# Implications of EPA's Clean Power Plan under Clean Air Act Section 111(d)

PRESENTED TO Department of Engineering and Public Policy Carnegie Mellon University

PRESENTED BY Kathleen Spees

September 18, 2015



## Contents

- The Rule
- EPA's Projected Impacts
- State Compliance Options
- Takeaways

## What are the Key Rule Provisions?

# On June 2, the EPA under Section 111(d) set CO<sub>2</sub> emissions standards on existing fossil electric generation units (EGUs)

- EPA reviewed existing emissions reductions methods to establish the Best System of Emissions Reduction (BSER)
- BSER is applied to each state's current fossil EGU emissions rate to set state-specific fossil emissions rate standards for 2020 – 2030
- Option 1: interim goal for 2020 2029 (to meet on average) and a final goal for 2030 and beyond; EPA is also considering Option 2: less stringent but sets earlier goals over 2020 2024 with final goal for 2025 and beyond
- States given flexibility in how to meet the standards

| Timeline for Compliance |                                                                      |  |  |  |
|-------------------------|----------------------------------------------------------------------|--|--|--|
| 2014                    | Proposed Rule – Comment period ends December 1, 2014 (just extended) |  |  |  |
| 2015                    | Final Rule                                                           |  |  |  |
| 2016                    | Initial report on State Implementation Plans (SIPs)                  |  |  |  |
| 2017                    | Final SIPs (for single-state plans)                                  |  |  |  |
| 2018                    | Final SIPs (for multi-state plans)                                   |  |  |  |
| 2020-30                 | Compliance period                                                    |  |  |  |

## Projected Effect of Standards on CO<sub>2</sub> Emissions

The proposed standards are designed to bring emissions to 30% below 2005 levels.



*Sources:* CO<sub>2</sub> from EPA CEMS, EIA total generation, and projections from EPA IPM results under Option 1 No Cooperation.

3 | brattle.com

# EPA's Best System of Emissions Reductions (BSER)

#### BSER includes four methods of emissions reduction, assessed for feasibility in each state.

| BSER<br>Building Block                                   | EPA Basis<br>for BSER Determination                                                                                                                                                                                                                                                                                                                                                                                                        | EPA Estimated<br>Average Cost                               | % of BSER<br>CO <sub>2</sub> Reductions |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|
| 1. Increase efficiency of<br>fossil fuel power<br>plants | EPA reviewed the opportunity for coal-fired plants to improve their heat rates<br>through best practices and equipment upgrades, identified a possible range of<br>4–12%, and chose 6% as a reasonable estimate. BSER assumes all coal plants<br>increase their efficiency by 6%.                                                                                                                                                          | \$6–12/ton                                                  | 12%                                     |
| 2. Switch to lower-<br>emitting power plants             | EPA determined for re-dispatching gas for coal that the average availability of gas CCs exceeds 85% and that a substantial number of CC units have operated above 70% for extended periods of time, modeled re-dispatch of gas CCs at 65–75%, and determined 70% to be technically feasible. BSER assumes all gas CCs operate up to 70% capacity factor and displace higher-emitting generation ( <i>e.g.</i> , coal and gas steam units). | \$30/ton                                                    | 31%                                     |
| 3. Build more low/zero carbon generation                 | EPA identified 5 nuclear units currently under construction and estimated that 5.8% of all existing nuclear capacity is "at-risk" based on EIA analysis. BSER assumes the new units and retaining 5.8% of at-risk nuclear capacity will reduce $CO_2$ emissions by operating at 90% capacity factor.                                                                                                                                       | Under Construction:<br>\$0/ton<br>"At-Risk":<br>\$12–17/ton | 7%                                      |
|                                                          | EPA developed targets for existing and new renewable penetration in 6 regions<br>based on its review of current RPS mandates, and calculated regional growth factors<br>to achieve the target in 2030. BSER assumes that 2012 renewable generation grows<br>in each state by its regional factor through 2030 (up to a maximum renewable<br>target) to estimate future renewable generation.                                               | \$10–40/ton                                                 | 33%                                     |
| 4. Use electricity more efficiently                      | EPA estimated EE deployment in the 12 leading states achieves annual incremental electricity savings of at least 1.5% each year. BSER assumes that all states increase their current annual savings rate by 0.2% starting in 2017 until reaching a maximum rate of 1.5%, which continues through 2030.                                                                                                                                     | \$16–24/ton                                                 | 18%                                     |

# CO<sub>2</sub> Rate Standards on Existing Fossil Units

The EPA standards are not intuitive emission rates. Some BSER blocks reduce the numerator ( $CO_2$  emissions) and others increase the denominator (qualified MWh).



