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Abstract

Intertemporal trading of emission permits allows for the banking of permits for future
use or sale. In this paper, I explore the effects of increased uncertainty over future output
prices, input costs and productivity levels on the temporal distribution of emissions. In a
dynamic programming setting, the permit price is a convex function of each of these three
sources of uncertainty. Increased uncertainty about future market conditions increases
the expected permit price and causes risk-neutral firms to reduce ex ante emissions to
smooth out marginal abatement costs over time. The convexity results from the asymmet-
ric impact of changes in counterfactual emissions on marginal abatement costs. Empirical
analysis corroborates the theoretical prediction. I find that increased price volatility in-
duced by electricity market restructuring could explain 7-10% of the allowances banked
during Phase I of the U.S. sulfur dioxide trading program. Numerical simulation suggests
that high uncertainty may generate substantial initial compliance costs, thereby deterring
new entrants and reducing efficiency; sharp emission spikes are also more likely to occur
under high uncertainty scenarios. These results are subjected to a number of robustness
tests.
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1 Introduction

Cap-and-trade emission permit systems that allow permits to be traded across compliance
periods (hereafter intertemporal emissions trading or bankable emission permit trading)
are witnessing growing regulatory interest as a cost-effective way to reduce total emissions.
The U.S. sulfur dioxide (SO2) emission trading program is one of the first, and by far the
most extensive application of bankable emission permit trading. Under Title IV, firms are
not only allowed to transfer allowances1 for emissions of SO2 between facilities, but also
to bank them for use in future years. Emission permit trading is also a centerpiece of
the Kyoto Protocol, which allows participating nations to trade and bank greenhouse gas
permits under the Framework Convention on Climate Change (Intergovernmental Panel on
Climate Change, 1996). 2

Despite the considerable interest in intertemporal emission trading, important theoret-
ical and policy issues surrounding this trading mechanism remain unexplored. Although
the theoretical literature on tradable emission permits began a discussion regarding the
efficiency and properties of their use as early as 1970s3, most of the literature considers
trading between units, implicitly within a single time period. Theoretical analyses of in-
tertemporal emission trading have only recently appeared.4 These studies typically assume
firms have perfect foresight5. Neither the theory nor the empirical assessment of the impli-
cations of uncertainty has been examined thoroughly. In this paper, I seek to fill this gap
in the literature.

This paper makes two specific contributions. First, I introduce uncertainty into the
intertemporal trading model, which is theoretically more interesting and empirically more
relevant. In this model, a firm decision regarding permit trading is an ex ante choice in
the sense that optimal emissions and permit banking decisions depend not only on current
output and input prices, but also on expectations of future prices. Assuming risk neutrality
and a competitive permit market, I show that a mean-preserving increase in electricity
price volatility would decrease ex ante emissions. Second, I empirically test the theoretical

1For the purpose of this paper, I use the terms ‘permits’ and ‘allowances’ interchangeably.
2In fact, intertemporal trading goes far beyond the realm of air pollution control. It applies to the

trading of goods whose existence is statutorily generated but privately transferable and storable. For

instance, this concept applies to the banking and trading of wetland development rights, the allocation of

Corporate Average Fuel Economy (CAFE) credits, the temporal and spatial trading of lead in gasoline, and

the transferring of federal funds between and within banks to meet reserve requirements.
3Examples include Montgomery (1972), Hahn (1984), and see Titenberg (1985) and Cropper and Oates

(1992) for thorough reviews.
4Studies that analyze intertemporal emission trading include Rubin (1996), Cronnshow and Kruse (1996),

Kling and Rubin (1997), Schennach (2000), Yates and Cronshaw (2001), Leiby and Rubin (2001), Stevens

and Rose (2002), Sedio and Marland (2003), Maeda (2004), Stranlund, et al. (2005), van Steenbergh (2005),

Feng and Zhao (2006), Wirl, F. (2006).
5Studies that mention uncertainties include Schennach (2000), Feng and Zhao (2006).
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prediction in a real trading program, the U.S. SO2 allowance trading. To the best of my
knowledge, this is the first study that quantitatively estimates the effects of uncertainty
on emissions trading based on actual market data. Although the analysis is conducted in
the context of the U.S. SO2 allowance trading program, the model is flexible enough to
be extended to other intertemporal trading initiatives, such as the global carbon trading
program, for which uncertainty is a prevalent feature in many of the policy parameters.

Based on numerical analyses, I also revisit the often considered regulatory instruments
choice between taxes and quotas along the lines of Weitzman (1974). In a multi-period dy-
namic framework, I find that uncertainty can qualitatively affect the conventional thoughts
concerning when it is socially optimal to use quantity-based v.s. price-based environmental
policies.

In the first part of the paper, I develop a stochastic dynamic optimization model of
risk-neutral price-taking firms, which use high- and low-sulfur coal to produce electricity.
Current prices are observed, but future prices evolve stochastically. In equilibrium, the
marginal abatement costs of all firms are equalized with the permit price in each period;
for each firm, the expected present marginal abatement costs are also equalized across
time periods. When firms expect higher compliance costs in the future, they will demand
positive permits, bidding up the permit price (and therefore the marginal abatement cost)
until current and expected future prices are equal.

The permit price is subject to electricity price shocks, which alter firms’ abatement
costs by changing the industry-wide counterfactual emissions level6. I prove analytically
that the permit price, as well as firms’ marginal abatement costs, are convex functions of
the electricity price. By Jensen’s inequality, this leads to a positive relationship between
the marginal abatement cost and the increase in volatility of the stochastic electricity
price. This convex relationship results from the asymmetric impact of the electricity price
change on the change in marginal abatement costs. Because abatement costs are convex
in the abatement level (as long as marginal productivity is decreasing), when the electric-
ity price increases (and therefore the abatement level increases), the marginal abatement
cost increases faster than it decreases when the electricity price falls. When uncertainty is
pronounced, very high and very low electricity prices become more likely, and this asym-
metric impact becomes more salient. In the presence of extreme electricity prices, firms
would have a much higher incentive to reduce ex ante emissions and to shift permits to
subsequent periods so as to smooth out the marginal abatement costs over time. This
conclusion holds with or without perfect competition in the output market. In addition, I
extend the model to allow uncertainties to enter through input costs and industry average
productivity. The conclusions are similar, following the same line of reasoning.

I also discuss firms facing an additional rate-of-return regulation. My analysis shows
6Counterfactual emissions are the emissions that would prevail when there is no environmental regulation.
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that while a competitive firm tends to reduce more emissions than a regulated firm in
each time period, as long as regulatory treatments on allowance transactions remain con-
stant over time, one should not expect qualitative differences in banking behavior between
regulated and unregulated firms.

In the second part of the paper, I test the theoretical prediction using data on the U.S.
SO2 allowance trading market from 1996 to 2004. Although ten years have passed since the
launch of this program, most empirical analyses evaluating its market performance were
conducted during the early years of the program (Schmalensee et al., 1998; Ellerman et
al., 2000); fewer have focused on the banking dynamics. Indeed, allowances banking by
regulated sources, brought on by overcompliance with environmental regulation in Phase
I, has been a major component of the trading program, to such an extent that the level of
the banked allowances has largely exceeded expectations. I provide empirical evidence that
shows how the seemingly irrational banking behavior can be at least partially explained by
firms’ responses to market uncertainties induced by electricity restructuring. Specifically, a
one percent increase in electricity price volatility measured by annualized standard devia-
tion of percentage price change is on average associated with a 0.84% decrease in the annual
emission rate. Overall, electricity restructuring may explain 7-10% of the total amount of
the banked allowances during Phase I of the SO2 trading program.

To estimate the impact of market uncertainty on social welfare, I simulate the banking
pattern, emission stream and time path of permit price under various degrees of electricity
price uncertainties through 2020. Numerical results are suggestive and they are consistent
with the econometric estimation of the elasticity of emission rate with respect to price
volatility. Specifically, the results indicate that high uncertainty generates large compliance
costs in the early years, leading to efficiency loss and deterring new entrants. From an
environmental perspective, sharp emission spikes are more likely to occur under market-
wide uncertainty shocks or high uncertainty scenarios. When a pollutant creates convex flow
damage, the disproportionate distribution of emissions could dramatically increase health
hazards. In closing, I discuss implications for climate change policy and the establishment
of robust and effective banking regimes.

This paper is related to three strands of literature, one discussing intertemporal emission
permit trading, another on capital investment under uncertainty, while the third concerns
the impact of electricity restructuring on the environment.

Among previous theoretical investigations of intertemporal permit trading, Schennach’s
(2000) paper is a first effort to study the implications of uncertainty on the time-series
properties of emissions trading. Schennach suggests that the higher the expected electricity
price, the lower the emissions in the ex ante period. Schennach also emphasizes the role of
the non-negativity constraint, a special feature of the U.S. SO2 allowance trading program,
arguing that the expectation of a potential stockout of the allowance account may induce

4



reduction of emissions in earlier periods.7 Feng and Zhao (2006) also discuss effects of
abatement costs uncertainty and conclude that more permits will be banked when the
expected marginal value of permits rises. While constituting important steps toward an
understanding of the potential consequences of uncertainty, these papers do not answer the
question of how increased output price volatility would modify the path of emissions. After
all, it is the significant variation, not the level of prices that defines a volatile market.

In spirit, this paper is closer to those of Hartman (1972) and Abel (1983, 1985). In
these models, the existence of adjustment costs, together with a constant-returns-to-scale
technology, make the marginal revenue product of capital a convex function of output
price. Therefore, increased uncertainty about future price increases the expected marginal
revenue product for a competitive firm, consequently increasing the intensity of investment.
Similarly, I demonstrate the positive relationship between electricity price uncertainty and
the expected marginal value of an allowance by applying Jensen’s inequality for a convex
function. However, the analysis of the marginal value of a permit has no direct analogue
in the capital investment literature. In addition, I derive the model in a more general
framework, without assumptions of constant-returns-to-scale or perfect competition in the
output market.

This paper also contributes to the policy discussion on the implications of electricity
restructuring for the environment. Policy debates on the potential environmental impact
of restructuring, in large measure, have focused on the effects of market liberalization on
the mix of generation technologies (electricity produced from gas, coal, hydro, nuclear and
non-hydro renewable sources of energy).8 I address the question from a new perspective by
analyzing the impact of electricity market restructuring on the environmental performance
of the single most polluting type of generation technology, coal-burning power generation.
I show that, in the short term, electricity restructuring contributed to coal power industry
emission reductions by providing incentives for early abatement.

The remainder of the paper is organized as follows: Section 2 provides background
on the U.S. SO2 allowance trading program; Section 3 analyzes the impact of electricity
restructuring on the allowance market; Section 4 develops a firm model of intertemporal

7I show that uncertainty decreases emissions in the ex ante period even when non-negativity constraints

are not binding.
8For example, Palmer and Burtraw (2006) argue that expanded interregional electricity trading will

increase the use of older low-cost coal power plants which would in turn lead to an increase in emissions;

Holland and Mansur (2004) show that real-time pricing, an anticipated feature of a competitive market, will

shift load from peaking to baseload plants. Depending on which type of plants is dirtier, real-time pricing

will have different environmental impacts in different regions. Mansur (2005) suggests that changes in air

pollution emissions resulting from the exercise of market power will depend solely on the technologies that

dominant firms use to withhold output in contrast with the technologies that the competitive fringe uses

to meet demand. Other qualitative analyses raise the concern that a cost-conscious marketplace will invest

less in renewable energy.
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emissions trading and derives the relationship between emissions banking and uncertainty;
Section 5 presents the empirical model and the estimation results. Section 6 discusses
numerical simulation, welfare analysis and policy implications and Section 7 concludes the
paper.

2 The U.S. SO2 Allowance Trading Program

The U.S. SO2 allowance trading program, also known as the Acid Rain Program, was
established under Title IV of the Clean Air Act Amendments of 1990 (CAAA90). By
creating a national clean air market, it was a grand application of a market-based regulatory
approach to achieve emission reduction goals. The basic idea behind permit trading is
simple. The regulatory agency first sets a cap that limits the total SO2 emissions by
less than half of their 1980 level (from 18.9 million tons in 1980 to 8.9 million tons by
2001). It then divides the quantity up to a number of tradable allowances and allocates
them to individual firms based on their historical heat inputs. Each allowance grants
the holder the right to emit one ton of SO2 emissions. Firms that can reduce emissions
relatively cheaply may increase their profits by selling extra allowances; while those for
whom reducing emissions is expensive can buy extra allowances from the market. The
SO2 allowance trading program institutionalized a couple of innovations in that it not only
allows unlimited trading of permits among firms, but also allows permits to be traded over
time. So power producers who reduce emissions below the number of allowances they hold
may sell allowances to other firms, or bank them for future use. The only limitation the
U.S. Environmental Protection Agency (EPA) imposes on the trading program is that firms
cannot borrow allowances from their future allocation. At the “true-up” date (usually the
end of March), each unit must submit enough allowances to cover its emissions for that
year.

Another important feature of this program is that it was phased-in. Phase I, which
ran from 1995 through 1999, affected 263 units at 110 mostly coal-burning (and a few
oil-fired units) electric utility plants located in 21 eastern and Midwestern states. Most
Phase I units had emissions greater than 2.5 pounds of SO2 per MMBtu9 and a generating
capacity greater than 100 megawatts (MW). Phase II began in the year 2000. It established
a permanent cap of 8.95 million per year and affects all existing utility units with an output
capacity of 25 MW and larger, and all new utility units.

