Designing the electricity market of the future: **Current applied research at** the Midcontinent **Independent System** Operator

Stephen Rose

June 12, 2019

What is MISO?

- An "Independent System Operator" (ISO) and Regional Transmission Organization" (RTO)
- 42 million customers
- 131 GW peak load
- 189 GW gen. capacity
- 68,000 miles of transmission lines

Where does the energy come from?

What does MISO do?

Plan new
transmission
Operate market(s)
Control
generation

MISO's Vision: Most reliable, value-creating RTO

MISO is trying to anticipate effects of 3 key trends:

- De-marginalization
 - How to run a market when marginal cost for main commodity is lower than average cost?
- Decentralization
 - How to operate the grid with many more resources, which we don't control (or even see)?
- Digitalization
 - How do we use the increasing amount of data available?

De-marginalization

- If energy is cheap, what other services should resources be paid for?
 - ("Essential Reliability Services")
- Incentives:
 - Short-term for performance, e.g. scarcity prices
 - Long-term for investment, e.g. capacity markets

Decentralization

- How to operate the grid if distributed resources don't participate in the market?
 - Those resources may be invisible
- How could distributed resources participate?
 - Aggregation and "Virtual Power Plants"
- Who has jurisdiction over distributed resources?

Digitalization

- We have more and better data
- Communications enables new resources, e.g. Nest thermostats as demand-response
- Inverter-based resources (solar PV) can provide new grid services

MISO sees 3 key future needs:

- Availability: will we have enough resources when needed?
 - Quantifying uncertainty of generation & load
 - Estimating effect of changes in generator fleet
 - How to incentivize?
- Flexibility: can resources respond as needed?
 - How to define and measure?
 - How much do we need? How much is available?
 - How to incentivize?
- Visibility: can we forsee
 - Collaborations with neighbors
 - Forecasts and real-time information about Distributed Energy Resources

Other current research

- Improving speed of optimization algorithm
- Expanding scope of optimization algorithm
- Renewables integration
- Congestion forecasting

Optimization: Unit commitment is a hard problem Is SCUC MIP Model Particularly Large?

Copyright © 2017, Gurobi Optimization, Inc.

Optimization: Improving speed

- Algorithms to take advantage of highperformance computers (esp. parallelization)
- Heuristics to simplify problem
 - e.g. pre-screen constraints
- Evaluate alternative commercial solvers

Optimization: Expanding the scope

- Optimize configuration of individual combined-cycle plants
- Multi-day commitment?
- Stochastic or robust unit commitment?

Renewables will cause little change to peak load by 2023

Renewables could make MISO a net exporter in 2023

MISO's University Partnerships

- Center for Ultra-Wide-Area Resilient Electric Energy Transmission Networks (CURENT)
- Power Systems Engineering Research Center (PSERC)
- Individual partnerships with several universities across the country, focusing on joint R&D efforts

Summary

 Electricity system is changing fast

- We have lots of questions
- We're interested in collaboration

Stephen Rose srose@misoenergy.org

Stephen Rose srose@misoenergy.org