Grid Connected Solar Power in India: Status and Prospects

Rangan Banerjee Forbes Marshall Chair Professor

Department of Energy Science and Engineering Indian Institute of Technology Bombay

CEIC Seminar, CMU March 27th via video-conference

India and US (Selected Indicators for 2010)

Population	1171 million	310.11 million	
GDP (PPP)	3763 Billion 2005 US\$ (3213 \$/person)	13017 Billion 2005 US\$ (41975 \$/person)	
Primary Energy	29.0 EJ	92.6 EJ	
Energy/person	24.7 GJ/person/year	298.7 EJ	
Electricity/person	644kWh/capita/year	13361 kWh/capita/year	
CO2 emissions Per person	1626 Million tonnes	5369 Million tonnes	
Per GDP	1.39 tonnes /capita/year	17.31 tonnes /capita/year	
	0.43 kg /US\$ ppp	0.41 kg /US\$ ppp	

Source: IEA, Key World Energy Statistics 2012

Renewable installed capacity and generation

	Installed	Estimated	Estimated
	Capacity*	Capacity factor	Generation
	(MW)		(GWh)
Wind	18635	14%	22854
Biomass Power	1264	70%	7751
Bagasse		60%	
Cogeneration	2301		12094
Small Hydro	3552	40%	12446
Waste to Energy	96	50%	420
Solar PV	1447	20%	2535
Total	27295	25%	58101

*as on 28.02.2013 MNRE website: www.mnre.gov.in

Renewable Share in Power

Annual PV module / cell Production

Solar Mission- JNSM Targets

S.No.	Application	Target for	Target for	Target for
	segment	Phase I	Phase II	Phase III
		(2010-13)	(2013-17)	(2017-22)
1.	Solar collectors	7 million sq	15 million	20 million
		meters	sq meters	sq meters
2.	Off grid solar applications	200 MW	1000 MW	2000 MW
3.	Utility grid power, including roof top	1000-2000 MW	4000-10000 MW	20000 MW

Megawatt size grid solar power plants – India

Project Developer	Project site	Capacity (MW)	PV Technology	Operation in Days	Generation in MWh
WBGEDCL*	Jamuria, Asansol, West Bengal	1	Crystalline Silicon Sept.09 - Aug. 10	614 (365)	1879.9 12.29%
Azure Power	Awan, Amritsar, Punjab	1	Crystalline Silicon Dec.09 to Nov.10	577 (365)	3312 16.92%
Mahagenco	Chandrapur, Maharashtra	1	a-Si Thin Films May 10 to Apr.11	448 (365)	1654.2 15.39%
Reliance Industries	Nagaur, Rajasthan	5	Crystalline Silicon, Thin Films, CPV	352 July 10 to June 11	7473.3 18.8%
Saphhire Industrial	Sivaganga, Tamil Nadu	5	a-Si Thin Films	190	4271.3
Sri Power	Chittoor, Andhra Pradesh	2	Crystalline Silicon CdTe Thin Film	92	901.9

Source: 32/54/2011-12/PVSE, MNRE

Typical Daily Electricity Generation Variation

No. of Units Generated

Challenges

Solar Insolation and area required

Source: World Energy Outlook – 2008, International Energy Agency

- 1. Limited experience in CSP in the country
- 2. Need for cost reduction
- 3. Need for indigenous technology, system development
- 4. Need for demonstration, public domain information

Solar Concentrators

Parabolic Trough

Scheffler paraboloid dish

Heliostat

CLFR Technology

Arun Technology

Solar Thermal Technologies

	Companies	Operating temp.	Efficiency, η	Remarks
Parabolic Trough	Abener, Thermax, KIE Solatherm	350-400℃	Peak 14-20% 11-16% Annual	Commercial
Linear Fresnel Reflector	KG Design, Areva	220-250℃	Peak 18% Annual 13%	Lower cost
Dish	Gadhia Solar, Clique, WRST, Birla Terra Joule, ATE	200 - 700℃	Peak 30% Annual 12- 25%	Solar heating cooking
Heliostats Solar Tower	E-Solar (ACME) 2.5 MW at Bikaner Sunborne	450-565℃	23-25% 7-20%	

