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Abstract— Wind power energy has been paid much attention
recently for various reasons, and the production of electricity
with wind energy has been increasing rapidly for a few decades.
One of the most difficult issues for using wind power in
practice is that the power output largely depends on the wind
condition, and as a result, the future output may be volatile
or uncertain. Therefore, the prediction of power output in the
future is considered important and is key to electric power
generating industries making the wind power electricity market
work properly. However, the use of predictions may cause other
problems due to “prediction errors.”

In this work, we will propose a new type of weather
derivatives based on the prediction errors for wind speeds, and
estimate their hedge effect on wind power energy businesses.
At first, we will investigate the correlation of prediction errors
between the power output and the wind speed in a Japanese
wind farm, which is a collection of wind turbines that generate
electricity in the same location. Then we will develop a
methodology that will optimally construct a wind derivative
based on the prediction errors using nonparametric regressions.
A simultaneous optimization technique of the loss and payoff
functions for wind derivatives is demonstrated based on the
empirical data.

Keywords: Wind power energy, Prediction errors, Weather
derivatives, Minimum variance hedge, Non-parametric regres-
sion

I. I NTRODUCTION

Predicting the future weather conditions is considered
important in real businesses for many industries including
electricity producers and suppliers, because their profit or
loss is largely affected by the weather conditions. Under
these circumstances, we may have a new risk when the pre-
diction error exists. In this work, we will propose a new type
of weather derivative (see, e.g., [3] for the introduction of
weather derivatives) to effectively hedge the loss caused by
prediction errors of power output for wind power electricity
production.

Electricity companies must sell the output immediately
because the electricity has to be consumed as soon as it
is produced. Therefore, sales contracts need to be written in
advance. However, in the case of electricity production using
wind power energy, the power output largely depends on
wind conditions, and as a result, tradable volume is uncertain.
What we can do is to predict the future outputs and quote
them in advance. But, this may cause another risk associated
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with prediction errors. The objective of this work is to hedge
the loss using weather derivatives based on the wind speed.

The idea is to construct such a derivative based on
prediction errors of wind speed. In contrast to the standard
weather derivatives in which the underlying index is given
by weather data only (such as temperature [1], [2], [5], [6],
[7], [8]), the proposed weather derivative uses prediction data
and the payoff depends on the difference between the actual
data and the prediction data. For simplicity, we shall call this
type of weather derivatives contract just “wind derivatives.”

Here we consider the prediction of the power output from
a wind farm (WF), which is a collection of wind turbines
that generate electricity in the same location. The power
output is predicted using numerical weather prediction where
a public weather forecasting company compute sophisticated
values from Japan Meteorological Agency data. Because of
this prediction mechanism, we have both the wind and power
predictions data.

The value of electricity generated by wind power is
normally considered to be low due to the uncertainty of the
tradable volume. Here we assume that the electricity price
without prediction is estimated to be 3 yen per 1 kWh. On the
other hand, the value of the electricity would be estimated to
be higher, if the tradable volume were quoted in advance by
prediction, but the buyer has to guarantee the quoted volume
or has to pay the penalty in case of shortages. Suppose that
the value of electricity with prediction is given as 7 yen per
1 kWh and that the penalty of the shortage is 10 yen per
1 kWh. These assumptions are not so far from the current
situation discussed in the prediction business. In this case,
the loss function caused by prediction errors is depicted in
Fig. 1, which shows the relation between the prediction error
for the power outputP− P̂ (the actual power output minus
its prediction) and the loss caused by the prediction error.
Here we also consider an opportunity loss where the actual
output is greater than the prediction.

One of the objectives of this work is, given the loss
function, to find the optimal payoff structure of weather
derivatives on prediction errors of wind speed using a non-
parametric regression. To this end, we will first consider the
following problems:

P1) Given the loss function and the payoff function of
wind derivatives, find the optimal volume of wind
derivative using linear regression.

P2) Given the loss function, find the optimal payoff
function of wind derivatives using GAM.

We will investigate the hedge effect of wind derivatives
and show that using wind derivatives on prediction error of



Fig. 1. An example of loss function

wind speed is highly effective to hedge the loss caused by
prediction errors of power output.

Then we will consider a situation in which there already
exists a standardized derivative contract with a certain payoff
function, but there is some room for improvement on the loss
function, e.g., for a WF owner. The problem can be thought
of as a reverse problem of P2), which is given as follows:

P3) Given the payoff function of wind derivatives, find
the optimal loss function against prediction errors
of power output using GAM.