Figure 1 shows the annual emission cap, aggregated emissions and banked allowances
from 1995 to 2004. The temporal dimension is clearly a key component of this trading
program. From 1995 to 1999, 11.65 million allowances were banked, which was about 30%

9Btu stands for British thermal unit, a unit of energy frequently used to describe the heat value (energy

content) of fuels. MMBtu stands for one million Btus.
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of the total allowances allocated during Phase I.10 These extra allowances were produced
through reducing emissions below the allowable standard.

Units banked permits primarily because the program was phased-in: an allowance is
perceived to be worth more in later years under the stricter cap of the Phase II. As expected,
in 2000 firms began drawing down the bank to ease the transition to Phase II. However,
the size of the bank generated in Phase I was unexpectedly large. Some argue that banking
in this program has been excessive and was economically inefficient (Ellerman, et al., 2000;
Smith, et al., 1998). In addition, the draw-down rate at the beginning of Phase II was
lower than previously expected (Ellerman and Montero, 2005). In the remainder of the
paper, I explore the question of how to interpret this temporal banking trend.

3 Electricity Market Restructuring and Price Volatility

The implementation of Title IV happens to have coincided with electricity restructuring
which dramatically changed the way the power industry was structured and regulated over
the past decade. In this section, I briefly review the background of electricity restructuring
and its effect on electricity price volatility and the emission allowance market.

Traditionally, in the United States, the three parts of electricity supply-generation,
transmission, and distribution-were assumed to be a natural monopoly and were operated
by a single utility to exploit economies of scale. Under such a model, within a defined
geographical area, one or a small number of firms have exclusive rights to serve retail
customers. Because utilities operated as monopolies, they have been subject to extensive
price regulation by state and federal regulatory agencies.

Throughout the 1970s and 1980s, technology development weakened the notion of the
‘natural monopoly’. Rising electricity prices further increased public pressure for correcting
the economic inefficiency of the old regulatory system. Together with a shift in regulatory
thinking, electricity restructuring proceeded at an ever-accelerating pace at both federal
and state levels in the 1990s. The goal of electricity restructuring is to increase competition
in the electricity generation sector.11 In 1996, the Federal Energy Regulatory Commission
(FERC) issued Orders 888 and 889 to open up the transmission network to competitive
generators of electricity so as to promote wholesale market competition. In addition, 24
states and the District of Columbia have taken steps to introduce competition in retail mar-
kets, including encouraging entry by competitive energy producers and allowing customers
to choose their own electricity suppliers.12

10The number of banked allowances does not include allowances sold at public auction each year, nor

does it include contributions from substitution units that entered or exited the market in different years.
11The transmission and distribution sectors are still considered as a natural monopoly. They were un-

bundled from the generation segment and remain regulated and noncompetitive.
12For a more comprehensive review of the drivers and the process of electricity restructuring in the United
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Restructuring of the wholesale and retail markets has been accompanied by significant
changes in the pricing of electricity generation. Before restructuring, electricity price is
set administratively on the basis of the average production cost. In contrast, competitive
generation prices are determined by market forces. Given open access to the transmission
system, a number of auction-based regional wholesale markets were established. In these
markets, producers submit bids to supply power and the dispatch order is set by the bids.
In most cases, the cost of producing the last MW of electricity to meet demand, namely the
marginal production cost of the marginal producer, determines the market-clearing price
and is paid to all plants that are dispatched. In the restructured retail markets, the retail
rate is linked to wholesale prices, as competitive retail sellers compete with utilities to sell
electricity to consumers.13

Competitive pricing induced a significant variation in the price of electricity, which can
be translated into fluctuating demands for coal generation. The principal drivers behind
this volatility are shifts in supply and demand. On the supply side, prices based on marginal
costs are sensitive to any factors that affect the operating costs of the marginal generators.
Since the operating cost of natural gas-fired power plants exceeds those of most other
generation technologies, natural gas power plants usually set the market price. When
natural gas prices turn out to be higher or lower then expected, competitive generation
prices are directly affected. As has been observed, however the natural gas market behaves,
the electricity market behaves similarly.

Natural gas price volatility in recent years was mainly driven by factors exogenous to
electricity markets. Natural gas prices in the U.S. had been kept artificially low and stable
for over 20 years due to excessive supply. When supply and demand reached a balance in the
1990s, gas prices became responsive to ever-changing market situations, such as persistently
colder-than-normal temperatures that increased demand for heating fuel, frozen gas wells
and pipelines that reduced regional gas production, and multiple hurricane seasons that
disrupted supply. Natural gas is a substitute fuel for oil and petroleum so political unrest
in key oil producing nations also contributes to natural gas price volatility(Villar, 2006).

On the demand side, record high temperatures in recent years drove up the demand
for electricity. As more and more power plants use natural gas to generate electricity,
the growing electricity market tightened the demand and supply balance of natural gas
and induced natural gas price spikes. Natural gas price fluctuations in turn exacerbated
electricity prices.

In a competitive market, the demand for coal generation can be affected by any or all
of the factors that impact natural gas and electricity prices. This is illustrated in Figure
2. The upper part of Figure 2 shows the marginal production costs of coal- and natural

States, see Joskow (1997), U.S. Energy Information Agency (EIA) (2000) and EIA (2003).
13Retailers either buy electricity from wholesale markets or generate it themselves.
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gas-fired power plants.14

Given that the fringe supply from hydroelectric and nuclear generation is typically in-
elastic and would not be able to move prices, the lower part of Figure 2 plots the cumulative
supply that only considers fossil-fuel generation units with the residual demand served by
that set of units. The vertical axis shows the offer prices of generation units (the dispatch
costs), and the horizontal axis indicates the type of fuel used. The demand curve can be
traced from the bids submitted by the buyers indicating at which price they are willing to
buy electricity. The market is “cleared” at the point where the supply and demand curves
intersect. All units to the left of the equilibrium point are economical to dispatch and will
profit from high peak prices.

In the base case represented by the solid line, the cheapest coal power plants are dis-
patched first. Until the electricity price hits point B, the cumulative supply curve is merely
the marginal cost of the coal-fired power plants. When demand increases, more costly coal
and gas units are added to the generation mix and the market price increases. The market
is cleared at Be.

Suppose there is an exogenous shock in the natural gas market that increases the natural
gas price. Because fuel cost is a key component of the marginal cost of a natural gas-fired
plant, the supply curve of gas units shifts up, which is denoted by the dashed line Gas′.
As a result, an operator would not be willing to run a natural gas-fired power plant if the
market clearing price is lower than A. Assuming the coal price remains stable, more coal
capacity will be dispatched and coal plants will cover a longer portion of the supply curve,
as indicated in the lower graph. In addition, the cost of supplying peak load electricity also
increases, which is reflected by a higher market clearing price, Ae.

The result is quite intuitive. As coal is one of the cheapest and most widely available
fuels in the United States, coal prices remain quite stable compared to those of natural
gas. When natural gas prices rise sharply, coal prices become more competitive. Power
producers will shift toward coal either by increasing the capacity factor of incumbent coal
units, or by importing cheaper coal-fired power from other areas. When the price increases
to a level higher than the long-run average production cost of coal power plants, new entries
by coal units will also be triggered.

Higher demand for coal-based generation means higher demand for SO2 emission al-
lowances. Since the supply for allowances is generally fixed, increased demand will drive
up the allowance price, imposing an industry-wide shock in the national allowance market.

14The marginal cost curves are upward sloping indicating that more expensive units are called upon to

meet increasing demand. Older and inefficient coal-power plants are more expensive to run. In addition,

increased coal-fired generation may drive up the permit price that increases the marginal production costs.

Natural gas-fired power plants based on different production technology also have different marginal costs:

a typical super peak plant based on a gas turbine has a higher marginal cost than a peak plant based on

gas-fired combined cycle gas turbine (CCGT).
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Such a shock differs from firm-level idiosyncratic shocks15, which have a lesser impact on
price distribution and would not induce entry. Aggregate shock affects the expected path
of permit price through new entries or expansion of current ones. Because aggregate shocks
affect each unit in the industry, they are not diversifiable through future or spot markets.
Hence, facing aggregate volatilities, the industry may reduce its dependence on the spot
market through overcompliance and banking. In doing so, firms adjust ex ante emissions
in anticipation of future demand and future price changes.

4 Modelling Framework

This section contains the basic theory of intertemporal permit trading under uncertainty.
I begin by setting up a firm’s dynamic optimization problem, then state and prove Propo-
sition 1 and Lemma 1 on the relationship between uncertainty, and banking/emissions.
Next, I show how conclusions can be affected by imperfect competition in the electricity
and allowance markets, and by returns to scale of production technology. Finally, I discuss
the effects of joint constraints from environmental and rate-of-return (ROR) regulations on
banking incentives.

4.1 A Firm Model of Intertemporal Permit Trading under Uncertainty

Consider a risk neutral firm that uses adjustable levels of low- and high-sulfur coal to
produce electricity. In each time period, the firm decides the electricity output (gt), chooses
the mix of low- and high-sulfur coal (lt and ht), and the amount of allowances (xt) to buy
(xt > 0) or sell (xt < 0) to maximize its discounted present profits for a constrained level
of emissions. Uncertainty exists in the supply and demand for electricity. Suppose this
uncertainty is characterized by electricity prices (Pe), which is a random variable that
follows a Markov process. The probability law of Pe is known to all firms. At the start
of period-t, the firm observes electricity price (Pet), allowance price (Pat), the price for
low- and high-sulfur coal (Plt and Pht), and the initial endowment of allowances which is
the sum of allowances issued by the government in current period (At) and the amount
of banked allowances carried forward from the previous period (Bt). Table I provides a
thorough description of all model parameters used in the paper.

Firms face a dynamic optimization problem because they must choose how many al-
lowances to save for the future before uncertainties over future prices are resolved. As-
suming that firms are price takers in all markets, I model individual firm behavior as an
intra-firm game. Taking the strategies of other firms as given, each firm picks a strategy
in each time period that is optimal from the firm’s perspective in that period. The firm’s

15Such as an unscheduled outage of a nuclear power plant that increases demand on neighboring baseload

coal power plants and increases such plants’ demands for allowances.
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strategy is thus a map from the Markov state Λt = {Pt, At, Bt} to choice variables {lt, ht,
xt}, where Pt is a price vector, i.e. Pt = {Pet, Pat, Plt, Pht}.

I assume that firms employ three compliance strategies: abating emissions through
blending with or switching to low-sulfur coal, purchasing allowances in addition to initial
allocation, and adjusting output levels. Other capital intensive strategies such as scrub-
bing, re-powering or permanently retiring a facility are not considered because regulatory,
financial and other uncertainties, during a period of industry restructuring, provide firms
incentives to avoid capital intensive investment as long as possible. Indeed, firms have
preferred fuel switching/blending and allowances purchasing that require less capital in-
vestment: 52% of the 263 Phase I units chose fuel-switching/fuel-blending and 32% chose
to purchase allowances.16 While only 17 units during 1995-2004 have installed new scrub-
bers (EIA, 1997)

Let Vi(Pt, Bt, At) denote firm i’s value at time t. The firm’s maximization problem can
be written as:

Vi(Pt, Bit, Ait) ≡ max
lit,hit,xit

{Petg(lit, hit)−c(lit, hit)−Patxit+βEt[Vi(Pt+1, Bi(t+1), Ai(t+1))|Pt]}

(1)

s.t. Bi(t+1) = Ait + Bit − eit(lit, hit) + xit (2)

Bi(t+1) ≥ 0 (3)

where β is the discount ratio. In a discrete-time setting, β = 1/(1 + r), and r is the risk-
free interest rate.17 E[·] is the expectations operator. Based on the realized current price
(Pt), the firm formulates expectations on its future value. Eq.(2) is the state equation and
defines the stock of banked allowances in period t. Eq.(3) corresponds to the non-negativity
constraint, i.e. borrowing against future emission reductions is not allowed. For simplicity,
I suppress unit index i in section 4.1.

The production function with low- and high-sulfur coal as two distinct inputs is rep-
resented by g(l, h), which is assumed to be quasi-concave, increasing in both arguments,
homogenous of degree 1, and twice differentiable everywhere.18 Most of the previous stud-
ies assume output as given (such as Rubin [1996], and Arimura [2002]). In a restructured
electricity market, an assumption of fixed output seems untenable. In this model, I as-
sume that producers may alter the output level as an option to meet the required emission
standard.

16Low-sulfur coal has become more often used also because the rail rates for hauling low-sulfur western

coal to higher-sulfur coal-fired plants in the Midwest have declined as a result of railroad deregulation.
17The assumption that interest rates are risk-free corresponds to the assumption that firms are risk-

neutral.
18To include labor and capital inputs in the production function is straightforward and yields an almost

identical analysis.
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Some previous studies assume that low- and high-sulfur coals are perfect substitutes
that differ only in the sulfur contents. For example, Arimura (2002) uses a linear function to
describe the production technology with low- and high-sulfur coals as the factor inputs. In
reality, low- and high-sulfur coal cannot so easily be substituted for each other. Typically,
power plants are designed for a particular type of coal, with which initial performance
guarantees are met. Deviations of coal properties from the initial design may result in
reduced efficiencies, impaired plant performance, or even serious operating problems, and
the damage increases as the deviations multiply.19

c(l, h) is the cost function. When a firm undertakes production, it incurs costs that can
be described in terms of three components: (1) fuel costs, (2) adjustment costs associated
with fuel-blending or fuel-switching,20 and (3) other fixed costs including capital costs for
mixing fuel. Once the binary choice determining whether or not to switch/blend fuel has
been made, this sunk cost will have no impact on the factor input ratio. Thus I do not
explicitly take account of the initial capital cost in this analysis and assume that both low-
and high-sulfur coal are used.

