed in Britain
- Past studies of emissions savings
- Our approach
 - Shapley Value to assign reductions to changes
 - Simulation modelling the enhanced merit order stack
- Results
 - What caused the fall in emissions
 - What did this do to prices?
 - What was cost-effective?

How did generation change?

Generation in Great Britain

Monthly averages

Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16 Jan-17 Jan-18

Imperial College

Business School

The power of carbon prices

GB Fuel & Electricity Prices

Contracts for delivery at different times

© Imperial College Business School

Sources: Elexon, BEIS and ICE

GB Fuel & Electricity Prices

Contracts for delivery at different times

© Imperial College Business School

Sources: Elexon, BEIS and ICE

GB Fuel & Electricity Prices

Contracts for delivery at different times

Sources: Elexon, BEIS and ICE

Previous studies

Marginal CO₂ Emissions

Econometric studies

Who?	Where?	What?	How Much?	Reference
Hawkes	Great Britain	Demand	690 kg/MWh	<i>Energy Policy</i> , 2010
Siler-Evans <i>et al.</i>	United States	Demand	490-830 kg/MWh (vary over place)	Environ. Sci. Technol., 2012
Kaffine <i>et al.</i>	Texas	Wind	470 kg/MWh	<i>Energy Journal</i> , 2013
Cullen	Texas	Wind	429 kg/MWh <i>560 kg/MWh</i>	<i>AEJ: Econ. Pol.,</i> 2013
Thompson <i>et al.</i>	Great Britain	Demand Wind	490-660 kg/MWh 483-611 kg/MWh (vary over time)	Energy Policy, 2017
Chyong <i>et al.</i>	Great Britain	Wind	334-436 kg/MWh (vary over time)	EPRG working paper, 2019

Imperial College Business School Emissions savings from wind

Chyong, Guo and Newbery (EPRG WP, 2019)

Renewables and Prices

- The Merit Order Effect
 - Renewable output depresses prices until capacity adjusts
 - Sensfuβ et al. (En. Pol., 2008)
 - Sáenz de Miera et al. (En. Pol., 2008)
- The Twomey-Neuhoff Effect
 - Renewable output depresses its own price
 - Twomey and Neuhoff (*En. Pol.*, 2010)
- The race between costs and revenues
 - Capacity gives learning, cutting costs; but revenues fall too!
 - Green and Léautier (Toulouse WP, 2015)

Load, PV Output and Prices

California, 2012 and 2016

See also Hirth (2015) <u>http://dx.doi.org/10.1049/iet-rpg.2014.0101</u>

Imperial College

Business School

\mathcal{O}

Imperial College Business School

German Electricity Prices

Decomposition by Hirth (En Jnl, 2017)

The Shapley Value

Getting rid of the residual

The Shapley Value

19

A concept from cooperative games

- How much do you bring to a coalition?
 - Add yourself to every possible sub-coalition and take the average impact
- $\varphi_i(v)$ is the Shapley Value
- N players
- S is a potential coalition among them
- v(S) is the worth of that coalition

$$\varphi_{i}(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (N - |S| - 1)!}{N!} \left(v(S \cup \{i\}) - v(S) \right)$$

© Imperial College Business School weighting /'s contribution

The Shapley Value of Wind

Applying the concept to our setting

- Worth is carbon emissions, which fell from 164 to 66 mt.
- Carbon price rose from £6/tonne to £32/tonne
- Coal price rose from £9/MWh to £10/MWh and gas price fell from £21/MWh to £19/MWh
- Coal capacity fell from 26 GW to 14 GW and gas capacity fell from 31 GW to 29 GW
- Wind capacity rose from 7 GW to 22 GW
- Solar PV capacity rose from 1 GW to 13 GW
- Demand fell from 319 TWh to 294 TWh

Simulation modelling: Enhanced Merit Order Stack

Ward, Green & Staffell (*En. Pol.* 2019) https://doi.org/10.1016/j.enpol.2019.01.077

Merit Order Stack

Typical stack model with blocks of plant

Merit Order Stack

Each plant type has tranches with different bids

Enhanced Merit Order Stack

Tranches rearranged: part-loading in the merit order

Imperial College

Business School

Standard (left) versus Enhanced Merit Order Stack

Plant Utilisation (load factor)

Standard (left) versus Enhanced Merit Order Stack

CO₂ emissions (m. tonnes)

Simulation results

Model inputs

Demand and available capacity

Model inputs

Fuel and carbon prices

Model inputs and outputs

Black = actual; Green = simulation

What if...

Nothing was fixed?

What if...

Fossil capacity was fixed?

32

What if...

Fossil capacity was fixed?

What if...

Fossil and renewable capacity was fixed?

What if...

Fossil & renewable capacity was fixed?

Drivers of emissions

The drivers of emissions

Great Britain, 2012-2018

The drivers of emissions

Great Britain, 2011-2018

"Non-marginal" emissions

g/kWh kg/MWh tonnes/GWh	Basis for comparison:		
	2018 vs 2012	2018 vs 2011	
Wind	-582	-620	
Solar	-668	-674	
Demand	750	835	

Gas intensity: 394 tCO₂/GWh

Coal intensity: 937 tCO₂/GWh

\bigcirc

Imperial College Business School The drivers of price changes

Great Britain, 2012-2018

Renewable Subsidies

- Renewables Obligation Certificates
 - "Tradable green certificates", technology-differentiated, from 2003-c.2015
- Feed-in Tariffs
 - Small-scale generators, from 2010
- Contracts for Difference
 - Large generators, auctioned contracts, from 2015
 - First schemes at "administered prices"

Impact on consumer prices

- Wind subsidy of £85/MWh (of wind output)
- Merit Order Effect of £5.36/MWh (market-wide)
- Overall impact: increase of £4.6/MWh (market-wide)
- Solar subsidy of £80/MWh (of PV output)
- Merit Order Effect of £2.32/MWh (market-wide)
- Overall impact: increase of £0.5/MWh (market-wide)

Cost of carbon reductions

- NB this uses subsidy rather than resource cost of wind and solar
 - Changes in coal and gas output assigned via Shapley values and costed at 2018 fuel prices
 - No attempt to consider impact of demand responses
- Wind saved 20 m tonnes CO₂ for £90/tonne
- PV saved 7 m tonnes CO₂ for £60/tonne
- Carbon prices saved 15 m tonnes CO₂ for £14/tonne

Thank you