Estimated LCOE for existing and proposed Parabolic Trough and Solar Tower CSP Plants

Solar Tower

E-Solar – Acme partnership-----

First grid connected plant in India 2011

2.5 MW out of 10 MW installed Bikaner Rajasthan

Double-axis softwaremirror tracking system Lightweight, small size 1 m² flat mirrors

Plant output not stabilised – insolation, auxiliary consumption

14

http://acme.in/solar/thermal.html

KG Design Services Private Limited (KGDS)

- Solar thermal research centre in Coimbatore with 1400 m² of collection area.
- ▶ 45 bar 257 C
- Linear Fresnel Reflector
- Solar Desalination plant
- Solar biomass power plant cum desalination

"Built in India" design

Project approval received in Dec 2009 with a project completion by June 2011. Total cost of R&D project is 9.11 Cr plus O&M costs

Thermax CLFR design efforts

Bridge Technology Gap Through Collaboration

Point focus fixed to the dish Maximized intercept factor Coiled tube cavity absorber Minimized thermal losses

Automatic two-axes tracking

Facing the Sun, maximum insolation

169m² or 104m² Arun dish
Power capacity : 0.5 kW_{peak} / m²
Operating hours : 8 to 9 hrs / day
Daily output : 4 to 4.5 kWh_{th}/day/m²
Capital cost : Rs. 21,000 / m² (\$400 / m²)
Cost Parameter :: Rs. 5,000 / (kWh_{th}/day) --

Source: Clique Developments Ltd., Mumbai with permission

Solar Thermal Concentrator developed at ATE Enterprise

Process heating market for commercial, small industrial and rural applications (~10 kW_t at 1000 W/m² insolation)

- medium-scale paraboloid dish with 15–30 m² aperture area; local vendor base and manufacturing
- Direct steam generation using proprietary receiver
 - Characterization of thermal performance
 - Measurement of mirror reflectivity and effect of ageing
 - Remote monitoring

Source: ATE enterprises with permission

Adhunik Global

6kW solar steam power plant
Fresnel type solar concentrators – 3 of 24m² each -area of 96 sq mt.
(Design from http://www.solarfire.org/)
Steam Engine 2 hp to 10 hp

5 hp steam engines

Source: http://www.tinytechindia.com/solar6kwtp.htm

India One Dish Project

- ▶ 60m2 parabolic dish with fixed focus
 - Number of dishes : 770 nos. of 60m²
 Electrical output : 1,0 MW el. (net. 22000 kWh/24hrs)
 Thermal output : 150 MW th. (24hrs)
 Solar field : 25 Acres Abu Road, Rajasthan
 Total mirror area : 45.000 m²
 Turbine : 1,0 Mw el.

Source: http://www.india-one.net/abouttheproject.html

Design and development of Stirling engine for net 1.5 kW electrical output

- Stirling engines seems to be viable option
- Major heat input should be through gas flame or solar energy
- Choice of Capacity for Stirling Engine
 - ~ 96,000 villages to be electrified in India
 - For a group of 3-4 households having enough cattle to supply biogas for gas based systems or hybrid systems
 - Use for small capacity pumps for irrigation application
- Capacity needs to be at least 1.5 kWe
- Stirling engines seems to be viable DECENTRALIZED option

Reliance Power 250 MW Solar Power Plant

Dhursar, Rajasthan

CLFR Technology

2×125 MW

Areva

Target date: May 2013

Functioning Mode

Final (Simplified) Process Flow Diagram

Ρ

Ρ

Α

Ν

> 29

÷

Foundation stone: 10 January, 2010

Soil Testing: October, 2010

31

Tree cutting permission: August 5, 2010

Land levelling: November, 2010----

Cooling Tower

Achieved Outputs: Simulator Facility

Open Sample Process Flow Diagram

Sample PFD1	(Direct Steam Generation Power Plant)
Sample PFD2	(Thermic Fluid based Indirect Steam Generation Power Plant)
Sample PFD3	(Hybrid Solar Thermal Power Plant)
Sample PFD4	(Thermic Fluid based Indirect Steam Generation Power Plant with Regeneration)
Sample PFD5	(Thermic Fluid based Indirect Steam Generation Power Plant with Reheat : Nevada Solar One Plant)
Sample PFD6	(Thermic Fluid based Indirect Steam Generation Power Plant with Reheat : Solnova Plant)

Open existing Process Flow Diagram

Create Process Flow Diagram

Getting Started

- · Open any of the six sample process flow diagram for steady state simulation.
- Double click the equipment and stream node to know its parameters and to make changes.
- Parametric study can be done by changing the system parameters, such as, location, stream parameters, control variable, equipment model parameters, etc.
- Save the file (even if no changes are made) and click 'Run Simulation' for getting results.
- · The results will be displayed in tabular format.