For the model to be tractable, I assume that the adjustment costs are continuous and
linear in l.21 Specifically, I combine the variable adjustment cost and the purchasing cost
of low-sulfur coal as an augmented cost and represent the cost function as a standard linear
one. That is, c(l, h) = Phh + Pll, where Pl is the sum of both purchasing cost and the

19Before the Acid Rain Program most of the Phase I affected power plants were burning high-sulfur

coal, so switching to low-sulfur coal or blending high-sulfur coal with low-sulfur coal may have reduced

plants’ production performance. For example, low-sulfur coal generally has a lower heat value, resulting in

a lower heat rate given a consistent firing rate; some lower-sulfur coal has a higher moisture content and

may decrease boiler efficiency, because combustion heat must be used to evaporate the water in the coal;

low-sulfur coal also produces higher ash, and/or higher sodium and iron content in the ash, which results

in a less efficient heat transfer rate. Furthermore, the boiler heat rate could be adversely affected if the

boiler redesign is required to accommodate lower sulfur coal. For more details on the impact of blending

high-sulfur coal with low-sulfur coal on the productivity performance, refer to International Energy Agency

(1993).
20Typically, the transition from high-sulfur to low-sulfur coal incurs the following extra operating and

maintenance expenses: (i) more aggressive dust suppression and dust collection procedures, and more dili-

gent housekeeping in coal handling areas, since low-sulfur coal, especially coal from the Powder River Basin

(PRB) are very dusty;(ii) more extensive fire protection procedures, due to a higher tendency for sponta-

neous combustion which increases the risk of fire and explosion; (iii) increased drying requirements in the

pulverization process, because some low-sulfur coals have a higher moisture content;(iv) increased pulver-

izer maintenance because low-sulfur coal are more difficult to pulverize, with their Hardgrove Grindability

Indices in the range of 40 to 50; (v) costs incurred to reduce other pollutants as burning western lower sul-

fur coal results in more particular matter (PM) emissions; and,(vi) increased expenses for storage because

lower sulfur coal is usually lower in heating value and requires a larger volume of coal to generate the same

amount of power. For a detailed discussion on the impact of lower sulfur coal on an individual plant, see

Energy Information Administration (EIA) (1994).
21As I will show, the abatement cost is strictly convex.
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variable adjustment cost of low-sulfur coal. Although low-sulfur coal may be cheaper than
high-sulfur coal in certain areas, given the extra adjustment cost incurred, I assume that
Pl is strictly less than Ph.

Finally, I denote the emission function as e(l, h) = γ(δll + δhh) = µll + µhh, where δl

and δh are the sulfur contents of low- and high-sulfur coal (δl < δh), γ is the conversion
rate from sulfur to sulfur dioxide and µl and µh are the SO2 content of low- and high-sulfur
coal.

To analyze the above constrained stochastic dynamic optimization problem, consider a
firm that is in place for two periods t = 1, 2. The Kuhn-Tucker necessary conditions for a
maximum at (h∗, l∗, x∗, µ∗) yield the following first-order conditions:

Pa1 = βE1[VB∗
2
] + ω∗ (4)

Pe1g
′
f∗1

= c′f∗1 + (βE1[VB∗
2
] + ω∗)e′f∗1 (f = l, h) (5)

A1 + B1 + x∗1 − e∗1 ≥ 0, ω∗ ≥ 0, ω∗(A1 + B1 + x∗1 − e∗1) = 0 (6)

where ω is the Lagrangian multiplier associated with the non-negativity constraint on Bt+1

described by (3). ω > 0 if and only if the constraint is binding, i.e. A∗
1 + B∗

1 + x∗1 − e∗1 > 0
implies ω∗ = 0.

Eq.(4) is the Euler-intertemporal condition. Eq.(5) discloses that producers choose the
optimal levels of coal so that coal’s marginal value product equals its marginal cost. The
marginal cost includes both the direct production cost (c′f∗1 ) and the opportunity cost of
surrendering the option to use allowances in the future (βE1[VB∗

2
] + ω∗)e′f∗1 ). Therefore,

expectations on the marginal value of a unit of allowance for period-2 (E1[VB2]) affect
current emission decisions.22

The second-period optimization problem is

V2 = max
l2,h2,x2

Pe2g(h2, l2)− c(h2, l2)− Pa2x2 (7)

s.t. A2 + B2 − e(h2, l2) + x2 = 0 (8)

Eq.(8) shows that firms deplete the allowance bank in the terminal period. The solution
(l∗2, h∗2, x∗2,λ

∗
2) is described by the following first-order conditions:

Pa2 = λ∗2 (9)

Pe2g
′
f∗2

= c′f∗2 + λ∗2e
′
f∗2

(f = l, h) (10)

22g
′
f = ∂g/∂f, c

′
f = ∂c/∂f, e

′
f = ∂e/∂f(f = l, h) represent the marginal productivity, marginal production

cost, and marginal emission rate of the two types of coal. Hereafter, ′ represents the calculation of a

derivative.
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λ2 can be interpreted as the shadow value of a unit of banked allowance in period-2. Eq.(9)
says that firms will buy or sell allowances such that the shadow value of the marginal
allowance equals its market price. The optimal input mix is given by Eq.(10).

An important feature of the above optimal solution is that it is independent of the level
of banked allowances B2. The value function in period 2 is only linearly linked to (B2)
through the profit function. Specifically, the value function in Eq.(7) can be written as

V2 = Pe2g(h∗2(P2), l∗2(P2))− c(h∗2(P2), l∗2(P2))− Pa2[A2 + B2 − e(h∗2(P2), l∗2(P2))] (11)

where P2 = {Pe2, Pl2, Ph2, Pa2}. Differentiating Eq.(11) with respect to B2 gives us the
marginal revenue product of allowances:

VB∗
2

= Pa2 (12)

Substituting this expression for VB2 into Eq.(4) leads to a non-arbitrage pricing formula:

Pa1 = βE[Pa2] + ω∗ (13)

The right side of Eq.(13) is the expected return of holding one unit of allowance. It consists
of two components: expected present allowance price in period 2 and a convenience yield23

ω∗. The left side of the equation represents the opportunity cost of carrying an additional
unit of allowance, which is an instantaneous gain from selling it in the spot market. Given
the substantial number of allowances banked by the industry during Phase I, and that the
SO2 allowance market has been fairly liquid, I assume the convenience yield related to the
scarcity of the allowance bank is not a factor affecting banking decisions of individual units,
i.e. ω∗ = 0.

Combining Eqs.(5) and (12) yields the following policy function for intertemporal emis-
sion trading:

βE[Pa2] =
ξ∗1Pl1 − Ph1

γ(δh − ξ∗1δl)
(14)

where ξ∗1 = g′h∗1
/g′l∗1

is the ratio of the marginal productivities of high- and low-sulfur coal.24

The right side of Eq.(14) is the additional cost an operator has to pay in order to reduce
one ton of SO2 emissions. It reflects both price and productivity differences between low-
and high-sulfur coal. Following Montgomery (1972), emission abatement costs are defined
as the difference between unconstrained profits and profits in which the firm adopts an
emission level lower than the unconstrained emission level. Therefore, the right side of
Eq.(14) presents a notation for marginal abatement cost.

23Convenience yield is a concept in finance. It refers to the benefit or premium associated with holding

an underlying product or physical good, rather than the contract or derivative product.
24The expected permit prices are positive, implying δh/δl > g′h/g′l.
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Eq.(14) together with Eq.(13) exhibit the spatial and temporal efficiency properties of a
tradable emission permit regime: in each period, the marginal abatement costs are equalized
across firms through the current allowance price (thereby the total pollution reduction cost
is minimized)25; the present value of the marginal abatement costs are equalized across
time periods in an expectation sense. Thus, expectations about higher future allowance
prices raise the current abatement level.

Plugging β = 1/(1 + r) into Eq.(13), we obtain Hotelling’s rule under uncertainty.

E(Pa2)− Pa1

Pa1
= r (15)

Eqs.(13) and (14) show that firms have incentives to save allowances for future use (forward
banking) every time they expect the discounted future allowance price to be greater than
the current market price; at the industry level, such forward banking will drive up the
current allowance prices, as well as the current marginal abatement costs, to reflect the
expectation of future allowance prices. Eq.(15) shows that forward banking is to prevent
the expected allowance price from increasing at a rate higher than the interest rate.

4.2 Uncertainty, Banking and Emission

Although a price is given for each individual unit in the allowance market, allowance price
is endogenously determined by the aggregate behavior of the generating units. Previous
theoretical analysis of emission permit trading reveals that when allowed to trade with
one another in a competitive allowance market, units will collectively behave like a central
planner who efficiently allocates emission permits to each unit in a manner that minimizes
total costs (Rubin, 1996; Schennach, 2000; Feng and Zhao, 2006). This suggests a model of
aggregate industrial behavior as that of a single representative unit, and to solve the equiv-
alent problem without considering internal spatial trading. For simplicity of exposition, I
assume the representative agent produces electricity according to the Cobb-Douglas pro-
duction function26 g(l, h) = Glαh1−α, where G is a productivity parameter, and 0 < α < 1
is the share of low-sulfur coal. To avoid confusing increasing price volatility with increasing
price trends, I consider electricity price Pe evolves following a mean-preserving stochastic
process with the mean equal to P e. Formally, I define the probability distribution function
of Pe as f(·, θ) such that∫

Pe2df(·, θ) = P e ∀θ (16)

25This conclusion is based on the assumption that firms have interior solutions, i.e. both low- and high-

sulfur coal are used. If firms only use one type of coal, marginal abatement costs are not equalized between

firms having interior solutions and firms having corner solutions; however, an emission trading program still

yields a cost effective result.
26In Appendix A, I extend the model to a more general CES production function and prove that the

conclusions do not change.
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where θ is an index of the mean-preserving spread and if θ′ > θ, f(·, θ) second-order stochas-
tically dominates f(·, θ′) (or f(·, θ′) is more risky than f(·, θ)). Therefore, the value of θ

characterizes the level of market-wide risk. The representative firm’s optimization problem
in period 2 is simplified by leaving out the term x:

max V = Pe2g(l2, h2)− c(l2, h2) (17)

s.t. A2 + B2 = e(l2, h2) = µll2 + µhh2 (18)

There is no closed-form solution for the above optimization problem. Nonetheless, I prove
analytically in Appendix A that the marginal profitability of allowances ∂V/∂B, or the
allowance price Pa, is convex in the stochastic variable Pe. This leads to a negative rela-
tionship between ex ante emissions and the level of uncertainties about electricity prices.

Proposition 1. Increasing uncertainty over electricity price generates lower ex ante emis-
sions and higher banking in the following sense: For θ′ > θ,B(θ′) > B(θ), and ei(θ′) <

ei(θ), where θ is an index of the mean-preserving spread of electricity price, B is the in-
dustry’s total banked emissions permits, and ei is the individual unit’s ex ante emissions.

Proof. Because the marginal profitability of allowances is convex with respect to Pe, it
follows directly from Jensen’s inequality that an increase in the mean preserving spread of Pe

increases the expected marginal value of allowances. According to Eq.(14), in anticipation of
higher future marginal value of allowances, firms will reduce ex ante emissions by increasing
current marginal abatement costs, leading to an increased aggregate stock of allowances at
the industry level.

It is essential that the marginal value of allowances be convex with respect to electricity
prices to derive the above conclusion. This convexity reveals an asymmetric distribution
of future marginal values of allowances due to output prices changes. To understand the
intuition, note that because the total number of allowances is fixed, and is less than the
emissions expected to be produced by all of the affected units, the rise of electricity prices
increases the counterfactual emissions (through the mechanism explained in section 3), as
well as the total required pollution reduction. Since abatement costs are convex (further
discussion of this property appears in the next section), marginal abatement cost rises
with the quantity of abatement. Therefore, when electricity price increases, the marginal
abatement cost increases faster than it decreases when electricity price falls. So the po-
tential gain from saving an additional unit of allowance when electricity price increases is
higher than the potential loss when electricity price decreases. When uncertainty is more
pronounced, very high and very low electricity prices are more likely, and this asymmetric
relationship becomes more salient. In the presence of extreme prices, firms would have a
higher incentive to save allowances as the potential gain is much higher than the potential
loss.
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In addition, across multiple time periods, the convexity effect also works through a
firm’s ability to vary the input of allowances in response to the resolution of uncertainty.
When a ‘bad’ shock occurs, such that the stock of allowances exceeds the desired stock of
allowances, firms can choose not to use extra allowances. Thus, the expected profit from
saving a unit of allowance today equals E[max(βPa2−Pa1, 0)]. The gain from a ‘good’ shock
is unchecked, while the loss from a ‘bad’ shock is bounded below. A unit of allowance is
like a set of American call options on future production, which is worth more when good
and bad outcomes are more extreme (with the same expected mean value).