Finally, we will formulate a simultaneous optimization prob-
lem of payoff and loss functions as P4) below:

P4) Optimize the payoff function of wind derivatives
and the loss function simultaneously by applying
GAMs iteratively.

II. PRELIMINARY

A. Generalized additive models

We will solve a non-parametric regression problem in this
paper to find a (cubic) smoothing spline that minimizes
the penalized residual sum of squares (PRSS) among all
regression spline functions with two continuous derivatives.
Let yn and xn be dependent and independent variables,
respectively, and expressyn as

yn = h(xn)+ εn, Mean(εn) = 0 (1)

using a functionh(·) and residualsεn, where Mean(·) is a
sample mean. Here the functionh(·) is a (cubic) smoothing
spline that minimizes the following penalized sum of squares
(PRSS; see e.g., [4]),

PRSS=
n

∑
i=1

{yn−h(xn)}2 +λ
∫ {

h′′(x)
}2

dx (2)

among all functionsh(·) with two continuous derivatives. In
(2), the first term measures closeness to the data while the
second term penalizes curvature in the function. Note that,
if λ = 0 and h(·) is given by a polynomial function, the
problem is reduced to the standard regression polynomial
and is solved by the least squares method. It is shown that
(2) has an explicit, unique minimizer, and that regression
splines can be extended to the multivariable case with
additive sums of smoothing splines, known as generalized
additive models (GAMs) [4]. Note thatλ may be found

by using the so-called generalized cross validation criteria.
Also note that GAMs can be computed using free software
“R (http://cran.r-project.org/ ),” and we will
refer to the class of smoothing splines for non-parametric
regression as GAMs in this paper.

In the following sections, we will apply GAMs to solve
the problems 1–4 stated in Section I and estimate the
hedge effect of wind derivatives. Before demonstrating our
simulation results, we will briefly explain the prediction
technique of wind conditions and the power output of a WF,
and demonstrate individual data analysis.

B. Basic idea of power prediction and data set

The output from the WF is predicted based on the numer-
ical weather prediction and the power generating properties
for turbines. The numerical weather prediction consists of
the following two steps:
• Japan Meteorological Agency announces the hourly data

of regional spectral models for the next 51 hours twice
a day (9am and 9pm).

• Using them as initial and boundary values, a public
weather forecasting company computes more sophisti-
cated values for the next day’s hourly data by 12pm.

In this paper, we use the prediction data obtained from
the Local Circulation Assessment and Prediction System
(LOCALS) developed by the ITOCHU Techno-Solutions
Corporation for the wind speed and the power output of a
wind farm in Japan. The data set is given as follows:1

Data specifications:
Realized and predicted values of total power output
for the WF, and those of wind speed for the
observation tower in the WF.

Data period:
2002–2003 (1 year), hourly data, everyday

Total number of data:
8,000 for each variable excluding missing values

Let n= 1, . . . ,N be the time index and define the following
variables:

Pn: Total power output at timen
P̂n: Prediction ofPn

Wn: Wind speed at timen
Ŵn: Prediction ofWn

We will examine the relationships between the above vari-
ables below: Fig. 2 shows a scatter diagram for the wind
speedWn and the power outputPn, where the power output
Pn is normalized so that its maximum equals 100. From Fig.
2, we can see that:
• The generator starts providing the power output when

the wind speed exceeds around 2 [m/s].
• The power output increases with the wind speed be-

tween 5–15 [m/s].
Also note that, because each electricity generator is con-
trolled so that the maximum output does not exceed a certain
value, the total output is also bounded as shown in Fig. 2.

1All the data used in this paper were provided by ITOCHU Techno-
Solutions Corporation.



Fig. 2. Wind speedWn [m/s] vs. Power outputPn [W]

Fig. 3 shows a partial residual plot for

Pn = apP̂n +bp + εp,n, n = 0, . . . ,N, Mean(εp,n) = 0 (3)

i.e., the scatter diagram of
(
P̂n, Pn−bp

)
, whereap andbp are

a regression coefficient and intercept, respectively, andεp,n

is a residual satisfying Mean(εp,n) = 0. the partial regression
line is depicted using a solid straight line shown in Fig. 3.
In this case, the sample variance of residuals is given as

Var(εp,n) = 249. (4)

On the other hand, the regression splineg(·) to fit the same
data of Fig. 3 is shown as a solid line in Fig. 4, whereg(·)
satisfies

Pn = g
(
P̂n

)
+ εp,n. (5)

using GAM. In this case, the variance of the residuals is
given as

Var(εp,n) = 239 (6)

Noting that the variance of the measured values is computed
as “504,” we can say that the variance of the power output is
reduced by 50% (from “504” to “249”) using the predicted
value and the linear regression, and it is improved a little
using GAM, i.e., from “249” to “239.”