Preliminary Version : released on <u>25th, July 2011</u>

* Usage of this Software is governed by the licence agreement

Achieved Outputs: Simulator Facility

> The key features of the Preliminary Version:

- Simulation of fixed configurations of the systems
- Graphical user interface for data input and output
- Manual as well as database entry of climatic and equipment parameters
- User defined time step and time horizon for the simulation
- Display of the results in tabular form
 - output of all equipment for each time step, annual power generation, capital cost, cost of energy
- Parametric study by changing the system parameters
 - location, equipment model parameters, stream parameters, control variables

Distribution of user category

	No. of users
Institute and University	
Industry and Organisation	560
Others	90
Total (as on 16 th May 2012)	1030

Summary:

- 22 different countries (other than India):
 - Austria, Australia, Belgium, Canada, Cameroon, China, Cyprus, Denmark, Germany, Iran,

Iraq, Malaysia, Mexico, Morocco, Netherlands, Pakistan, Palestine, Somalia, Spain, Suda n, UAE and USA

• 140 different Institutes and Universities

- In India-> IITs, IIM, NITs, Amity University, ANNA University, BITS, Delhi University, Indian School of Mines, Institute for Plasma Research, JADAVPUR UNIVERSITY, JNTU, Hyderabad, Mewar University, Nirma University, NITIE Mumbai, P.S.V college of Engg. and Tech., Panjab University, PDPU Gandhinagar, PSG College of Tech., Pune University, Vellore Institute of Technology, and Others
- Outside India-> Austrian Institute of Technology-Austria, Carnegie Mellon University-USA, McMaster Uni.-Canada, Chinese Academy of Sciences-China, University of Illinois-USA, Universidad de Valladolid-Spain, University of Copenhagen-Denmark, and Others

40

Distribution of user category

• 155 different Industries and Organisation :

- In India-> Abener Engineering, Adani Infra India Ltd., BARC, BHEL, Brahma Kumaris, Central Electricity Regulatory Commission, Central Power Research Institute, Clique Developments Ltd., Cummins Research & Technology, Deloitte Touche Tohmatsu, Engineers India Ltd., Entegra Ltd., GAIL, GM, GERMI, Godavari Green Energy Ltd., KG Design Services Pvt. Ltd, Lanco Solar Energy Pvt . Ltd., L & T, Maharishi Solar Technology Pvt. Ltd., Mahindra & Mahindra, Maxwatt Turbines Pvt. Ltd., MNRE, MWCorp, National Power Training Institute, NPCIL, Pryas, Reliance Industries, SAIL, Siemens Ltd., Solar Energy Center, SPRERI, Sujana Energy, Tata Power, Thermax Ltd., Vedanta Resources, Welspun, and Others
- Outside India-> DLR-Germany, Dubai Electricity and Water Authority-UAE, Eco Ltd.-Belgium, ELIASOL-USA, Fichtner-Germany, International Renewable Energy Agency-UAE, Shell Global Solutions International–Netherlands, Sol Systems-USA, Suntrace GmbH-Germany, and Others

Added Features of α-version

- Scope for user defined plant configurations
 - Flexibility to simulate user defined small subset of a complete plant or a complete plant
- Addition of equipment like pipe element, auxiliary boiler, pressure reducing valve and storage vessel
- Database as well as manual entry of cost coefficient
- Facility of exporting results to MS Excel file Potential users are identified for the aversion

