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The Challenge: Providing Trustworthy Grid Operation in
Possibly Hostile Environments

 Trustworthy

— A system which does what it is supposed to do, and nothing
else

— Safety, Availability, Integrity, Confidentiality ...
 Hostile Environment

— Accidental Failures

— Design Flaws

— Malicious Attacks
e Cyber Physical

— Must make the whole system trustworthy, including both
physical & cyber components, and their interaction.



BACKGROUND.



Energy Sector Cybersecurity

Different _ Priorities

Energy Delivery /\‘ Business IT

Control Systems Systems

Energy delivery control systems (EDS) must be able to survive a cyber incident while sustaining
critical functions

Power systems must operate 24/7 with high reliability and high availability, no down time for
patching/upgrades

The modern grid contains a mixture of legacy and modernized components and controls

EDS components may not have enough computing resources (e.g., memory, CPU, communication
bandwidth) to support the addition of cybersecurity capabilities that are not tailored to the energy
delivery system operational environment

EDS components are widely dispersed over wide geographical regions, and located in publicly
accessible areas where they are subject to physical tampering

Real-time operations are imperative, latency is unacceptable SOURCE: CAROL HAWK, DOE
CEDS OVERVIEW PRESENTATION
Real-time emergency response capability is mandatory
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uirements

Other
Coordinators

Cross Cutting Issues
e Large-scale, rapid propagation of effects

* Need for adaptive operation

* Need to have confidence in trustworthiness of resulting approach
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In the smart grid, the cyber Infrastructure must provide
control at multiple levels

<>Multi-layer Control Loops
<>Multi-domain Control Loops
<> Demand Response
<> Wide-area Real-time control
<> Distributed Electric Storage
<> Distributed Generation
<> Intra-domain Control Loops
<> Home controls for smart
heating, cooling, appliances
<> Home controls for distributed
generation
<> Utility distribution
Automation
<> Resilient and Secure Control
<> Secure and real-time
communication substrate
<> Integrity, authentication,
confidentiality
<> Trust and key management
<> End-to-end Quality of Service
<> Automated attack response
systems
<> Risk and security assessment
<> Model-based, quantitative
validation tools

Resilient and Secure Control Loops
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Note: the underlying Smart Grid Architecture has been developed by EPRI/NIST.



HUMBLE CYBER SECURITY BEGININGS, CIRCA 2000.

RAPID ADVANCE TO ADOLESCENCE.



o0 INFORMATION

NSTITUTE

Classical (Physical) Attack Approaches

Physical attacks on lines, buses and other equipment can
be locally effective:

— “low tech” attacks may be easy, and are also difficult to
defend against

— Requires physical proximity of attacker

— Particularly effective if multiple facilities are attacked in
a coordinated manner

But coordination may be much easier in a cyber attack

J.D. Konopka (a.k.a. Dr. Chaos) Alleged to have caused
$800K in damage in disrupting power in 13 Wisconsin
counties, directing teenaged accomplices to throw
barbed wire into power stations. (From Milwaukee
Journal Sentinel)
http://www.jsonline.com/news/Metro/may02/41693.asp
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Potential Cyber Attack Strategies

Tripping breakers
Changing values breaker settings

— Lower settings can destabilize a system by inducing a
large number of false trips

— Lowering trip settlngs can cause extraneous other
breakers, causing overloading of other transmission
lines and/or loss of system stability

Corrupting Control Information: Smart Meters, SCADA
Data, PMU Data, Dispatch Information, etc.

Sophisticated multi-stage attacks
Life cycle attacks

Insider threats

Physical damage by cyber means
Combined physical and cyber attacks



Industry Roadmap — A Framework for Public-Private
Collaboration

e Published in January 2006/updated 2011

éﬂ““ Roadmap to

! Achieve Energy * Energy Sector’s synthesis of critical
| Defivery Systsms control system security challenges, R&D

Cybersecurity

needs, and implementation milestones
* Provides strategic framework to
— align activities to sector needs

— coordinate public and private
programs

— stimulate investments in control
systems security

Roadmap Vision
By 2020, resilient energy delivery systems are designed, installed,

operated, and maintained to survive a cyber incident while sustaining
critical functions.
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FERC/NERC Cyber security Standards for the Bulk
Electric Power Grid

Energy Policy Act of 2005 created an Electric Reliability
Organization (ERO) to develop and enforce mandatory
cybersecurity standards

FERC designated NERC as the ERO in 2006

NERC worked with electric power industry experts to develop the
NERC Critical Infrastructure Protection (CIP) standards CIP-002
through CIP-009