Fig. 3. Predicted vs. Measured values for the power output

Also, we draw a partial residual plot for the wind speed
Wn with respect to the predicted valuêWn as shown in Fig. 5,
where the solid line is obtained from a linear regression for
partial residuals. In this case, the variance of the residuals

Fig. 4. Spline regression function for the power output using GAM

is given as “5.12.” The solid line in Fig. 6 refers to the
regression spline functionf (·) satisfying

Wn = f
(
Ŵn

)
+ εw,n, n = 0, . . . ,N (7)

using GAM. Note that the variance of residuals in this case is
given as “4.95,” whereas the variance of the measured value
of the wind speed is “11.0.” Similar to the power output case,
we can say that the variance of the wind speed is reduced
to less than half (from “11.0” to “5.12”) using the predicted
value and the linear regression, and it is improved a little
using GAM, i.e., “5.12” to “4.95.”

Throughout this paper, we define the prediction errors of
the power output and the wind speed as the ones given by
GAMs, i.e.,εp,n in (5) andεw,n in (7), respectively.

Fig. 5. Predicted vs. Measured values for the wind speed

III. O PTIMIZATION OF DERIVATIVE CONTRACTS

In this section, we will formulate the first two optimization
problems, i.e., P1) and P2), stated at the end of Section I. Let
εp,n and εw,n be given by (5) and (7), respectively. Assume
that there is an investor whose loss function with respect to
εp,n is given byφ (εp,n). For instance, the loss function may
be given as the one shown in Fig. 1 for a WF owner. Without
loss of generality, we will assume that

Mean(φ (εp,n)) = 0. (8)



Fig. 6. Spline regression function for the wind speed using GAM

A. Minimum variance hedge

Consider a situation in which an investor with a loss
function φ (εp,n) would like to compensate their loss onεp,n

using a wind derivative onεw,n. Let ψ (εw,n) be a payoff of the
derivative contract at timen, whereψ (·) is a payoff function.
Assume that the contracts are carried out in advance without
any cost and thatψ (εw,n) satisfies the following condition:

Mean(ψ (εw,n)) = 0. (9)

Note that condition (9) indicates that the physical measure
provides a risk neutral measure, and that, in the case of
simple forward contracts,ψ (εw,n) may be given as a linear
function, e.g.,

ψ (εw,n) = εw,n. (10)

With these definitions, the first optimization problem is
formulated as follows:

Contract volume optimization problem:
min
∆∈ℜ

Var(φ (εp,n)+∆ψ (εw,n)) (11)

where Var(·) is a sample variance. Note that the above
problem is also known as the “minimum variance hedging
problem.” For this problem, the optimal volume∆∗ may be
computed analytically as

∆∗ =−Cov(φ (εp,n) , ψ (εw,n))
Var(ψ (εw,n))

. (12)

To estimate the hedge effect, we define the variance reduction
rate (VRR) as follows:

VRR :=
Var(φ (εp,n)+∆∗ψ (εw,n))

Var(φ (εp,n))
(13)

Because the minimum variance can be computed as

Var(φ (εp,n)+∆∗ψ (εw,n))

= Var(φ (εp,n))
(

1− [Corr(φ (εp,n) , ψ (εw,n))]
2
)

(14)

we obtain

VRR = 1− [Corr(φ (εp,n) , ψ (εw,n))]
2 . (15)

Note that VRR satisfies

0≤ VRR≤ 1 (16)

and that a smaller VRR provides a better hedge effect in
terms of minimum variance.