Simulation of user defined Process Flow Diagram

Plant: Solnova (Abengoa Solar) Location: Spain Capacity: 50MW

Steps to be followed for the Simulation

 Select any of the six PFD for the simulation or Open/Create Process Flow Diagram

How to	How to Create Process Flow Diagram										
Step	Step 1: Select equipment to be entered from the equipment										
Step	2: Equipment will ap	bear on PFD generation area which									
Ca	n be dragged to desire	ed location									
Solar Thermal Power Plant Simul	lator										
File Edit View Run	Parameters Help										
FTW ZM PN ↔ Stream	Graph	Input node: Green									
Equipment Welco	ome PFD1 🛛	colour									
6 Collector											
🚺 Splitter		Output node: Pink									
🐻 Turbine	Collector1	colour									
🐻 Mixer		 The option of deleting 									
😈 Heat Exchanger		the equipment and									
🚺 Pump		reversing the node is									
🐻 Storage Vessel											
🐻 Steam Separator											
😈 Pipe Element											
U Pressure Reducing Valve											
🐻 AuxiliaryBoiler											
Notor-to-area-af-b	sk revels are appressive and a start	at the Attention and the second representation at the second re-									

Note: In case of heat exchanger, orange node is hot stream input node and blue node is cold stream input node

Process Flow Diagram of Solnova Plant for 100% Solar Load

 Double click the equipment to enter its parameters to make changes

• Double click the stream node to specify the guess values of stream parameters

treamProperty			the second	
Stream Label	Stream 1	1	(maximum 11 characters)	Hel
Stream Properties				
Fluid Name	Thermin	ol -		
Mass Flow Rate	50		kg/s	
Pressure	2	MPa	Enthapy	kJ/kg
Temperature	301	deg. C	Entropy	kJ/kg K
Dryness Fraction			Specific Volume	cub.m/kg
(uncheck box to cha	nge the oj	ption)		

- Location can be entered/changed from 'Location' Input Window
 - Database or Manual entry

ew Open				
Vew				Component
File		Location		🔀 Equipment
Title	Solar Thermal Simulator	Place	Sevilla	 Simulation Inpu
User		Latitude	37.43	Unit
Description	Test Run	Longitude	-6.25	Save PrD
				🛐 Cost Data
				Status :

Climatic Parameters can be changed from 'Climatic Parameters' Input Window: Database or Manual entry

nerative c	cycle.stps	s 🛛														Input Control
															·	🜠 Location
<u> </u>													-			🕨 🛃 Climatic Parameters
Add	d DNI Dat	ta										U			Climatic Parameters	Component
Impo	ort from T	ext File	Import	t from e	xcel File	Save			- Press		10000	1255-54	1000 0000		Help	🔀 Equipment
D/T	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Climatic Parameters	Simulation Innut
• 1	0	0	0	0	0	0	0	0	0	126	283	545	/50	810	Direct Normal Irradiance	
2	0	0	0	0	0	0	0	0	0	52	258	280	331	432	🔘 Database	Unit
3	0	0	0	0	0	0	0	0	0	275	555	104	702	012	Model	Save PFD
4	0	0	0	0	0	0	0	0	0	369	555	690	785	817		🛐 Run Simulation
5	0	0	0	0	0	0	0	0	0	473	656	735	779	794	Manual Enter DNI Data Done	Cost Data
7	0	0	0	0	0	0	0	0	0	482	533	618	760	804		Cost Data
8	0	0	0	0	0	0	0	0	0	233	318	479	555	552		Status :
9	0	0	0	0	0	0	0	0	0	176	271	271	340	388	Ambient Temperature	
10	0	0	0	0	0	0	0	0	0	523	656	738	782	798	💿 Database	
11	0	0	0	0	0	0	0	0	0	324	397	391	413	429	Model	
12	0	0	0	0	0	0	0	0	0	523	656	741	785	801		
13	0	0	0	0	0	0	0	0	0	523	659	741	788	804	Manual Enter Ambient Data Done	
14	0	0	0	0	0	0	0	0	0	523	662	744	788	804		
15	0	0	0	0	0	0	0	0	0	523	662	744	788	804		
16	0	0	0	0	0	0	0	0	0	56	44	37	34	37		
17	7 0	0	0	0	0	0	0	0	0	517	662	744	791	807	Cancel OK	
18	0	0	0	0	0	0	0	0	0	208	280	583	586	264		
19	0	0	0	0	0	0	0	0	0	337	283	315	403	539		
20	0	0	0	0	0	0	0	0	0	56	72	182	340	403	9	
21	0	0	0	0	0	0	0	0	0	523	671	753	798	817		
22	0	0	0	0	0	0	0	0	0	388	375	529	712	731		
23	0	0	0	0	0	0	0	0	0	501	564	574	593	700		
1 2/	0	0	0	0	0	0	0	0	0	148	271	305	205	230	34 P 35 35 MX 33	
									-		_	-	90. 		Dump 5 21	