Standards approved by FERC in 2008, making them mandatory for
owners and operators of the bulk electric system

NERC standards continue to evolve, as the threat environment
evolves, and more is known about critical infrastructure protection
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Real Financial Penalties

NERC

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

October 31, 2012

Ms. Kimberly D. Bose
Secretary \x‘

Federal Energy Regulatory Commission
888 First Street, N.E.
Washington, DC 20426

: Registered | NOC : Reliability Total
Region Entity D NERC Violation ID St Reg. VRF Penalty
ReliabilityFirst -
S UREL | 1448 | RFC201100957 | CIP0021 | RL | Medium® | oo oo
ReliabilityFirst | \or1 | 1448 | RFC201100958 | cIP-002-1 | R2 |  High®
Corporation

http.//www.nerc.com/filez/enforcement/Public_FinalFiled_NOP_NOC-1448.pdf



TODAY’S CYBER RESILENCEY TRENDS, CHALLENGES,
AND GAPS.

Disruptive Trends
Challenges

Research and Technology Gaps
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Trustworthy Cyber Infrastructure for the Power Grid

From Security to Resiliency:
Opportunities and Challenges for the Smart Grid’s

Cyber Infrastructure

Introduction

The electric power grid is in the midst of an ongoing
modernization to the “smart grid,” which includes
deployment of an extensive cyber-physical infrastructure with
sophisticated networking and computational resources. It
includes components from the smart meter to the pole-top to
the substation to the regional operation center, systems that

measure grid states many times per second over large areas,
STV EED=VET SRS P SV HECIEN A S P S SR VEVEV= Ve TE Ve VSR C S S S

such societal goals of the smart grid, while at the same time
improving its security and resiliency in the face of increased
opportunities for external disruption.

Our purpose here is to consider cyber resiliency as the key
enabler of grid resiliency. We start by identifying emerging
trends in smart grid technology that create demands for
increased resiliency, but also increase the number of ways in
which disruptions might be introduced. They include:

¢ the incremental nature of technology introduction,

Position paper available on request
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Disruptive Trends in the Smart Grid (1/4):
Transformation of the Smart Grid Infrastructure

Large numbers of intelligent devices in the substation
and the field

Smart meters deployed as part of AMI
Larger-scale wide-area measurement systems

Mixed legacy environment with older components that
cannot support modern security mechanisms
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Disruptive Trends (2/4):
Energy “Internet of Things” and Utility Clouds

Radical changes in the way industrial control systems will
be managed, owing to network virtualization and
increased connectivity

Increased availability of data and analysis

Many events will become manageable in the cloud as
“wide-area system events”

Increased dependence on computation and
communication will increase the attack surface
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Disruptive Trends (3/4):
Renewables

Wind and solar are both subject to short-term
fluctuations that can potentially destabilize a grid

Resiliency requires technology that can sense

fluctuations quickly and respond to dynamic variation in
generation

Requirement for high system “self-awareness” as well as
advanced analytics

Distributed generation ownership complicates issue
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Disruptive Trends (4/4):
Electric Vehicles

“EV Everywhere” will require a new grid infrastructure,
with new security and resiliency requirements

Control of infrastructure must deal with rapid changes of
volume and location of loads

Billing is likely to follow vehicle

Will result in complex mobile and human-based cyber-
physical system which will create new reliability and
security issues
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Challenges (1/2):
Grid resiliency tied to Cyber Infrastructure Resiliency

e Grid Resiliency may be impacted by the grid’s increased
dependence on cyber technology

e Adverse cyber events may arise from cyber attack, or from
software/hardware malfunction, or through error in
configuration or operation

e Cyber assets might be compromised with no direct attack on
the physical grid system, or a blended attack could impact
both cyber and physical assets



o10 INFORMATION

NSTITUTE

Challenges (2/2):
Grid Dependency on other Infrastructures

Hydroelectric power depends on the correct function of dam
controls

Smart grid communication depends on the telecommunication
infrastructure

The grid features multiple interdependencies with
transportation for fuel delivery

The emerging electric vehicle system will introduce multiple
interfaces, including to transportation

Smart grid market mechanisms will necessitate interfaces to the
financial infrastructure, particularly in the case of demand
response stimulated by rapid real-time price fluctuations
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Research and Technology Gaps (1/4):
Advanced Sensing, Analytics and Control

 Advanced analytics needed to leverage the wide-area
measurement systems being deployed in the smart grid