Based on a similar analysis, I show in Appendix B that the marginal value of allowances
is also a convex function of input costs: the prices of low- and high-sulfur coal. The
intuition follows the same line: the fluctuation of input costs changes the counterfactual
emission levels, leading to an asymmetric probability distribution for the marginal profit
of allowances: negative shocks which increase the input costs will reduce the marginal
value of allowances less than positive shocks will increase them. Hence, when there is a
mean preserving spread in the distribution of Pl or Ph, which raises the expected marginal
profitability of allowances, the industry will save more permits in equilibrium.

Lemma 1. The greater the uncertainty in input costs Pl and Ph, the lower the ex ante
emissions.

Proof. See Appendix B.

Finally, note that the industry average productivity (G) enters the profit function in
exactly the same way as the electricity price (Pe). Therefore, introducing uncertainty in
productivity given the price is the same as introducing uncertainty in a price given produc-
tivity. Hence, the marginal value of allowances is also convex in industry-wide productivity.
However, there is a conceptual difference between these two types of uncertainties. Price is
usually subject to both upward and downward shocks, while industry productivity, usually
affected by technology development, generally moves in one direction. That is, technological
innovation would increase rather than decrease productivity. Although, it is inappropriate
to analyze the effect of uncertain technological progress within the previous framework, it
follows directly from the above analysis,27 that in anticipation of new technology which
may improve the productivity of coal-fired power plants, firms will bank more allowances.
The intuition is: as coal-fired power plants become more competitive, the demand for coal-
produced electricity will increase and, therefore, the expected marginal value of allowances
also increases.

Before moving on, it is important to note that assuming a perfectly competitive al-
lowance market, the above conclusions are derived regardless of a firm’s market positions
(net seller or buyer) and the initial allocation of allowances.

27Also see Eq.(42) in Appendix A
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4.3 Imperfect Competition and Returns to Scale

Proposition 1 and Lemma 1 are proved under the assumptions that individual firms are
price-takers and that production technology is linearly homogeneous. In this section, I
discuss the roles of perfect competition and returns to scale. I show that imperfect com-
petition in an electricity market and decreasing returns to scale do not affect the negative
relationship between uncertainty and emissions. However, this negative relationship may
not be robust given increasing returns to scale or imperfect competition in the allowance
market.

4.3.1 Imperfect Electricity Market

To isolate the impact of imperfect competition in the electricity market, assume the tech-
nology is still described by a homogenous of degree one Cobb-Douglas production function:
g = Glαh1−α. Suppose an individual firm faces an isoelastic demand curve Pe = g(1−ϕ)/ϕW ,
where ϕ(ϕ ≥ 1) is a markup coefficient with ϕ = 1 corresponding to perfect competition.
W is an exogenous stochastic demand shifter that captures industry-wide shocks. Under
these conditions, the value function is equal to:

V = W (Glαh1−α)ε − Pll − Phh− Pax (19)

where ε = 1/ϕ, ε ≤ 1, ε can be considered as a returns-to-scale parameter. Appendix
C shows that with a value function described by Eq.(19), the convexity of the marginal
value of allowances for output price and input costs persists. Therefore, the fact that an
electricity market may not be perfectly competitive does not affect the conclusion regarding
the negative relationship between uncertainty and ex ante emissions given constant returns
to scale, perfect competition in allowance market, as well as risk neutrality.

This result confirms the intuition accompanying the foregoing analysis. Recall that
a crucial insight from Eq.(11) is that abatement decisions do not depend on either past
or future allowance stocks. This lack of ‘intertemporal links’ holds true as long as firms
are price takers in the allowance market, and it does not depend on the elasticity of the
demand curve facing individual firms in the electricity market. Therefore, an industry-wide
shock will similarly impact abatement decisions for a competitive firm and a monopolist
with constant returns to scale in the electricity market. How many allowances are saved
now affects profits in the future, but not the level of emissions in the future. As such, any
increase in the expected marginal profitability of allowances, including the one caused by
an increase in market uncertainty, raises the emissions banked today.

One concern about the foregoing analysis is that the industry itself may face a downward-
sloping demand curve even when individual firms are perfectly competitive and have con-
stant returns to scale. When price is endogenously determined by the industry’s output, the
amount a price can rise under good industry-wide outcomes is limited by the entry of new
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firms and the expansion of existing ones. If investment is irreversible, as shown by Pindyck
(1993), there is no similar mechanism to prevent price from falling under bad demand out-
comes. As a result, a mean-preserving distribution of future output prices might not be
sustained. However, in the power market, since fossil-fired peak load power plants, which
are usually the marginal producers, can be relatively costlessly and temporarily turned on
or shut down in response to the realized market price, the possibility of a mean-decreasing
distribution of future output price is reduced. So the operational flexibility of peak load
power plants weakens the notion of irreversibility which is instrumental in Pindyck(1993)’s
analysis.

4.3.2 Returns to Scale

Analysis so far assumes constant returns to scale. Relaxing this assumption, however,
does not introduce any additional difficulty. Eq.(19) reveals that a decrease in returns to
scale operates exactly like an increase in the markup coefficient and vice versa. Therefore,
conclusions of Proposition 1 and Lemma 1 carry over entirely to the case of decreasing
returns to scale.

This result has an intuitive interpretation. Note that Proposition 1 and Lemma 1
hinge on the convexity of abatement costs. In principle, this convexity arises from decreas-
ing marginal productivity of factor inputs.28 To see this, observe from Eq.(14) that the
marginal abatement cost is positively related to the ratio of marginal products of high- and
low-sulfur coal (ξ). In the case of declining marginal productivity, when producers use a
greater share of low-sulfur coal to reduce emissions, ξ increases as the marginal product
of low-sulfur coal declines relative to that of high-sulfur coal. Therefore, abatement costs
are convex in that a lower level of emissions is associated with higher abatement costs at
the margin. In obtaining this result, diminishing marginal productivity is the paramount
factor. Because decreasing returns to scale (as well as constant returns to scale) guarantee
diminishing marginal productivity (given that the production function is quasi-concave)29,
the negative relationship between emissions and uncertainty extends to the case of decreas-
ing returns to scale (either resulting from imperfect competition, or diseconomies of scale
technology, or both). In fact, some cases of increasing returns may also satisfy diminish-
ing marginal productivity. For example, suppose ε > 1, but 0 < αε < 1; the marginal
productivity of l decreases with the increase of l. However, as the returns to scale (ε)
become larger and larger, given the insights gleaned here, the inverse relationship between
emissions and uncertainty would eventually lose its strength.

28Increasing marginal abatement costs or decreasing marginal productivity both imply that the firm

attains a regular minimum in solving the problem.
29A formal mathematical proof is available upon request.
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4.3.3 Imperfect Allowance Market

So far I have assumed a competitive allowance market, where the distribution of future
allowance price is independent of an individual firm’s abatement decisions. The effects of
uncertainty are mediated through the equilibrium behavior of all firms and the resulting
impact on prices of an allowance market. A logical question to explore is what results if
at least one of the units exercises market power in the allowance market. In this case, the
current emission of the dominant firm would affect the expected path of the marginal value
of allowances. For a dominant firm, Eq.(13) becomes

∂Pa1

∂x1
x1 + Pa1 = βE[

∂Pa2

∂x2
x2 + Pa2] + ω∗ (20)

The price function Pa and its relationship with Pe is intractable without further assumption
of the price- or quantity-setting behavior of the dominant firm. However, since the dominant
firm has the flexibility to make ex post decisions on x2 after the value of the random demand
for coal-produced electricity is known, the permit price Pa becomes less convex with respect
to Pe. When the ability of the dominant firm to affect the permit price increases, the firm
would respond less and less to changes in the level of uncertainty. Qualitatively, I show
that imperfect competition in an allowance market threatens the negative relationship
between price uncertainty and ex ante emissions. Further analysis is needed based upon
more detailed assumptions about the structure of the allowance market and the strategic
behavior of a dominant firm.

5 Empirical Analysis

Building on previous discussions, this section empirically explores electric utilities’ re-
sponses regarding emissions reduction to price fluctuations in the U.S. electricity markets.
The analysis is based on a panel dataset consisting of 208 Phase I coal-fired generating units
from 1996 to 2004. Before deploying the empirical specification, it is worth commenting
on the basic structure of a coal-burning power plant. A steam-electric coal power plant
consists of three main components: boiler(s), generator(s), and stack(s). Coal is burned
in a boiler(s) to generate steam, which is transmitted to a generator(s) where electricity is
produced. During the coal combustion process, SO2 is produced and disposed of through an
exhaust stack. A flue-gas desulphurization system (also called a scrubber) can be installed
in the stack to reduce SO2 emissions. In this paper, I refer to the complex of a boiler and
the generator(s) connected to it as a generating unit. Because environmental regulation is
implemented at the boiler level, following Arimura (2002), Carson, et al.(2000), Montero
(1999), and Ellerman and Montero (1998), estimations in this paper are conducted at the
level of generating units.
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5.1 Econometric Specification

Assume a generating unit i has a production function of the following form: g = Glahb

(a > 0, b > 0). Multiplying factor inputs l and h on both sides of equation (5) gives the
input demand functions for l and h:

lt =
Petgt

Plt + (βEt[Pa(t+1)] + ω)µl
, ht =

Petgt

Pht + (βEt[Pa(t+1)] + ω)µh
(21)

Substitute l and h from (21) into the emissions function, divide both sides by gt, and take
logs yield the following expression for units’ emission rate:

ln(
e

g
)t = lnPet + ln[

µl

Plt + [βEt(Pa(t+1)) + ω]µl
+

µh

Pht + [βEt(Pa(t+1)) + ω]µh
]

(22)

Equation (22) shows that the emission rate of a unit at time t is related to the prevailing elec-
tricity price Pet, factor input prices ( Plt and Pht), and the expected future allowance price
Et[Pa(t+1)]. As postulated by the theoretical analysis, Et[Pa(t+1)] is positively correlated
with the variance of Pet. The probability of a potential stockout of allowances measured by
ω and other unit specific characteristics may also affect emission performance. Therefore,
the emission rate of a unit i is estimated by the following reduced form function:

Yit = β0 + β14Peit + β2lnPeit + β3lnPat + β4lnPlit + β5lnPhit + β6Zit + β7Rit

+ β8Zit4Peit + β9Rit4Peit +
20∑

j=1

νjSj +
2004∑

t=1997

κtTt + αi + uit (23)

where the dependent variable Yit = ln( e
g )it is the observed annual average SO2 emission

rate (in log form) of unit i in year t. Emission rate is calculated by dividing the total
annual emissions (tons) by the annual electricity output in megawatt hours (MWh).

4Peit is the electricity price volatility, the key variable of interest in this analysis.
Monthly fuel purchasing database reveals that plants purchase coal from spot markets
throughout the year. Therefore, decisions regarding how much of each type of coal to buy
and how many allowances to hold can be adjusted in response to monthly electricity price
fluctuations. I measure 4Peit as the standard deviation of the percentage change (between
two adjacent months) in monthly average electricity price to industrial customers in year
t in the state where unit i is located. 30 The calculation is described by the following
equation:

4Peit =

√
E{[ Peitm

Peit(m−1)
− E(

Peitm

Peit(m−1)
)]2}

30Industrial prices are the most volatile and least protected by PUC regulation. On a monthly scale, the

volatility of industrial prices is driven primarily by changes in fuel costs. However, because of the existence

of long-term contracts, using industrial prices may underestimate actual price volatility in the spot market.
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where E[·] represents the mean of the sample. m indexes the month. As overall underlying
prices tend to be higher in more volatile periods, this definition facilitates normalization and
reasonable comparisons across high and low price levels. The coefficient of 4Peit provides
a measure of the elasticity of annual average emission rate to electricity price volatility. A
negative coefficient will provide supporting evidence for the theoretical prediction.31

Peit is year t annual average retail electricity price to industrial customers at the state
where unit i is located. Given input costs, increased electricity prices will increase the
marginal value of allowances. Therefore, the coefficient associated with Peit is expected
to be negative. Current allowance price (Pat) is an indicator of the market’s perception
of future prices. A higher Pat would reduce current individual units’ emissions and the
coefficient of Pat would likely be negative. The coefficient associated with low-sulfur coal
price (Plit) is expected to be positive, while the sign of the coefficient of high-sulfur coal
price (Phit) is ambiguous.32

Zit is a vector of unit specific characteristics that includes: SCRUBBERit, a dummy
constructed to be 1 if a scrubber is installed.33 AGE it, is calculated by subtracting the
year of initial boiler operation from the calendar year. I estimate the model allowing
AGE it to enter with a quadratic specification. HEATRATE it is a measure of unit efficiency
in transferring energy into electricity. It is calculated by dividing the Btu content of
the fuel input by the net megawatt hours of power output .34 LnCAP i is the log of
the boiler nameplate capacity in megawatts. The variable is included to capture possible
economies of scale. As previous literature (Avallone and Baumeister, 1996; Joskow and
Schmalensee, 1987) suggests that the advantage of larger size tends to deteriorate as scale
becomes very large, I therefore include the first and second order terms of LnCAP it in
the regression. WORKLOAD it is the ratio between the actual operating hours during
year t and the maximum working hours of a year (8640 hours).35 INITIALit is the initial

31The above analysis implicitly assumes current price fluctuation as a proxy for expected price uncertainty

in the future. One concern with this specification is whether current price uncertainty reflects plant opera-

tors’ expectations of future price uncertainty at the time of making operation decisions. To evaluate whether

historical price uncertainty provides insights into expectation of future price changes, I assume managers

perfectly predict price volatility in the future (4Pei(t+1)), and test for the response of current emission rate

to future price fluctuation. This alternative specification does not change the result qualitatively.
32Holding the output price constant, a change in input fuel prices has two substitution effects: the

substitution between the two types of coal, and the substitution between low-sulfur coal and allowances.