_ _ _ _ _ _

51

• Enter Simulation Inputs:

User defined *Time Step* and *Time Horizon* for the simulation

		Input Control
		🔶 🔯 Location
		Climatic Parameter
		Component
	4 5	Equipment
3	ATX -	Simulation Input
nulation Inputs		🖸 Unit
Simulation Inputs Time Interval		Save PFD
Mode		🚺 Run Simulation
Select Mode 👩 Standard Time		💽 Cost Data
Ocal Apparent Time		Status :
Time		-
Start Date and Time	End Date and Time	=
Day 1 👻	Day 365 🗸	
Time 8 - bre 0 - ++	Time 19	
Mins	Mins	
Interval 60 Mins	(In case of yearly simulation , Simulator will take about 5 minutes to generate the results)	

• Save the file clicking 'Save PFD'

- Click 'Run Simulation' for getting results
- The results (output parameters of all the equipments) will be displayed in tabular format
- Results can be exported to MS Excel file

Export Result to Excel File	olar The	rmal Powe	er Plant Sil	mulator, IIT	Bombay				
Day	Time	Declination	Hour Angle	CosZenithAngle	Ambient Temperature (deg. C)	DNI (W/m^2)	Beam Radiation (W/m^2)	Pump:-Pump1:-P1	W_in:P1 (kV
365	9	-23.09	45	0.278	11.7	0	0		165
365	10	-23.09	30	0.394	12	381	150.2		415
365	11	-23.09	15	0.467	12.8	555	259.3		649.8
365	12	-23.09	0	0.492	14.2	684	336.6		812.6
365	13	-23.09	-15	0.467	15.8	776	362.5		1020.6
365	14	-23.09	-30	0.394	17.2	804	317		1234.4
365	15	-23.09	-45	0.278	18.4	769	213.9		1363.9
365	16	-23.09	-60	0.127	19.2	671	85.1		1305.3
365	17	-23.09	-75	-0.049	19.2	0	0		165
365	18	-23.09	-90	-0.238	18.4	0	0		165
Total Heat Gain of Collector (MWh)	133160.65		8						
Net Power Output (MWh)	89359.94		5						
Turbine Output (MWh)	99605.98								
Pump Input (MWh)	10245.72								-

Heat and Mass Balance Diagram of Solnova Plant at 100% Solar Load

Comparison of different simulators with Solar Thermal Power Plant Simulator of IIT Bombay

		System Advisor Model (SAM) ^[1-3]	TRNSYS ^[3-4]	THERMOFLEX ^[5]	Solar Thermal Power Plant Simulator
1	Developed By	National Renewable	University of Wisconsin	Thermoflow, Inc.	Indian Institute of
		Energy Laboratory			Technology Bombay
2	Renewable Energy	Generic, includes	Generic, includes	Generic, Focus on	Generic, Focus on Solar
	System	different renewable	different renewable	Solar Thermal	Thermal System only
		systems other than solar	systems other than solar	System only	
		thermal (e.g.	thermal (e.g.		
		Photovoltaic,	Photovoltaic, Geothermal		
		Geothermal Power,	Power, Wind)		
		Small Scale Wind)			
3	Concentrating	Includes following	Includes following system	Includes following	Current version includes:
	Solar Power	system only: PTC, Power	only: PTC, LFR, Power	system only: PTC,	PTC, LFR, Paraboloid Dish
		Tower, Dish Stirling	Tower	LFR	Next version: Power Tower
4	Power Block	Six fixed configurations	Simulation of any	Simulation of any	Simulation of any
			configuration	configuration	configuration
5	Simulation of User	NO	YES	YES	YES
	Defined PFDs				
6	Cost Analysis	YES	NO	YES	YES (with database as well as
					manual entry of cost co-
					efficient)
7	Results reporting	YES	YES	YES	Current version includes:
	through tables and				Tabular form
	graphs				Next version: Graphs
8	Weather Data	Manual, Library	Manual, Library	Manual, Library,	Current version includes:
	(Radiation, Amb.			Model for Radiation	Manual, Library.
	Temp. etc.)			Data	Next version: Model for
					Radiation Data