B. Optimization with payoff functions

In the minimum variance hedge, we computed the optimal
volume for a given payoff function of a wind derivative con-
tract. More generally, we can optimize the payoff function
as well using a similar manner to GAM as follows: Consider
the minimization problem of PRSS in (2) for a givenλ . In-
stead of writing the problem as an unconstraint optimization
problem, we can reformulate it as an optimization problem
constrained onh(·) as follows:

min
h(·)

n

∑
i=1

{yn−h(xn)}2

s.t.
∫ {

h′′(x)
}2

dx≤ α
(17)

where α is a given parameter. Note that the minimization
problem in (17) is equivalent to

min
h(·),λ

{
n

∑
i=1

{yn−h(xn)}2 +λ
(∫ {

h′′(x)
}2

dx−α
)}

(18)

using a Lagrange multiplierλ > 0 and that fixing λ in
(2) corresponds to fixingα in (18). Therefore, the non-
parametric regression problem using GAM may be recast as a
minimization problem of the sample variance with a smooth
constraint. Now, we will formulate the second optimization
problem below:

Payoff function optimization problem:

min
ψ(·)

Var(φ (εp,n)+ψ (εw,n))

s.t.
∫ {

ψ ′′(x)
}2

dx≤ α
(19)

The minimization problem in (19) may be recast as (17) by
takingyn = φ (εp,n), xn = εw,n, andh(·) = ψ (·), and therefore,
can be solved by applying GAM. Letψ∗(·) be the optimal
payoff function. Then VRR may be defined as

VRR :=
Var(φ (εp,n)+ψ∗ (εw,n))

Var(φ (εp,n))
. (20)

In this case, although condition (15) does not hold exactly
due to the smoothing condition in (19), we can still approx-
imate VRR as

VRR' 1− [Corr(φ (εp,n) , ψ∗ (εw,n))]
2 . (21)

with high accuracy in general.

IV. CONSTRUCTION OF WIND DERIVATIVES AND THEIR

HEDGE EFFECT

In this section, we will construct wind derivatives and
demonstrate their hedge effect on wind power businesses.

At first, we solve the minimum variance hedging problem
for the simplest case where the loss and the payoff functions
are both linear. Let

φ (εp,n) = εp,n, ψ (εw,n) = εw,n (22)



without loss of generality. In this case, the problem is reduced
to solving a linear regression for the following regression
function:

εp,n = awεw,n +ηw,n (23)

whereηw,n is a residual. Since the linear regression computes
aw that minimizes variance ofηw,n = εp,n − awεw,n, the
regression coefficient provides the optimal volume as

∆∗ =−aw (24)

in (11) under condition (22), where

aw =
Cov(εp,n, εw,n)

Var(εw,n)
. (25)

Fig. 7 shows a scatter plot ofεw,n vs. εp,n with a linear
regression line. The correlation is computed as

Corr(εp,n, εw,n)' 0.70. (26)

and VRR as

VRR = 1−Corr(εp,n, εw,n)2 ' 0.51. (27)

We see that the prediction errors of the wind speed and the
power output,εw,n and εp,n, are highly correlated and that
the variance is reduced by 51% using the wind derivative in
the case where the loss and the payoff functions are both
linear.

Fig. 7. Wind speed prediction error (εw,n) vs. Power output prediction error
(εp,n)

Next, we will consider the case in which the loss function
φ(·) is given as shown in Fig. 1 with zero mean constraint
(8), i.e.,

φ (εp,n) = 4
∣∣εp,n

∣∣+ +10
∣∣εp,n

∣∣−−c (28)

where
c := Mean

(
4
∣∣εp,n

∣∣+ +10
∣∣εp,n

∣∣−
)

.

and |·|+ and |·|− are defined as

|x|+ := max(x, 0) , |x|− := min(x, 0)

for x∈ℜ. The solid line in Fig. 8 shows the optimal payoff
function to solve the problem in (19). In this case, VRR in
(20) is computed as

VRR= 0.5461946· · · (29)

whereas the right hand side of (21) is

1− [Corr(φ (εp,n) , ψ∗ (εw,n))]
2 = 0.5461927· · · . (30)

From this example, we see that VRR can be approximated
as in (21) with high accuracy.