When low-sulfur coal prices increase, both substitution effects raise emission rates. However, when the

high-sulfur coal price increases, the two substitution effects work in opposite ways, leaving the sign of Phit

indeterminate.
33Scrubber can remove up to 90% of SO2 emitted. The coefficient associated with SCRUBBERit is

expected to be significantly negative.
34Because of the inverse relationship between heat rate and production efficiency, the sign of the coefficient

for HEATRATE is expected to be positive.
35It is generally understood that frequent ramping up and down tends to increase the level of emissions.
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allocation of allowances (tons) issued by the EPA.36 MUNI it is a dummy equal to 1 when
the generating unit is municipally or cooperatively owned. An extensive literature has
discussed the relative inefficiency of publicly owned facilities. If MUNI units are less
cost conscious, operational activity of these units will be less responsive to output price
fluctuations. Therefore, I also control for the interaction term between MUNI and the
measure of electricity price volatility (4Peit). The coefficient for the interaction term is
expected to be positive.

In addition to environmental regulation, electric utilities in regulated states face an
extra rate-of-return (ROR) regulation. To control for the impact of ROR regulation on
emissions, I include a regulatory status indicator variable and its interaction term with
electricity price volatility (4Peit). Specifically, the regulatory variable, RETAILACESS it,
takes the value 1 if the state where unit i is located has begun retail access to industrial
customers during year t, 0 otherwise.

A simple analysis is sufficient to show that the marginal abatement cost of a regulated
units is lower than the equilibrium allowance price.37 The wedge between them is the extra
profit a regulated firm is allowed to earn either through a positive return on allowance
expenditures or a relaxation on profit constraints. Therefore, I expect the coefficient for
RETAILACCESS to be negative. I have no priors regarding the interaction term. On
one hand, regulated units may be less cost conscious to allowance expenses and be less
responsive to price volatility; on the other hand, in anticipation of restructuring, regulated
units may have higher incentive to accumulate permits since moving towards restructuring
implies the eventual loss of cost recovery.

State dummies Sj are included to control for time-invariant, state-specific environmen-
tal regulatory policies.38 Year dummies Tt picks up year-specific differences in emission
performance, such as secular technology or productivity shocks common to all units. αi

is assumed to be an unobservable time-invariant unit-specific characteristic and uit mea-
sures idiosyncratic shocks to units’ operating performance. β0, β1, . . . , β9, νj and κt are the
coefficients. 39

I construct the variable WORKLOAD to capture the impact of different operating practices between base

load and peak load plants on emissions. The coefficient of WORKLOAD is expected to be negative.
36Although emission decisions of a price-taking unit are generally independent of its allowances endow-

ment, INITIAL could be inversely related to the convenience yield (ω) when non-negativity constraints are

binding. However, since the non-negativity constraints are inconsequential during Phase I of the trading

program, I expect estimation on INITIAL to be positive, but the effect is likely to be tenuous.
37The analysis is available upon request.
38For example, many generating units were subject to sulfur restrictions contained in State Implemen-

tation Plans which were enforced prior to the Acid Rain Program and are still in effect. Some of these

local regulations, such as those in Kansas, Michigan, Wisconsin, New York and New Hampshire, are more

stringent than those of the Acid Rain Program and therefore consistently affect the emission rates of the

units in those states.
39Although theoretical models in previous sections do not solve for x, and therefore the theory remains
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5.2 Disturbance Term Structure and Robustness Checks

One potential concern for regression model (23) is that if dirty coal power plants passed
on high environmental control costs to the consumers, electricity price may be endogenous.
To account for the possibility of endogenous electricity pricing, I employ an instrumental
variable approach, using the annual average natural gas price delivered to electric utilities
(Png (electric power price)) (including transportation cost and taxes etc.) as an instrument
for electricity prices in that same state. Natural gas prices are generally determined by
weather conditions (hot summer and cold winter days), the prices for substituting fuels (oil
and gasoline), and industrial economic activities40, but plausibly not endogenous to the
environmental performance of coal-fired power plants.

A major motivation for electricity restructuring was to remedy the problem of high
electricity prices in the Northeast and California. If less clean and less efficient coal power
plants in the Northeast contributed to the region’s high electricity prices, which in turn
induced electricity restructuring, then the regulatory variable may also be endogenous to
emission rates. Given that restructuring decisions were generally made before 2000, I
conducted reduced sample estimation based on observations from 2000 to 2004 and found
that the results do not change.

The equilibrium allowance price could be endogenously determined by units that abuse
market power. Emission price endogeneity may be particularly relevant during the first
few years of the trading program when the market was not liquid enough and the price
determination process might have involved significant interplay of supply and demand be-
tween only a few market players. I use the annual average natural gas wellhead price
(Png (wellhead price)) as an instrument for the allowance price.41 Natural gas and coal
are competing fuels for electricity generation. Fluctuations in natural gas prices have the
potential to influence the market share of coal-based generation, which is a major factor
driving allowance prices. I also drop the potential noisy observations in years 1995 and
1996 and compare the results with those from full sample estimation.

silent on the relationship between unit-level banking and uncertainty (when the current market price re-

flects the discounted expected future allowance price, a unit would be indifferent between banking and

selling/purchasing allowances). Nonetheless, based on equation (23) and controlling for electricity output,

I still test whether the percentage change in banked allowances of unit i between two time periods has

any bearing on output price uncertainty (the dependent variable is [Bit − Bi(t−1)]/Bi(t−1)), where Bit is

the amount of banked allowances by unit i in year t). In this regression, the coefficient of electricity price

uncertainty (4Peit) is statistically significantly positive, suggesting that a one percent increase in electricity

price volatility is on average associated with a 2.4 to 3.4 percent increase in the size of the banked allowances

at the unit level. For conciseness, I do not report the regression here.
40Natural gas is the most versatile fuel. It is used as home heating and industrial fuels, and is increasingly

used as a vehicle fuel.
41Wellhead price is the value of natural gas at the mouth of the well. In general, the wellhead price is

considered to be the sales price obtainable from a third party in an arm’s length transaction.
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The endogeneity of low- and high-sulfur coal costs may arise as an issue if coal prices are
determined by the demand for coal of some individual units. Even when electric generating
units are price-takers in coal markets, because coal is a differentiated product, both in terms
of quality (sulfur content, Btu content, moisture content etc.)42 and location, coal suppliers
(producers and carriers) may have great latitude in formulating prices.

Following Ellerman and Montero (1998), I use low-sulfur coal price premium (LSPremium)
and the distance of a unit from the Powder River Basin (DPRB) as proxies for high and
low-sulfur coal prices available to the units. I control for the distance with a third degree
polynomial to reflect a nonlinear relationship between coal prices and the unit’s location
in relation to Powder River Basin (PRB) coal.43

As another robustness check, I exclude 2004 data from the analysis. In 2004, the spot
price of SO2 allowances, which had been steady at about 100-200 dollars/ton since 1995,
was increased three-fold after the EPA proposed the Clean Air Interstate Rule, a policy
which will lower the SO2 emission cap by two-thirds beginning in 2010. Although this price
response provides further evidence on units’ intertemporal optimization behavior, it may
swamp the effect of price volatility on emissions trading.

Finally, the results could also be affected by sample attrition issues. Starting in 1998,
many plants were divested to non-utilities and dropped from the sample because cost data
of nonutility generating facilities are not reported to the public. If divestiture decisions
were driven by unobservable unit specific characteristics, for example, if divestitured plants
tend to be more competitive and produce fewer emissions given a level of output, the
estimation would be biased. To assess if divestiture creates an attrition bias, I constrain
the estimation to a balanced sub-panel containing units that remain in the database through
2004. Because the sample selection problem would be the most severe in this specification
if observations were not missing at random, comparing results from the balanced sample
estimation with those from the unbalanced sample provides a test on the significance of
the potential sample attrition problem.

The stochastic disturbance (ui) in the estimation equations are assumed to be correlated
across observations.44 To obtain robust standard errors, I adjusted standard errors for

42Some fuel contracts specify more than a dozen attributes of coal qualities.
43A unit’s location in relation to PRB coal will to some extent reflect the actual cost of low-sulfur coal and

other competing coals. This is because PRB produces the most of the low-sulfur coal in the U.S., with the

cheapest coal-mine prices, while transportation costs factor importantly into the delivered price of coal. In

fact, for some western coal hauls, transportation costs account for up to 75% of delivered fuel costs. (EIA,

1995). However, the distance to PRB coal does not affect low-sulfur coal price uniformly. Low-sulfur coal

from central Appalachia becomes more competitive for units 1000 miles away from PRB coal. It is expected

that low-sulfur coal price will first increase with the increase of distance to PRB coal, then decrease as more

alternative low-sulfur coal become available.
44In the fixed effects estimation of emission rate, the estimated average first-order autocorrelation coeffi-

cient is 0.26.
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clustering by unit in the following estimations.

5.3 Data and Estimation Results

I began construction of the dataset with all privately and publicly owned Phase I coal-
fired generating units. For these units, I built a panel dataset beginning in 1996, the first
year for which coal consumption data are available, and ending in 2004, the last year for
which the allowances transaction data were updated. The data are collected and merged
from several data sources to obtain information concerning annual aggregate productions,
quality and quantity of coal used, annual SO2 emissions, allowances allocated and banked,
electricity and fuel prices, regulatory statuses, as well as unit specific characteristics. This
merging process reduced the sample size, both because of differences in units covered by
various datasets, and because divestitures removed plants from the reporting database after
1999. The final dataset is unbalanced and composed of 208 Phase I coal-fired generating
units. All prices are adjusted to real terms using a 5 percent discount rate and presented
in 1995 dollars. Details of the dataset collection and construction procedures are provided
in Appendix D.

Table 1 presents summary statistics. Table 2 offers the unit-year observations on
the number of units affected by electricity restructuring, those which installed scrubbers,
switched to low-sulfur coal, or used only high-sulfur coal for production. Table 2 shows that
the number of scrubbers installed remains almost constant (except for sample attrition that
reduces the number of the observations), suggesting that changes in emission rates may not
be primarily caused by the installation of scrubbers.

Columns (1) and (2) of Table 3 report results for estimating equation (23) via unit
fixed and random effects models, with ln( e

g )it as the dependent variable. The estimated
coefficients of 4Peit are similar, both negatively and statistically significant from zero.
This result is consistent with the theoretical prediction of a negative correlation between
emission rate and electricity price volatility. Based on the random effects specification,
a one percent increase in electricity price volatility is associated with a decrease in units’
annual average emission rate by 0.84 percent. This means a one-standard deviation increase
in electricity price volatility would induce a sample average unit to reduce annual emissions
by 677 tons.

Columns (3)-(6) of Table 3 explore robustness to alternative specifications or sample.
Column (3) presents instrumental variables (IV) fixed effects estimation, using natural gas
electric power price and natural gas wellhead price as instruments for electricity and SO2

prices. I use Generalized Methods of Moments (GMM) to obtain consistent and efficient
estimates. The Cragg-Donald F statistic is 56.71 and is significant at 5 percent level,
indicating that the instruments are relevant and the model is identified. The Hansen J test
statistic is 5.711 and the overidentifying restriction is not rejected at any reasonable level.
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The other test statistics are reported in the notes for Table 3. The IV estimation results
closely resemble those in columns (1) and (2), suggesting that the endogeneity of electricity
and allowances prices does not seem to be a particular concern.

Columns (4) - (6) are based on GLS random effects estimation. Column (4) restricts
samples to 1997 - 2003; column (5) reports results from a balanced panel that contains
only units that remain in the sample through 2004; while the regression controlling for
unit locations in relation to PRB coal and the observed difference between low- and high-
sulfur coal prices is reported in column (6). Overall, these alternative specifications do not
qualitatively change coefficient estimation for electricity price volatility in either magnitude
or statistical significance.

Estimations on the other explanatory variables are generally consistent with prior ex-
pectations. The estimates on SCRUBBER show that the installation of a scrubber would on
average reduce emission rates by about 90%. The coefficient on HEATRATE suggests that
less efficient production is associated with higher emissions. Higher allowances prices, as
well as higher electricity prices, induce lower emission rates. In contrast, there is a positive
relationship between low- and high-sulfur coal prices and emission rates. However, coeffi-
cients of these price variables are not statistically distinguishable from zero in all models.
In addition, the three distance coefficients are each statistically significant. The reversed
U-shaped profile derived from the distance coefficients echoes the results from Ellerman
and Montero (1998), suggesting that low-sulfur coal prices first increase then fall with the
units’ distance to PRB coal mine. Finally, note that units that have had not experienced
retail competition are more responsive to price volatility, plausibly due to expectations on
upcoming unfavorable change in cost recovery rules.