Schematic of the Proposed Test Rig

- Design and fabrication of a novel flux mapping system
- List of testing and calibration equipment needed within short term period (1 year) are being finalised

Test Facility

- Methodology for tests developed
- Test loops finalized
- Test rigs designed
- Lab testing at IITB in progress
- Procurement of test equipment and instruments done
- Test centre building plan finalized
- Provisional Patent is filed on
 - Flux mapping system for receivers used in concentrating solar collectors

57

Schematic of Solar Thermal Power Plant

59

Assumptions – Cost Analysis

Equipment	Cost (Rs.)	Per Unit	Remarks
НХ	10 Million	MWe	
PT cost	15000	m ²	
CLFR cost	10000	m ²	
HTF _{cost}	150	kg	
Mirrors	0.5	%	Annual Replacement
HTF	1	%	Annual Replacement
Receivers	2	%	Annual Replacement
O&M	3	%	Of Equipment
▶ 60			

Base Case

- ▶ 50 MWe Solar Thermal
- ▶ 7.5 Hour Thermal Storage
- Oil Loop
- Design Solar Insolation = 650 W/m²
- Location New Delhi
- PT and CLFR comparison

Summary of Results

				Plant Size (MWe)										
			10				50		100					
	2000	Rs.	12.24	15.50	17.26	10.31	13.04	14.52	10.25	12.97	14.44			
/ear)		USc	26.6	33.7	37.5	22.4	28.3	31.5	22.3	28.2	31.4			
h/m²/y	2200	Rs.	11.53	14.60	16.26	9.66	12.22	13.61	9.55	12.08	13.45			
ı (kW]		USc	25.0	31.7	35.3	21.0	26.5	29.5	20.7	26.2	29.2			
lation	2400	Rs.	10.94	13.85	15.43	9.12	11.54	12.85	8.96	11.33	12.62			
r Inso		USc	23.7	30.1	33.5	19.8	25.1	27.9	19.5	24.6	27.4			
Sola			6	10	12	6	10	12	6	10	12			
						Dise	count R	ate (%)						

Source: Krishnamurthy, P., Mishra, S., and Banerjee, R., Energy Policy, 2012

Assumptions – Energy Analysis

Factor	Value	Unit	Remarks
Plant Size	5 -	MWe	Range
	100		
Turbine Efficiency	50	%	Assumed Constant
Generator Efficiency	98	%	Assumed Constant
Piping and Heat loss	25	%	For Oil Loop Configuration
	20	%	For Direct Steam Configuration
Life of Plant	25	Years	
Disposal Energy	5	%	Of Total Embodied Energy
Auxiliary Consumption	10	%	Of Annual Power Generation
T _{amb}	25	°C	
Collector Transport distance	200	km	By truck average

Material Use – Solar Collectors

Parabolic Trough – Per Module(69 m²)

Component	Weight/ Area	Unit	Material
Glass Mirrors	76.6	m2	Float Glass
	8.6	kg	Borosilicate Glass
HCE	39.4	kg	Steel
Torque Box	597	kg	Steel
End Plate	186	kg	Steel
Cantilever Arms	384	kg	Steel
HCE Supports	113	kg	Steel
Torque Transfer	32	kg	Steel

CLFR – Per MWe (@650 W/m²)

Component	Weight∕ Area	Unit	Material
Steel	44000	kg	Steel
Glass	12545	m2	Float Glass
Concrete	64	m3	Concrete
BOP Material Use – Oil Loop

Material	kg/MWe
Aluminum	255
Chromium	122
Concrete	74257
Copper	454
Manganese	112
Molybdenum	42
Nickel	10
Steel	39681
Stainless Steel	612
Vanadium	4