 Cyber-physical contingency analysis must be developed
to support grid resilience

 Advanced controls needed for intelligent autonomous or
semi-autonomous islanding to achieve resiliency
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Research and Technology Gaps (2/4):
Building a Detection and Response Mechanism

e Detection of suspicious events

— Profusion of potential attack points

— Direct detection via cyber traffic analysis

— Detection informed by physical system state
 Making sense of potential “event avalanche”

— Situational awareness

— Comprehend the joint cyber and physical state
* Response

— Carefully consider consequence of response

— Ultimately, operate through cyber attack or failure
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Research and Technology Gaps (3/4):
Resiliency Assessment

* Define appropriate security metrics
— Integrated at multiple levels
— Applied throughout system lifecycle
— Be both “process” and “product” oriented
e Determine methods for estimating metrics
— To choose appropriate architectural configuration

— To test implementation flaws, e.g., fuzzing, firewall rule
analysis

— Can be applied in cost effective manner before an audit
e Link metrics to technical and business concerns
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Research and Technology Gaps (4/4):
Addressing Non-Technical Issues

e Smart grid components being deployed today will be in
the field for a decade or more

e Social, cultural, and human factors



APPROACHES.
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Cyber Resilient Energy Delivery Consortium (CREDC)

 Will improve the resilience and security of the cyber networks that serve as the
backbone of energy infrastructure

e 11 universities and national laboratories: Argonne, Arizona State, Dartmouth, MIT,
Oregon State, PNNL, Rutgers, Tennessee State, Univ. Houston, and Wash. State

* Funded by DOE: $28.1 million initiative
 Led by David Nicol, with Sanders and Sauer as co-Pls

e Broadens TCIPG research scope to include the oil & gas industry and provides focus on
resiliency

CREDC: Cyber Resilient Energy Delivery Consortium
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CREDC Goals

ldentify gaps in the existing cyber infrastructure for energy
delivery with respect to enhancing EDS resiliency

|dentify trends in emerging technologies that may impact
resiliency

Perform long-term and mid-term research closing gaps, with
mid-term research leading to validated solution prototypes

Develop software infrastructure for empirical evaluation on
hardware testbeds

Develop educational and out-research activities
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CREDC Research Areas

Cyber-Protection Technology
Cyber Monitoring, Metrics, and Evaluation
Risk Assessment of EDS Technology and Systems

Data Analytics for Cyber Event Detection, Management,
Recovery

Resilient EDS Architectures and Networks
Impact of Disruptive Technologies on EDS

Validation and Verification



EXAMPLE APPROACH: Resilient EDS Architectures and
Networks
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Notional Architecture for Resiliency
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Notional Architecture for Resiliency
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Notional Architecture for Resiliency

Diverse System

Monitor

-y
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Current Work Guided is by Notional Architecture
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New Challenge/Opportunity: SCADA as a Service

- Traditional SCADA is an artifact of the “old” centralized power grid.
- SCADA is inflexibile to support “new” microgrids and renewables.

Benefits for SCaas:

* Reduce cost as opposed to hosting an in-house system
* Facilitate remote support and expertise.

* Reduce risk of data loss during disaster.

* Provide on-demand computational resources.

Challenges:
* Cloud requires power to operate.

e Power grid is a real-time system with hard deadlines.
* Cloud and Internet are not reliable.

-

L L

Supervisory network

4doee
es e )
4dooe

ReSiIient Scaas Control i .:?' “e Control system
e Provide hybrid sensor fusion to detect malicious A !
behavior on the expanded SCADA attack surface. A 3

* Design response mechanisms in SCaa$ to support =

resnient ope ration d u ring Cyber attaCkS, Trend Micro Inc., “SCADA in the Cloud A Security Conundrum?”, 2013
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New Challenge/Opportunity: SCADA as a Service

Attack surface expands to include:

¢ Communication between the RTU and cloud
e Virtual machines (public cloud setting)

- Traditional SCADA is an artifact of the “old” centralized power grid.
- SCADA is inflexibile to support “new” microgrids and renewables.

Benefits for SCaas:

* Reduce cost as opposed to hosting an in-house system
* Facilitate remote support and expertise.

* Reduce risk of data loss during disaster.

* Provide on-demand computational resources.

Challenges:

* Cloud requires power to operate.