I use actual price volatility level in 1992 (4Pe1992) as what would have prevailed in
the absence of electricity restructuring and compute the corresponding emission rate based
on results for model (2) in Table 3. With expected counterfactual price volatility, extra
allowances - the difference between counterfactual emissions and actual emissions is about
10-percent of the total banked allowances of the sample units. Following the same exercise
but using the actual price volatility in 1995 or the average price volatility level during the
pre-restructuring period (1990-1995) as the counterfactual, the increased price volatility
can explain about 7-percent of the total allowances banked by the sample units during
Phase I.

6 Welfare Analysis and Policy Implications

To gain further insights into the effects of uncertainty on the time-series behavior of banking
and emissions, in this section, I numerically simulate the banking pattern, emission stream
and permit price path over time resulting from varied price volatilities and compare the
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findings to results that would occur in the absence of uncertainty. Given different social
damage functions, I analyze the potential welfare impact of increased price volatility and
discuss the policy implications.

6.1 Simulation of Emission Trading under Different Price Volatilities

In the following, I analyze emissions banking at the industry level and ignore internal spatial
trading of permits. Firms are assumed to collectively maximize the aggregate present value
of profits over a planning horizon spanning from 1995 to 2020, based on a production
function g = G(lαh1−α)ε. There is no rate-of-return regulation and the allowance market
is perfectly competitive. The optimization problem is described by Eqs.(17) and (18)
in section 4.2. In addition, I assume the electricity price Pet evolves following a mean-
preserving stochastic process:

Pet =


P e + θ with probability q

P e with probability 1-2q

P e − θ with probability q

where P e is the expected mean of the electricity price; q denotes the probability that a
price moves up or down by θ. Both q and θ measure the magnitude of uncertainty. To
be consistent with previous analyses, I vary the value of θ from 0 to 1, while keeping q

constant at 0.3.45 To focus attention on the impact of uncertainty, I maintain a constant
realized electricity price in each period at P e = 4.8 cents/KWh. Annual initial allocation
is 7 million tons in the first five years and is permanently capped at 3.5 million tons
from the year 2000. Production parameters are chosen with the following values: G =
55, a = 0.6, ε = 0.9.46 Discount ratio β is assumed to be 0.95. Values of the following
parameters are chosen around the sample means: P e = 4.8cents/KWh, ul=1.64lb/MMBtu,
uh = 4.41 lb/MMBtu, Pl = 120 cents/MMBtu, Ph = 100 cents/MMBtu.47 Permit price
is endogenously determined by the aggregate operational behavior of firms according to
Eq.(68). The process of simulation is discussed in detail in Appendix E.

Numerical analysis produces robust patterns in responses of banking and emission to the
increase in output price uncertainty. Figure 4 depicts the total amount of banked emission
permits as a function of time. The dashed line corresponds to a scenario in which the price

45I assess the sensitivity of the results with respect to the value of q.
46Ideally, I would estimate the production function based on actual data. However, besides observations

on purchasing choices of low- and high-sulfur coal, there are no data on actual inputs of low- and high-sulfur

coal. Production factor G is chosen to be large enough so that the emission standard imposes a binding

constraint on the production decision. As a sensitivity analysis, I analyze the change in G on the results

and find it does not change their qualitative pattern.
47The price premium of low-sulfur coal, considering the coal blending adjustment cost, is chosen at 20

cents/MMBtu. I examine the importance of the value on the results in the sensitivity analysis.
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spread, θ=0.2, and the emission cap remains constant at 7 million tons across all periods.
The shaded, fuzzy line tracks the actual allowance storage through 2004. The other lines
indicate a two-stage schedule of declining emission standards with different assumptions
about price volatility ( θ= 0, 0.2, 0.4, 0.6, 0.8, and 1).

Comparing the dashed line with the other solid lines, it is apparent that when price
volatility is low, tightening environmental standards provide a major incentive for producers
to reduce emissions below the standards in the early years in order to accumulate credits
that can be used when standards become more stringent. When price volatility becomes
significant (θ increases), the asymmetric impact of uncertainty plays a more important
role in determining the optimal size of the bank. As anticipated, a price spread of θ = 1
generates the largest number of banked permits during Phase I and a zero price volatility
generates the fewest. Uncertainty also affects the draw down rate of the bank. When
there is no uncertainty (θ = 0), the bank is depleted by the year 2008. When θ = 1, the
banking period is significantly extended: the bank continues to grow until 2011. Figure 4
also indicates that the electric industry has been successful in planning emissions banking.
The actual banking path follows the optimal routes closely.

Of particular interest to the environmental authority is the effect of uncertainty on
the emissions stream. The annual emission flows and the cumulative emissions in each
year under different scenarios of price volatility are plotted in Figures 5 and 6. As noted,
the emission stream associated with different price volatilities deviate substantially in the
beginning and terminal periods. When prices are volatile, it is optimal to emit less in early
periods and more in later periods. When these uncertainties are high enough, excessive
emissions are observed towards the end of the planning horizon.

Also noted from Figures 5 and 6 is that the size of early emission reductions is significant.
Based on the numerical analysis, when θ = 1, producers would have reduced emissions by
48% more than when θ = 0, during the first 5 years of the program; with θ = 0.2 or 0.4,
early emission reductions are at the level of 5% and 14%, respectively, which are in the
same order of magnitude as the elasticity estimated in previous econometric analysis.

Figure 7 contains the permit price path under different price uncertainties. Permit
price equals the marginal abatement cost. Therefore, Figure 7 corresponds to Figure 5
in the sense that the higher the emission level, the lower the permit price. For the high
variance cases, permit prices are extremely high initially and plummet at the end. It is
worth mentioning that the expected price differs from the realized price. Producers bank
emission credits in order to equilibrate expected present value price across compliance
periods. However, when uncertainty is extremely high, banking does little to smooth the
actual price series.

The simulation model assumes specific parameter values for the production function and
input and output prices. To test the sensitivity of results to these assumptions, a number of
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simulations were run based on different values of q, G, α, ε, Pl, and Ph. The corresponding
simulation results on total banked permits are shown in Table 8. The results indicate
that the qualitative conclusions do not hinge on the specific parameter values chosen. In
addition, as shown in the first two rows of Table 8, the size of the bank is much larger when
the probability of price movement, q, increases from 0.3 to 0.4, confirming the relationship
between uncertainty and emissions banking from another perspective.

6.2 Welfare Analysis

From the standpoint of economic efficiency, uncertainty shifts emissions abatement to earlier
periods, raising abatement costs due to the discounting effect. Assume β = 0.95, when θ

increases from 0 to 1, the sum of the discounted net payoff is reduced by 9%; when β = 0.85,
the net payoff declines by 20%. Furthermore, high initial compliance costs generated by
high uncertainty would deter new entrants and have a negative impact on the development
of the competitive output market and the emerging environmental market. Although it
is generally believed that intertemporal trading creates compliance flexibility that reduces
abatement costs and increases efficiency, uncertainty may dampen the cost saving properties
of emissions banking.

In addition to cost considerations, depending on the nature of the pollutants, early
abatement also has different and important environmental implications. If the pollutants,
such as greenhouse gases, create stock damage, voluntary early reduction would yield sig-
nificant environmental benefits. However, in a finite planning horizon, early abatement
increases the degree to which firms will concentrate emissions in later time periods, raising
the potential for emission spikes. If the pollutants create flow damages, and if the damage
function is convex, emission spikes may even trigger the threshold effect. Emission spikes
could also be associated with market structure change. I simulate an exemplary situation
in which the price spread (θ) remains at 0.4 from 1995 to 2002, then dropped to 0.2 through
2020. As shown in Figure 8, a sharp emission spike occurs one year before the expected
decline in price volatility.

6.3 Policy Implications

It is generally concluded that uncertainty about the cost of controlling carbon dioxide
emissions makes price instruments preferable to quantity instruments, because the cost of
limiting one ton of emissions is expected to rise as the abatement increases; meanwhile
the expected benefit of each ton of carbon reduced is roughly constant because climate
change is driven by stock effects rather than flow effects.(Hoel and Karp, 2001; Pizer,
2002).48 However, for multi-period emissions control, when marginal abatement costs are

48The conclusion follows from Weitzman (1974) that when the slope of the marginal cost function is greater

than the slope of the marginal benefit function, price instruments are preferable to quantity instruments
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also uncertain for regulated sources, a tradable quota system that allows banking creates
incentive for early abatement and generates substantially greater environmental benefits
than a tax schedule. In addition, since the initial caps on carbon emissions are likely to
be relatively undemanding, the expectation of later, more stringent caps will produce even
higher reduction in initial years when the cap is non-binding.49

On the other hand, if the marginal benefits of abatement are steep when compared to
the marginal costs, a quantity instrument without restrictions on the temporal transfer of
emissions, may not always be preferable to a price regulation. This is because a quota
system exposes firms to volatile market prices, which induces reallocation of emissions in
response to observed uncertainty. When marginal damaging effects increase rapidly along
with the increase of emission flows, a price instrument would be advisable to directly control
the marginal social cost. Another potential solution is to employ a hybrid approach that
combines a tradable quota system with safety measures such as restricting the intertemporal
trading ratio and/or applying discount to banked permits. The government may also
consider incorporating multiple polluting industries into a national trading program so
that uncertainties facing one industry can be diversified, and the importance of building
up a bank to buffer unexpected price strikes may be reduced.

7 Summary and Conclusion

This paper has extended the existing literature by incorporating uncertainty over the de-
mand for outputs, the supply of inputs, and over technological progress, into the analysis of
multi-period emissions trading. Uncertainty affects optimal abatement decisions through
its impact on the distribution of future permit prices. Under the assumptions of a com-
petitive permit market and quasi-concave production function, I have shown that there is
a convex relationship between the permit price and the different sources of uncertainty.
Applying Jensen’s inequality discloses that higher uncertainty over stochastic prices and
productivity raises the expected value of permits. Since a risk neutral firm that maximizes
the sum of discounted profits will always reduce emissions until marginal abatement costs
equal the expected permit price (conditional on the existence of an interior solution), firms
will emit less in volatile markets than they would if future market conditions were known;
consequently, the industry as a whole will accumulate permits at a higher level in an ex
ante period.

Intuitively, these results are primarily driven by the non-linearity in abatement costs.

(and vice versa), because they are much more likely to minimize the adverse consequences of choosing the

wrong level of control.
49Currently, the transfer of unused allowances from 2005 - 2007 to the first commitment period under

the Kyoto Protocol, i.e. 2008-2012, is not allowed under an EU-wide ban on banking, which, from an

environmental point of view, seems a troubling decision.
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By changing counterfactual emissions, the fluctuations in the output prices, production
costs or productivity, can be interpreted as uncertainty about industry-wide abatement
levels. When the marginal cost of reducing emissions rises, in accord with greater reduc-
tions of pollutants, uncertainty imposes an asymmetric impact on future permit prices.
This occurs because the marginal cost increases faster from a given increase in abatement
levels than it decreases from a corresponding decline in abatement. Hence, the higher the
volatility, the more likely that firms will gain rather than lose by saving. An immediate
implication from the analysis is that the convexity of the cost curve is a key factor in de-
termining the responsiveness of firms’ compliance behaviors when confronting uncertainty.
Firms may prefer to reduce emissions more in early periods, depending on how steeply the
marginal cost rises.

When the basic model is extended to account for imperfect competition in output
markets, and decreasing-returns-to-scale technology, the mechanisms through which uncer-
tainty affects firm-level emissions abatement decisions and their impact on industry-wide
permits banking remain the same; and therefore, the fundamental results do not change.
The conclusions are also not affected by rate-of-return regulation, individual firms’ market
positions or a firm’s initial bank size. This is because the uncertainty considered in the
model is at the industry level, it affects market equilibrium price and firm behavior through
industry-wide capacity expansion and new entries.

Building on the foregoing analysis, this paper has suggested an explanation for the
puzzle of persistent overcompliance with the Acid Rain Program in Phase I. A panel data
analysis has revealed that increased price volatility induced by electricity market restructur-
ing could have contributed to 7-10% of the extra emission reductions during Phase I of the
SO2 trading program. From this perspective, electricity restructuring has contributed to
emissions reduction in the short-term by providing incentives for early abatement. However,
in the long term whether electricity restructuring benefits the environment still depends
on whether the incentive is sustainable and whether regulated sources would concentrate
emissions during short periods in later years. 50

Based on numerical simulations, I solved the dynamic optimization problem for firms
with a planning horizon from 1995 to 2020. Examining banking and emission trajectories
under a variety of price uncertainties, there is consistent time-series evidence that the
optimal level of emissions is reduced by an increase of the mean-preserving spread in the
electricity price.

Results of these analyses have important policy implications. By showing that the
timing of emissions is sensitive to the volatility of the economic environment, I demon-

50Also any benefits from early abatement should be compared with the potential cost of price uncertainty.