Fig. 8. Optimal payoff function on the wind speed prediction errorεw,n

V. OPTIMIZATION WITH LOSS FUNCTIONS

A. Optimal loss function

Next, we will consider a case in which a payoff function
of wind derivative is given but we would like to find a loss
function that is desirable for using the wind derivative, i.e., in
a case where there already exists a standardized derivative
contract with a certain payoff function, but there is some
room for improvement on the loss function, e.g., for a WF
owner. We assume that possible losses onεp,n, φ (εp,n), has
the same mean and variance, i.e.,φ (εp,n) satisfies

Mean(φ (εp,n)) = 0,

Var(φ (εp,n)) = c. (31)

We will compute an optimal loss function satisfying (31).
The optimization problem is formulated as follows:

Loss function optimization problem:

min
φ(·)

Var(φ (εp,n)+ψ (εw,n))

s.t.
∫ {

φ ′′(x)
}2

dx≤ α
(32)

Let φ̂ (·) be the optimizer of problem (32), which can be
computed by applying GAM. By normalizinĝφ (·) to satisfy
(31), we obtain the optimal loss functionφ ∗ (·) as follows:

φ ∗ (·) =
c

Var
(
φ̂ (εp,n)

) φ̂ (·) (33)

Note that the optimal volume of wind derivative with the
payoff functionψ(·) will be found by solving the standard
minimum variance hedging problem as in Subsection III-A,
and VRR may be computed as

VRR = 1− [Corr(φ ∗ (εp,n) , ψ (εw,n))]
2 (34)



B. Simultaneous optimization

It may be interesting to consider a simultaneous opti-
mization of φ (εp,n) and ψ (εw,n). Recall that VRR can be
computed using the correlation between the payoff function
and the loss function as

1− [Corr(φ (εp,n) ,ψ (εw,n))]
2 .

Since the larger correlation the smaller VRR, the minimiza-
tion of VRR boils down to the maximization of correlation
betweenφ (εp,n) and ψ (εw,n). Therefore, the simultaneous
optimization of the payoff and the loss functions is formu-
lated as follows:

Simultaneous optimization problem:

max
φ(·),ψ(·)

Corr(φ (εp,n) ,ψ (εw,n))

s.t.
∫ {

φ ′′(x)
}2

dx≤ αφ

∫ {
ψ ′′(x)

}2
dx≤ αψ

(35)

The simultaneous optimization problem may be solved
using an iterative algorithm by applying GAM with fixed
φ(·) or ψ(·) at each step. The following is the iterative
algorithm:

Iterative algorithm:
1) Given φ(·), find ψ(·) to solve the payoff

function optimization problem. Letψ∗(·) be
the optimal function, and letψ(·) = ψ∗(·).

2) Given ψ(·), find φ(·) to solve the loss func-
tion optimization problem. Letφ ∗(·) be the
optimal loss function and letφ(·) = φ ∗(·).

3) Repeat Steps 2 and 3 until the correlation in
(35) converges.

Note that the optimal loss function obtained from the above
iterative algorithm satisfies (31) and that we can consider
additional constraints to take more realistic situations into
account for the loss and payoff functions.

C. Illustrative example

Here we will provide an illustrative example of solving P3)
to compute an optimal loss function. Note that an example of
P4) for simultaneous optimization is under preparation and
will be given in the final manuscript.

Since the linear correlation betweenεp,n and εw,n is high
in this example, it would be more interesting to consider
the case where a payoff function is non-linear with respect
to εw,n. Therefore, we assume that there already exists a
derivative contract with the payoff being proportional to the
size of the wind speed prediction error|εw,n|. Noting that
ψ (εw,n) satisfies (9), such a payoff function may be given as

ψ (εw,n) = |εw,n|−Mean(|εw,n|) , (36)

Fig. 9 shows the payoff function with respect toεw,n given
in (36).

Fig. 9. Given payoff function with respect to the wind speed prediction
error εw,n

Now we will solve P3) with the given payoff function in
(36). The optimal function to solve the problem in (32) is
depicted as a solid line in Fig. 10. Note that the optimal loss
function is obtained by scaling this function as in (33), and
VRR is computed as

VRR' 0.56. (37)

in this case.

Fig. 10. Optimal loss function on the power output prediction errorεp,n

VI. CONCLUDING REMARKS

In this work, we have proposed a new type of weather
derivatives based on the prediction errors for wind speeds
and estimated their hedge effect on wind power energy
businesses. At first, we explained some properties of the
loss for a WF caused by prediction errors of the power
output, and characterized it using a loss function on the error.
Then we introduced a non-parametric regression technique
based on GAM and formulated an optimization problem to
find the optimal payoff structure of weather derivatives on
prediction errors of wind speed for the given loss function.
Then we formulated and solved an optimization problem of
the loss function for a given payoff function of the derivative
contract on the wind speed prediction error using GAM. A
simultaneous optimization technique of the loss and payoff
functions for wind derivatives was also demonstrated.
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