* Power grid is a real-time system with hard deadlines. il
* Cloud and Internet are not reliable. Threats to SCADA as a Service:
* “Traditional” threats to the SCADA apply to cloud SCADA
. * Cloud threats
Resilient SCaa$ — ' —
* Provide hybrid sensor fusion to detect malicious ﬁ b u
behavior on the expanded SCADA attack surface. R | =2

* Design response mechanisms in SCaa$ to support

resilient ope ration d u ring Cyber attaCkS. Trend Micro Inc., “SCADA in the Cloud A Security Conundrum?”, 2013



EXAMPLE APPROACH: Risk Assessment of EDS
Technology and Systems (1)
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Failure to Comply with NERC/CIP Requirements:
Real Financial Penalties

NERC

1o

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

October 31, 2012

Ms. Kimberly D. Bose
Secretary \K‘

Federal Energy Regulatory Commission
888 First Street, N.E.
Washington, DC 20426

: Registered | NOC : Reliability Total
Region Entity D NERC Violation ID Std. Reg. VRF Penalty
ReliabilityFirst ,5
e UREL | 1448 | RFCZ01100957 | 0021 | R1 | Medium® | oo oo
Reliabilityfirst |\ or1 | 1448 | ReC201100958 | CIP-002-1 | R2 |  High®
Corporation

http.//www.nerc.com/filez/enforcement/Public_FinalFiled_NOP_NOC-1448.pdf
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Operation-Time Compliance/Risk Assessment Needs

Complexity of network infrastructures is growing every day

— Security policies become too large to be manually
verified

— Utilities do not have IT resources to manage incidents

Lack of situational awareness solutions to understand the
impact of potential threats

High cost to comply with security regulations

— Critical Infrastructure, Protection (CIP) Reliability
standards

Even higher cost when infractions are found
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Analysis Approach

 NP-View tool performs a comprehensive security policy
analysis

— Understand complex interactions in a system where
multiple firewalls are deployed

e Automate most of the
reporting process
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Analysis Overview

Host-based, router-based dedicated

firewalls or OS-based access control

—

Securely import rule-sets

FORR e
A W 4 \ 1 o
ATEMETA \ﬁ b N
‘@ w0 b O
uas}m AN —® inkamah Galnan

A ™ £l :\m 0830 A

rpseaeee  1Trxese @ 12172004
[ REcEHTT

1723000230800

af 1

Loadng topatogy Mo

1. Parse Native Configuration Files

2. Infer topology:
Inspecting routes
Creating primary networks
Marking VPN networks
Creating nodes from group definitions
Building border cloud of unmapped IP
Saving results to XML files

3. Load model into engine:
Looking up dynamic IP addresses
Creating data structures to store rules
Generating graph to store topology
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Path Analysis is Key

The engine keeps a model of the network in memory

Type of path analysis queries:

— Exhaustive path analysis
e Return all possible paths in the network
* Prone to scalability issues for large networks
— End point (a network or a host)
e Return all possible paths originating or ending at the selected end point

— Firewall

e Return all possible paths permitted by a selected firewall

e Can be refined for a specific ACL and a specific rule
— Tunnel

e Return all possible paths that go through a selected tunnel
— Pair analysis

e Return all possible paths going from a selected source to a selected
destination

* Provide a “path halt” mode to troubleshoot why a path doesn’t reach its
destination



Network Vulnerability Analysis
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Commercialization

[ ®  ® 3 Home | Network Perception -  x William

|
| €& C  ® www.network-perception.com |

o

T o network
\P perception

SOFTWARE SERVICES ABOUT CAREER CONTACT

Visualize and Audit your Firewalls with NP-View

NP-View,solves your firewall audit problem’by performing an automated and comprehensive network path analysis of
your network.

Learn More

| www.network-perception.com



EXAMPLE APPROACH: Risk Assessment of EDS
Technology and Systems (2)
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Quantifying Resiliency

e At design time

— System architects make trade-off decisions to best meet all
design criteria

— Other design criteria can be quantified: performance, reliability,
operating and maintenance costs, etc.

— How can we quantify the security of different system designs?
e During system operation and maintenance

— Modifying the system architecture can improve or worsen
system security

— How can we compare the security of different possible system
configurations?

Model-based system-level resiliency evalueltion
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Design-Time Risk Assessment: ADVISE

System Information
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Model Execution: the Attack Decision Cycle

The adversary selects the most attractive available attack step based
on his attack preferences.

State transitions are determined by the outcome of the attack step
chosen by the adversary.

Current Determine all
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Steps in State si
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1
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Final Thoughts

Incredible opportunity for academics, rich with opportunity
for algorithms and analysis

— Can make progress by solving parts of the problem
Must break out of the current “pierce and patch” mentality

Solutions require thinking short term and long term at the
same time

Must deeply engage academia, industry, and government

All parties must work closely together
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