For example, economic and regulatory uncertainties induced by electricity restructuring may have caused

the delay of scrubber installation
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strate that the environmental impact of uncertainty depends on the degree to which social
damages can be assumed to be linear or convex. Therefore, with regard to multi-period
emissions control, regulatory policies should take into account both the dynamic effects of
uncertainty and the characteristics of the pollutant. The resultant desirability of regulatory
intruments could be quite different from that of the traditional view, which originates in
Weitzmans (1974) seminal paper. In fact, for a pollutant that creates stock damage (i.e.
when the marginal benefit function is relatively flat), a quantity-based banking system
encourages early voluntary pollution reduction and could generate sizable environmental
gains. Conversely, to control pollutants producing convex flow damage, the steeper the
marginal benefit function, the more a tax schedule that directly controls marginal social
cost is justified.

It should be noted that this paper does not consider the correlation between multiple
sources of uncertainty. An interesting direction for future research would be to analyze the
more complicated effects that arise when uncertainties about output prices and input costs
are negatively or positively correlated. In a more complete model, one might also take into
account uncertainties associated with emissions caps and interest rates.

newpage
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Appendices

A Proof of Proposition 1

A.1 Cobb-Douglas Production Function

The optimization problem for the central planner of the industry:

max Peg(l, h)− c(l, h)

s.t. A + B = e(l, h) = γ(δll + δhh) = µll + µhh (24)

where g(l, h) = Glαh1−α, c(l, h) = Pll + Phh, B is the total emissions left at the beginning
of the terminal period. Define the Lagrangian expression:

L = Peg(l, h)− c(l, h) + λ(A + B − µll − µhh) (25)

The necessary first-order conditions determining a maximum at (l̃,h̃,λ̃) are

∂L/∂B = λ̃ (26)

PeGαl̃α−1h̃1−α − Pl − λ̃µl = 0 (27)

PeG(1− α)l̃αh̃−α − Ph − λ̃µh = 0 (28)

Cross-dividing (27) and (28) results in:

Pl + λ̃µl

Ph + λ̃µh

=
α

1− α

h̃

l̃
(29)

The expression on the right side of (29) is the marginal rate of technical substitution
(MRTS) between the two types of coal. Eq.(29) says that at the optimum the MRTS
between l and h must be equal to their price ratio (including the the opportunity cost of
surrendering the option to use allowances in a future period [λ̃µl and λ̃µh]).

Define the following: dl ≡ (1−α)(Pl + λ̃µl) and dh ≡ α(Ph + λ̃µh) and substitute them
into (29)

h̃

l̃
=

(1− α)(Pl + λ̃µl)
α(Ph + λ̃µh)

=
dl

dh
(30)

Solving (30) and (24), we obtain the conditional factor demand functions:

l̃ =
dh

dhµl + dlµh
B, h̃ =

dl

dhµl + dlµh
B (31)

Substituting l̃ and h̃ from Eq.(31) back into (28) yields:

Pe =
1

Gα(1− α)
d1−α

h dα
l (32)
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Differentiating (32) with respect to λ̃:

∂λ̃

∂Pe
= G

dα
hd1−α

l

µhdl + µldh
> 0 (33)

(33) clearly holds for all values of Pe, dh and dl.
Differentiating (33) with respect to λ defines the key derivative of the theorem as

∂2λ̃

∂P 2
e

= G(
∂λ̃

∂Pe
)

dα
hd1−α

l

(µhdl + µldh)2
[α2µhµl +(1−α)2µhµl +α2µ2

h(
dl

dh
)+(1−α)2µ2

l (
dh

dl
)−µhµl]

(34)

Let d = dl/dh. Note that the minimum value of α2µ2
hd + (1 − α)2µ2

l (1/d) in the last
bracketed term of (34) equals 2α(1− α)µhµl evaluated at d = [(1− α)µl]/(αµh).

Since by construction, there is d = [(1−α)(Pl+λ̃µl)]/[α(Ph+λ̃µh)] > [(1−α)µl]/(αµh),
then α2µ2

hd + (1−α)2µ2
l (1/d) > 2α(1−α)µhµl. Thus ∂2λ̃

∂P e
2

> 0, which proves the convexity
of the marginal value of allowances with respect to electricity price (recalling that λ is the
Lagrangian multiplier and represents the marginal value of a unit of allowances).

A.2 CES Production Function

Now consider a more general CES production function

g = G(αlρ + (1− α)hρ)
1
ρ (35)

where ρ < 1, η = 1/(1 − ρ) is the elasticity of substitution. α still reflects distribution
weight of low-sulfur coal.

The first-order conditions are:

PeG(αl̃ρ + (1− α)h̃ρ)
1
ρ
−1

αl̃ρ−1 − Pl − λ̃µl = 0 (36)

PeG(αl̃ρ + (1− α)h̃ρ)
1
ρ
−1(1− α)h̃ρ−1 − Ph − λ̃µh = 0 (37)

Cross-dividing (36) and (37), the factor proportion at the optimum is determined by

l̃

h̃
= [

(1− α)(Pl + λ̃µl)
α(Ph + λ̃µh)

]
1

ρ−1 ≡ (
dl

dh
)

1
ρ−1 (38)

As before, solve l̃ and h̃ from (38) and (24) and substitute them into (36)

Pe =
1

Gα(1− α)
[αd

ρ
ρ−1

l + (1− α)d
ρ

ρ−1

h ]
ρ−1

ρ (39)

Taking partial derivative of (39) with respect to λ̃ gives

∂λ̃

∂Pe
= G

[αd
ρ

ρ−1

l + (1− α)d
ρ

ρ−1

h ]
1
ρ

µld
1

ρ−1

l + µhd
1

ρ−1

h

> 0 (40)
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Apparently, (40) holds for all values of Pe, dh and dl.
Differentiating (40) with respect to λ gives:

∂λ̃

∂P 2
e

= G
[αd

ρ
ρ−1

l + (1− α)d
ρ

ρ−1

h ]
1−ρ

ρ

(1− ρ)(µld
1

ρ−1

l + µhd
1

ρ−1

h )2
(

∂λ̃

∂Pe
)T1 (41)

where

T1 ≡ d
1

ρ−1

l d
1

ρ−1

h [α2µ2
h(

dl

dh
) + (1− α)2µ2

l (
dh

dl
)− 2α(1− α)µlµh] (42)

Note that the last bracketed terms of (42) and (34) have a similar structure.
Following the same procedure, we see that because (Pl + λ̃µl)/(Ph + λ̃µh) > µl/µh,

there is T1 > 0. Hence, ∂2λ̃/∂P 2
e > 0. Therefore, given a more general form of production

function, the marginal value of allowances is still convex in Pe.

B Proof of Lemma 1

Following the previous discussion, substitute dl ≡ (1− α)(Pl + λ̃µl) and dh ≡ α(Ph + λ̃µh)
into Eq.(31) to obtain λ as an implicit function of Pl.

Pl + λ̃µl =
1

1− α
[Gα(1− α)Pe]

1
α α

α−1
α (Ph + λ̃µh)

α−1
α (43)

Taking partial derivative of (43) with respect to Pl and λ̃ gives:

∂λ̃

∂Pl
= − 1

[G(1− α)Pe]
1
α (Ph + λµh)−

1
α µh + µl

< 0 (44)

Differentiate Eq.(44) with respect to λ

∂2λ̃

∂P 2
l

= −
1
α [G(1− α)Pe]

1
α (Ph + λ̃µh)−

1
α
−1µ2

h

{[G(1− α)Pe]
1
α (Ph + λ̃µh)−

1
α µh + µl}2

∂λ̃

∂Pl
> 0 (45)

Apparently, (54) holds for all values of Pe, Pl and Ph. So λ̃ is also a convex function
of Pl. Similarly, we can show that λ̃ is convex in Ph. Therefore, increases in the mean
preserving spread of Pl and Ph increases the expected marginal value of allowances.

C Proof of Proposition 1 for Imperfect Electricity Market

Consider the following optimization problem for a firm with market power in the electricity
market described by Eq.(19) in the paper.

V = max
l,h,x

[WGεlεαhε(1−α) − Pll − Phh− Pax] (46)

40



s.t. A + B = e(l, h) = γ(δll + δhh) = µll + µhh (47)

where ε = 1
ϕ ≤ 1. W is the stochastic demand shifter and G is the productivity parameter.

The necessary first-order conditions for a maximum at (l̃, h̃, λ̃) are

Pa = λ (48)

WGεεαl̃εα−1h̃ε(1−α) − Pl − λ̃µl = 0 (49)

WGεε(1− α)l̃εαh̃ε(1−α)−1 − Ph − λ̃µh = 0 (50)

The MRTS is unaffected by the value of ε and is again described by Eq.(29). A similar
exercise as in Appendix A provides the following condition where dh and dl are functions
of λ̃.

W =
B1−ε

Gεεα(1− α)
d1−εα

h d
1−ε(1−α)
l (µhdl + µldh)ε−1 (51)

Taking partial derivative of (51) with respect to λ̃

∂λ̃

∂W
= Gεεα(1− α)Bε−1dεα

h d
ε(1−α)
l (µhdl + µldh)2−εT−1

2 (52)

where

T2 = α(1− α)(µhdl + µldh)2 + (1− ε)[αµhPl − (1− α)µlPh]2 (53)

Because ε ≤ 1, there is still (∂λ̃/∂W ) > 0
The second order derivative of λ̃ with respect to W is

∂2λ̃

∂W 2
= Gεεα(1− α)Bε−1dεα−1

h d
ε(1−α)−1
l (µhdl + µldh)1−εT−2

2 T3
∂λ̃

∂W
(54)

where

T3 = εT2dldh[α2µhµl + (1− α)2µhµl + α2µ2
h(

dl

dh
) + (1− α)2µ2

l (
dh

dl
)

− µhµl] + 2(1− ε)µhµldhdl(αµhPl − (1− α)µlPh)2 (55)

Consultation with Appendix A ought to reveal that T3 > 0 because (Pl+λ̃µl)/(Ph+λ̃µh) >

µl/µh, and α2µ2
hd + (1 − α)2µ2

l (1/d) > 2α(1 − α)µhµl. Therefore, ∂2λ̃/∂W ≥ 0. Hence
when electricity market is imperfect, the marginal value of allowances is still convex in the
underlying stochastic variable.
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D Data Sources

I obtained annual data on initial allocations, holdings, transactions, and deductions (for
emissions compliance purposes) of allowances from the EPA’s allowance tracking system,
spanning from 1995 to 2004 for all 263 Phase I affected coal-fired generating units. I merged
this dataset with information collected from FERC Form 767. Form 767 is an annual survey
of steam-electric unit operation and design, which covers the period 1996-2004. From
Form 767 I took annual observations on unit nameplate capacity, the status of scrubber
installation, electricity generation, load hours, fuel consumption and monthly fuel sulfur
content and heat content. Using information about fuel consumption, fuel heat content and
total generation, along with the emissions data derived from the EPA’s allowance tracking
system, I computed heat rate, heat input, and emission rate for each unit-year observation.
Because data are missing for certain years, and because some units were not operating for
an entire year, the number of observations varies from unit to unit.

The price information on fuel, electricity, natural gas, and allowances is obtained from
different sources. To construct data on prices for low- and high-sulfur coal, the merged data
set cited previously was then merged with FERC Form 423, which provides data on monthly
cost and quality of coal for electric plants from 1995 to 2004. Form 423 records the physical
quantity, Btu content, delivered cost, and sulfur content of each coal transaction at each
electric plant. A SO2 emission boundary of 2.5 pounds/MMBtu was used to distinguish
low- and high-sulfur coal. This value was chosen so that the burning of low-sulfur coal
meets Phase I standard on average. Fuel prices are calculated by dividing the delivered
cost by the heat content of the fuel. Coal prices are missing for some plants when only one
type of coal is purchased (so the price of the other coal is unobservable). To obtain the
cost of coal that is not purchased by the plant, I use its price in the previous year as an
approximation.

The electricity price data are drawn from the responses from electric utilities survey
Form EIA-861, “the Annual Electric Power Industry Report.” From this data set, I obtained
the annual average industrial price for all years from 1995 to 2004 at the state level.
Industrial prices are the most volatile and least protected by PUC regulation. The volatility
of industrial prices is driven primarily by changes in fuel costs. However, because of the
existence of long-term contacts, using industrial prices may underestimate actual price
volatility in the spot market. Natural gas wellhead prices were collected from EIA historical
database. SO2 allowance price is calculated as the mean of two monthly price indices of
SO2 allowances that brokerage firms Cantor Fitzgerald and Fieldston report to the EPA.

Distance to fuel mines was provided by the EPA’s Acid Rain Division. Data on reg-
ulatory status were collected from the Retail Wheeling & Restructuring Report, a state-
by-state report of regulatory commissions, state legislation, and utilities activities related
to retail competition, published quarterly by the Edison Electric Institute. These data are
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crosschecked with the LEAP Letter, published bimonthly by William A. Spratley & As-
sociates, the National Regulatory Research Institute Web site, and the EIA’s publication,
“Status of State Electric Industry Restructuring Activity”.

E Stochastic Dynamic Simulation Model Description

Here I present the computational details of the numerical simulation, programming lan-
guage, hardware and software used. Consider the following optimization problem

V (Pet, Bt) ≡ max
lt,ht

{Petg(lt, ht)− c(lt, ht) + βEt[V (Pe(t+1), Bt+1)]} (56)

s.t. µllt + µhht = At + Bt −Bt+1 (57)

0 ≤ Bt+1 ≤ At + Bt (58)

where gt = G(lαt h1−α
t )ε.