Source: Derived from EPA 111(d) technical support document: rate calculation for Option 1.

## Rule Provisions Fossil Unit Emission Rate Standards by State



Source: Derived from EPA 111(d) technical support document: rate calculation for Option 1.

# EPA's Projected Impacts 2030 Fleet Capacity and Generation Mix

- Even though non-hydro renewables are 33% of the BSER blocks, IPM projections add only 2% more nonhydro renewables by 2030 vs. BAU
- Assumed energy efficiency and coal-togas re-dispatch dominate

#### EPA Projected Generation (TWh) by 2030

| Generation   | BAU   | Option 1:<br>No Cooperation | Change |
|--------------|-------|-----------------------------|--------|
|              | (TWh) | (TWh)                       | (TWh)  |
| Coal         | 1,668 | 1,216                       | (452)  |
| Gas CC       | 1,409 | 1,345                       | (64)   |
| Hydro        | 280   | 280                         | 0      |
| Non-Hydro RE | 350   | 356                         | 6      |
| Nuclear      | 797   | 797                         | 0      |
| Others       | 52    | 57                          | 5      |
| Total        | 4,557 | 4,051                       | (506)  |

Source: EPA IPM





# EPA's Projected Impacts Projected 2030 Emissions Reductions



Source: EPA IPM

## **EPA's Projected Impacts EPA** Indicative CO<sub>2</sub> Prices (No Cooperation)



Sources and Notes:

Scenario

EPA IPM Option 1, No Cooperation scenario. Map shows "shadow prices" on emissions rate constraint, expressed in \$/ton of CO<sub>2</sub> Table reports total compliance costs.

9 brattle.com

## Market-Based Trading Approaches

|                                                | CO <sub>2</sub> Allowances<br>(Mass-Based)                                                                                   | CO <sub>2</sub> Offsets<br>(Rate-Based)                                                                                                            | Zero-CO <sub>2</sub> MWh<br>(Rate-Based)                                                                                                |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Definition of<br>Trading Product               | • 1 ton of CO <sub>2</sub>                                                                                                   | • 1 ton of CO <sub>2</sub>                                                                                                                         | <ul> <li>1 MWh of generation from a zero-CO<sub>2</sub> resource (like a Renewable Energy Credit)</li> </ul>                            |
| How Does a<br>Fossil Plant<br>Comply?          | <ul> <li>Purchase 1 allowance<br/>for every ton of CO<sub>2</sub><br/>emitted</li> </ul>                                     | <ul> <li>Purchase enough offsets to meet rate formula:</li> <li><u>CO<sub>2</sub> Emitted -CO<sub>2</sub> Offsets</u><br/>MWh Generated</li> </ul> | <ul> <li>Purchase enough allowances<br/>to meet rate formula:</li> <li><u>CO<sub>2</sub> Emitted</u><br/>MWh Gen+MWh Credits</li> </ul> |
| How are<br>Credits<br>Allocated or<br>Created? | <ul> <li>Fixed quantity is pre-set</li> <li>Auctioned to highest<br/>bidder or allocated to<br/>specific entities</li> </ul> | <ul> <li>Gas units create credits when<br/>running if they are under the<br/>state rate standard (coal units<br/>consume credits)</li> </ul>       | <ul> <li>1 REC is created whenever a<br/>qualified zero-emitting<br/>resource produces power</li> </ul>                                 |
| Similar Existing<br>Programs                   | <ul> <li>RGGI, California AB32,<br/>Europe, Quebec</li> </ul>                                                                | <ul> <li>Alberta (somewhat similar)</li> </ul>                                                                                                     | <ul> <li>REC programs under existing<br/>state RPS</li> </ul>                                                                           |

# **Big Difference in Mass- and Rate-Based Trading**

# Wholesale prices would be higher under mass-based CO<sub>2</sub> trading:

- Mass-based:
  - Fossil generators must pay for every ton of carbon produced, increasing dispatch costs and wholesale prices
  - They or consumers could be compensated through allowance auction revenues

### Rate-based:

- Fossil units only have to pay for enough CO<sub>2</sub> to reduce their emissions rate to the standard
- In many states, the rate exceeds that of gas CCs, so they will earn revenue from creating offsets when they run (reducing energy their offer price!)