BOP Material Use – Direct Steam

_ _ _ _ _ _

_ _ _ _ _ _ _

Component	Material	MJ/MWe
Foundation	Concrete	400000
	Steel	700000
TG		649333
Boiler		2246667
Cooling Tower		151333
De-Aerator		576000
Steam Seal		
Heater		138667
Condenser		126667
Transformer	Silica	12240000
	Steel	252000
	Copper	134400

> 74

Cost Analysis

- Solar Thermal Sustainable from energy input
- ► EPP = 3 to 5 years
- EROI = 4 to 7
- Effect of variation in parameters
- Cost effectiveness of technology
- Material variation
- Framework for sustainability analysis
- Comparison of Technologies

Summing up

- PV growth, diffusion need to enhance roof top systems
- Solar Thermal Test facility MW scale enable future cost effective plants
- Limited experience in power plant and solar field,Subcritical base of researchers
- No evidence of cost reduction
- Need for public domain performance data
- Most collaborations 'turnkey plants' –no focus on indigenisation
- CSP significant potential for cost reduction

Acknowledgment

Suneet Singh Faculty

Sudhansu S. S. (Ph.D.)

B. Kedare Faculty

Desai Nishith Project Engineer

Pranesh K. (M.Tech.)

Balkrishna Surve Project Assistant

Project team MNRE:

R.R. Sonde, Thermax, S.P. Vishwanathan, KGDSL, V.S ardeshpande – ATE, Clique

J. K. Nayak, Santanu B., S. B. Kedare, Suneet Singh, M.Bhushan, S. Bharatiya, S. Doolla, U.N. Gaitonde, U.V. Bhandarkar, S.V. Prabhu, B.P. Puranik, A.K. Sridharan, B.G. Fernandes, K. Chaterjee, A.M. Kulkarni, Rajkumar Nehra, Kalpesh Karniik, Deepak Yadav, Satish Kumar, Vikalp Sachan, Pranesh K, Tejas Shinde, Kartheek NGR, Ranjeet Bhalerao, Nishith Desai

79

References

- Desai N.B. and Bandyopadhyay S., *Solar Thermal Power Plant Simulator*, SOLARIS, Varanasi, India, Feb. 7-9, 2012.
- Krishnamurthy P. and Banerjee R., "Energy analysis of solar thermal concentrating systems for power plants". The International Conference on Future Electrical Power and Energy Systems, 2012. China
- Sahoo S.S., Singh S. and Banerjee R., "Parametric studies on parabolic trough solar collector", WREC, Abu Dhabi, UAE, Sep. 25-30, 2010.
- Sahoo S.S., Varghese S.M., Ashwin Kumar, Suresh Kumar C., Singh S., Banerjee R., "experimental and computational investigation of heat losses from the cavity receiver used in linear Fresnel reflectors", ICAER, Mumbai, Dec. 9-11, 2011.
- Sahoo S.S., Singh S., Banerjee R.," Hydrothermal analysis of the absorber tubes used in linear Fresnel reflector solar thermal system", 10th ISHMT- ASME Heat and Mass transfer conference, Chennai, India, Dec. 27-30, 2011.
- Sahoo S.S., Varghese S.M., Suresh Kumar C., Viswanathan S.P., Singh S., Banerjee R., "Experimental investigation of convective boiling in the absorber tube of the linear Fresnel reflector solar thermal system", SOLARIS, Varanasi, India, Feb. 7-9, 2012
- National Renewable Energy Laboratory (NREL), System Advisor Model (SAM) software, Version 2011.5.4, 2011.
- P. Gilman, Solar Advisor Model User Manual, Technical report, National Renewable Energy Laboratory, Golden, Colorado, USA, 2010.
- K. H. Clifford, Software and Codes for Analysis of Concentrating Solar Power Technologies, SANDIA Report SAND2008-8053, 2008.
- Solar Energy Laboratory, TRNSYS, A Transient Simulation Program, University of Wisconsin, Madison, Demo Version 17.00.0018, 2010.

Thank you

- Thermoflow Inc., THERMOFLEX User Manual, Version 19, 2009.
- Ministry of New and Renewable Energy, New Delhi, website: www.mnre.gov.in

Email: rangan@iitb.ac.in