This is a multivariate optimization problem with two control variables (l, h). To simplify
the problem, I derive the structural relationship between l, h and B based on first-order
conditions. This derivation, which involves a calculation parallel to that given in Appendix
C, leads to the following specifications:
(1) λt is fully characterized by

Pet =
(At + Bt −Bt+1)1−ε

Gεα(1− α)
d1−εα

ht d
1−ε(1−α)
lt (µhdlt + µldht)ε−1 (59)

(2) lt and ht are determined by the following two optimality equations

lt =
dht

dhtµl + dltµh
(At +Bt−Bt+1), ht =

dlt

dhtµl + dltµh
(At +Bt−Bt+1) (60)

Noting that now the problem is simplified as we only need to search for the solution for
B, and find optimal choices for l and h using Eqs. (59) and (60). Applying a grid search
to obtain the initial guess for B (B∗ < 20), I then specify a grid of 2001 points between 1
and 20 (0, 0.01, . . ., 20) to compute the value function (56) at each time t and each state of
Pe and B, beginning with the terminal period and working back to period 1. In this way,
I compute the equilibrium time paths for B and λ, which jointly determine the optimal
choices for lt and ht.

The program needed for the computation of the model was coded in C++ and complied
to run on Windows-based machines. The whole simulation runs in one minute. All the
code is available upon request from the author.
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Figure 1-Annual Emission Cap, Aggregated Emissions and Banked

Allowances: 1995-2004
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Figure 2-Electricity Market Volatility (A Simple Story)
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Figure 3-Trend in Emission Rates and Electricity Price Volatility:

1996-2004

Note: Emission Rates are average annual emission rates of all Phase I affected units; natural gas and

electricity price volatilities are calculated based on Eq.(31). Electricity price volatility is the average price

volatility in the 21 states where Phase I units are located.
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Figure 4-Total Amount of Allowances Banked under Different Price

Volatilities

Note: The vertical axis describes the total amount of banked permits of the polluting industry during

each year (million tons). θ is the mean-preserving spread of stochastic electricity prices. The dashed line

corresponds to a scenario in which θ = 0.2 and the emission cap remains constant at 7 million tons across

all years. The shaded, fuzzy line tracks actual allowance stock in the SO2 allowance market. The other

lines correspond to a two-stage schedule of declining emission standards, with total emissions capped at 7

million tons from 1995 to 1999 and at 3.5 million tons during and after 2000.
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Figure 5-Annual Emission Flow under Different Price Volatilities

Note: The vertical axis describes the aggregate annual emissions of the industry (million tons). θ is the

mean-preserving spread of the stochastic electricity price. The dashed line corresponds to a scenario in

which θ = 0.2 and the emission cap remains constant at 7 million tons across all years. The shaded, fuzzy

line tracks actual allowance stock in the SO2 allowance market. The other lines correspond to a two-stage

schedule of declining emission standards, with total emissions capped at 7 million tons from 1995 to 1999

and at 3.5 million tons during and after 2000.
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Figure 6-Cumulative Emissions under Different Price Volatilities

Note: The vertical axis describes the cumulative emissions during each year (million tons). θ is the mean-

preserving spread of stochastic electricity price. The dashed line corresponds to a scenario in which θ = 0.2

and the emission cap remains constant at 7 million tons across all years. The other lines correspond to a

two-stage schedule of declining emission standards, with total emissions capped at 7 million tons from 1995

to 1999 and at 3.5 million tons during and after 2000.
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Figure 7-Permit Price Path under Different Price Volatilities

Note: The vertical axis describes emission price (×100$/ton). θ is the mean-preserving spread of the

stochastic electricity price. The dashed line corresponds to a scenario in which θ = 0.2 and the emission

cap remains constant at 7 million tons across all years. The other lines correspond to a two-stage schedule

of declining emission standards, with total emissions capped at 7 million tons from 1995 to 1999 and at 3.5

million tons during and after 2000.
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Figure 8-Emissions Path under Uncertainty Shock

Note: The graph describes the emission path under a scenario in which the price spread θ remained at 0.4

from 1995 to 2002, then dropped to 0.2 through 2020.
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Table 1-Definitions of Symbols

l low-sulfur coal
h high-sulfur coal
g electricity output
x allowances bought (x > 0) or sold (x < 0)
Pe electricity price
Pa allowance price
Pl low-sulfur coal price
Ph high-sulfur coal price
A allowances annually issued by the government
B banked emission allowances
e emission level
δ coal’s sulfur content
γ conversion rate of sulfur to SO2

µ coal’s SO2 content
V value of the firm
β discount ratio
r discount rate
ξ ratio of marginal products of high- and low-sulfur coal
λ shadow value of allowances
$ convenience yield of banked allowances ($ ≥ 0)
G productivity factor of the electric industry
α distribution weight of low-sulfur coal (0 < α < 1)
θ mean-preserving spread of stochastic electricity prices
ρ elasticity of substitution parameter between low- and high-sulfur coal
ϕ mark-up coefficient of a unit with market power in a electricity market (ϕ ≥ 1)
W exogenous stochastic demand shifter in the electricity market
ε returns-to-scale parameter of a production technology ε ≤ 1
s allowed return on capital cost under ROR regulation
k previously invested capital of an electric utility
π a regulated firm’s gross revenue net of operating expenses
φ Lagrangian multiplier associated with ROR profit constraint. It reflects the extra profit

a firm would get if the profit restriction is relaxed marginally. 0 < φ < 1 implies
profit constraint is effective.

τ extra return on allowances expenditures for a regulated utility compared to a competitive firm
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Table 2-Description of Econometric Model Variables

Emissionrate Total emissions (tons) divided by the total generation (MWh)

4Pe Annualized industrial electricity price volatility

VINTAGE Boiler year on-line

AGE Boiler age

AGE2 The square of AGE

HEATRATE Annual heat input divided by the annual electricity output

WORKLOAD Hours under load during a year

INITIAL Annual allowances allocated by the EPA

CARRY Allowances carried over to next period

MUNI Municipally operated flag (1=yes, 0=no)

CAP Generator 1989 nameplate capacity

CAP2 The square of CAP

RTE93 1993 boiler SO2 emission rate

DPRB Unit’s distance to the Powder River Basin

RETAILACESS Plant being deregulated (1=yes, 0=no)

TRANSIT Plant considered to be deregulated (1=yes, 0=no)

SCRUBBER Boiler SO2 scrubber flag (1=installed, 0=no)
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Table 3-Summary Statistics

Variables Obs. Mean Std.Dev. Min Max

Emissionrate(tons/MWh) 1595 0.011 0.007 0.00008 0.041

4 Pe 1595 0.050 0.037 0.014 0.170

4 Pe 1992 1595 0.033 0.025 0.015 0.108

4 Pe 1990−1995 1595 0.044 0.025 0.019 0.119

Pa (dollars/ton) 1595 133 55 80 285

Pe (cents/KWh) 1595 4.21 0.95 2.68 9.54

Pl (cents/MMBtu) 1595 127.8 28 71.3 279

Ph (cents/MMBtu) 1595 126.7 43.2 76.7 418.6

Png (electric power price) (dollars/MMBtu) 1561 3.53 0.80 1.95 5.85

Png (wellhead price) (dollars/thousand cubic feet) 1595 2.97 1.34 1.77 5.45

AGE (years) 1595 36 8.1 18 55

HEATRATE(MMBtu/MWh) 1595 10.23 1.05 2.5 17.9

WORKLOAD (hours) 1595 7253.5 1077.8 792 8760

INITIAL (tons) 1595 17467 17877 144 192637

B (tons) 1595 11187 18472 0 155236

MUNI 1595 0.021 0.144 0 1

CAP (MW) 1595 356 254 75 1300

µl(lbs/MMBtu) 1452 1.64 0.68 0.41 2.98

µh(lbs/MMBtu) 1452 4.41 1.28 3 8.95

DPRB (miles) 1461 1063 327 87 1773

Table 4-Yearly Observations on Regulatory Status, Scrubber Installation and Fuel

Switching/Blending

Year Retail Access Scrubber Switch No-blend

1996 28 23 34 21

1997 44 23 38 15

1998 58 23 35 23

1999 105 21 54 8

2000 87 21 56 15

2001 55 17 40 3

2002 55 19 65 11

2003 49 16 50 13

2004 49 17 36 7

Note: This table shows annual observations on the number of units affected by retail restructuring, those

which installed scrubbers, switched to low-sulfur coal, or used only high-sulfur coal for production. Because

many generating units were divestitured to non-utilities and were no longer reporting fuel purchasing costs

to the public after 1998, the sample size shrinks over the years.
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Table 5- Emission Rates Estimates (tons/MWh in Log Form)

Variables (1) (2) (3) (4) (5) (6)

4 Pe -0.849∗∗ -0.844∗∗ -0.872∗∗ -0.913∗∗ -0.906∗∗ -0.946∗∗

(0.372) (0.372) (0.418) (0.332) (0.383) (0.370)

lnPa - -0.057 - -0.634 -0.178∗ 0.020

(0.078) (0.614) (0.102) (0.077)

lnPe -0.263 -0.232 -0.334 -0.310 -0.138 -0.492∗∗

(0.207) (0.204) (0.449) (0.198) (0.233) (0.187)

lnPl 0.041 0.139∗ 0.017 0.147 0.034

(0.079) (0.084) (0.085) (0.100) (0.089)

lnPh 0.107 0.047 0.125 -0.022 0.088

(0.082) (0.084) (0.081) (0.079) (0.089)

RETAILACCESS -0.049 -0.061 -0.050 -0.037 0.007 -0.019

(0.047) (0.047) (0.047) (0.045) (0.059) (0.050)

RETAILACESS4Pe 1.300∗∗ 1.380∗∗ 1.450∗∗ 0.635 -0.438 1.317∗∗

(0.483) (0.489) (0.541) (0.413) (0.526) (0.482)

MUNI - 0.176 - 0.088 0.319 -0.057

(0.334) (0.275) (0.332) (0.298)

MUNI4 Pe 2.175 2.108 2.133 1.017 2.055 1.897

(1.433) (1.434) (1.417) (0.828) (1.461) (1.439)

SCRUBBER -2.447∗∗∗ -2.144∗∗∗ -2.316∗∗∗ -1.995∗∗∗ -2.183∗∗∗ -1.828∗∗

(0.033) (0.149) (0.041) (0.135) (0.121) (0.103)

AGE -0.023 0.0005 -0.027 0.032 0.010 0.009

(0.025) (0.023) (0.025) (0.027) (0.022) (0.025)

AGE2 -0.0001 -0.0003 -0.0001 -0.0008 -0.0003 -0.0005∗

(0.0003) (0.0003) (0.0003) (0.0004) (0.0003) (0.0003)

lnHEATRATE 0.120∗ 0.233∗∗ 0.109∗ 0.328∗∗ 0.241∗∗ 0.292∗∗

(0.071) (0.093) (0.068) (0.108) (0.093) (0.098)

WORKLOAD -0.056 -0.076 -0.065 -0.165 -0.023 -0.106

(0.087) (0.082) (0.084) (0.089) (0.089) (0.092)

INITIAL 1.19E-06 1.44E-06 1.23E-06 -8.60E-07 1.32E-06 1.52E-06

(8.62E-07) (8.74E-07) (8.60E-07) (1.70E-06) (8.89E-07) (8.33E-07)

lnCAP - -0.510 - -0.616 -1.254 -0.724

(0.909) (0.890) (0.966) (0.943)

lnCAP2 - 0.019 - -0.029 0.096 0.039

(0.077) (0.075) (0.078) (0.084)

DPRB 0.003∗

(0.001)

DPRB2 -3.06e-06∗

(1.66E-06)

DPRB3 9.29e-10∗

(5.30E-10)

LSPremium 0.090∗∗∗

(0.028)

Constant -4.133∗∗∗ -2.808 - - -0.803 -1.975

(0.755) (2.870) (3.189) (2.686)

R2 0.325 0.672 0.265 0.683 0.724 0.658

Observations 1595 1595 1560 1243 1300 1457

N 208 208 207 208 146 192

Note: The dependent variable is ln(emissionrate) (tons/MWh in log form). Columns (1) and (2) report

results from estimating equation (23) via fixed and random effects models. A Hausman test does not reject

the null hypothesis that there is no systematic difference between fixed and random effects estimations. The

test statistics are χ2(19) = 3.66, P-value = 0.9999. Column (3) reports IV/GMM estimation using natural
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gas electric power and wellhead prices as instruments for electricity and SO2 prices. The Cragg-Donald F

statistic of weak identification is 56.707. The Hansen J test statistic of overidentification of all instrument is

5.711, the P-value is 0.0169. The Anderson cononical correlation LR test statistic of underidentification is

χ2 = 110.48, and the P-value is 0.0000. Column (4) reports random effects estimation based on data from

1997 to 2003. Column (5) reports GLS random effects estimation based on a balanced panel containing 146

units that remain in the sample from 1996 to 2004. Column (6) reports estimation results from equation

(23) using units’ distance to PRB coal and low-sulfur coal premium as proxies for low- and high-sulfur coal

prices. Standard errors clustered by unit are reported in parentheses. *** indicates significant at the 1%

level; **indicates significant at the 5% level; * indicates significant at the 10% level. Reported R2 is the

adjusted R2 for fixed and random effects models, and centered R2 for IV/GMM model. N is the number

of clusters.
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