### **Coal and Gas Dispatch Price**

Sources and Notes:

Illustrative calculation assumes that coal-to gas switching is the marginal  $CO_2$  abatement opportunity, resulting in equal coal and gas dispatch prices.

## **Inefficiencies Under Rate-Based Trading**

Rate-based approaches will create substantial dispatch inefficiencies between states and some resource types. Two examples:



## State Compliance: Rate vs. Mass Potential 2030 Energy Price Impacts



Sources and Notes:

BAU and Rate-based prices are from EPA IPM results for year 2030 under Option 1: Regional cooperation, showing simple average and range of prices by region. Mass-based prices are approximate, starting with the BAU price and adding regional  $CO_2$  price assuming a gas CC is the marginal energy resource.

# Takeaways

#### EPA's Proposed Rule

- Will achieve substantial emissions reductions within the confines of EPA's authority
- Standards vary widely across states based on numerous assumptions about sources of potential target reductions, which many states are questioning (e.g. Texas)
- Individual state standards don't directly indicate relative compliance burdens
- The rule treats resources with similar emissions asymmetrically
- Key Compliance Questions for States (other than disputing their standards)
  - Whether and how to cooperate with other states to reduce compliance costs
  - Whether to convert to mass-based compliance or at least mass-based trading, which efficiently puts all carbon abatement options on a level playing field. Higher wholesale prices are not worse for consumers if they own allowance auction revenues.
  - If not converting to mass-based, find other ways to remedy inefficiencies caused by the rate's exclusion of new CCs, most nuclear, and hydro

#### Implications for Asset Values

- Nuclear: value highly depends on the rate-based vs. mass-based trading
- Coal: loses substantial value
- Gas: a slight winner, esp. with rate-based trading that inefficiently excludes new

## **Presenter Information**

#### **KATHLEEN SPEES**

Senior Associate | Cambridge, MA Kathleen.Spees@brattle.com +1.617.234.5783

Dr. Kathleen Spees is a senior associate at The Brattle Group with expertise wholesale electric energy, capacity, and ancillary service market design and analysis. Dr. Spees has worked with system operators in the U.S. and internationally to improve their market designs with respect to capacity markets, scarcity and surplus event pricing, ancillary services, wind integration, and energy and capacity market seams.

For other clients, Dr. Spees has engaged in assignments to support business and investment decisions related to demand response penetration potential, virtual trading, FTRs, ancillary service markets, impacts of environmental regulations on coal retirements, tariff mechanisms for accommodating merchant transmission upgrades, renewables integration approaches, and market treatment of storage assets.

Kathleen earned a B.S. in Mechanical Engineering and Physics from Iowa State University. She earned an M.S. in Electrical and Computer Engineering and a Ph.D. in Engineering and Public Policy from Carnegie Mellon University.

The views expressed in this presentation are strictly those of the presenter and do not necessarily reflect the views of The Brattle Group, Inc.

## About the Brattle Group

The Brattle Group provides consulting and expert testimony in economics, finance, and regulation to corporations, law firms, and governmental agencies worldwide.

We combine in-depth industry experience and rigorous analyses to help clients answer complex economic and financial questions in litigation and regulation, develop strategies for changing markets, and make critical business decisions.

Our services to the electric power industry include:

- Climate Change Policy and Planning
- Cost of Capital
- Demand Forecasting Methodology
- Demand Response and Energy Efficiency
- Electricity Market Modeling
- Energy Asset Valuation
- Energy Contract Litigation
- Environmental Compliance
- Fuel and Power Procurement
- Incentive Regulation

- Rate Design and Cost Allocation
- Regulatory Strategy and Litigation Support
- Renewables
- Resource Planning
- Retail Access and Restructuring
- Risk Management
- Market-Based Rates
- Market Design and Competitive Analysis
- Mergers and Acquisitions
- Transmission

## Offices

### **NORTH AMERICA**



Cambridge

New York

San Francisco

Washington, DC

## **EUROPE**



London

Madrid

Rome