

Managing Emissions from Fossil Resources

A Challenge to Technology and Policy

IPCC Model Simulations of CO₂ Emissions

Resource Will Not Run Out

	Consumption				Resource	Additional
	1860–1994	1994	Reserves	Resources ^b	base ^c	occurrences
Oil						
Conventional	103	3.21	150	145	295	
Unconventional	6	0.16	183	336	519	1,824
Natural gas						
Conventional ^d	48	1.87	141	279	420	
Unconventional			192	258	450	387
Clathrates			10 <u> </u>			18,759
Coal	134	2.16	1,003	2,397	3,400	2,846
Total fossil occurrences	291	7.40	1,669	3,415	5,084	23,815

 Table 9
 Aggregation of global fossil energy sources—all occurrences, in Gtoe^a

^aSources: Historial consumption (46). Reserves, resources, and occurrences, see Tables 2–8. — = negligible volumes.

^bReserves to be discovered or resources developed to resources.

^cResource base is the sum of reserves and resources.

^dIncludes natural gas liquids.

H.H. Rogner, 1997

Carbon as a Low-Cost Source of Energy

H.H. Rogner, 1997

Fossil fuels are fungible

The Challenge: Holding the Stock of CO₂ constant

Pacala and Socolow, *Science* **305**, 968 – 972, (2004)

Orders of Magnitude

A Triad of Large Scale Options

- Solar
 - Cost reduction and mass-manufacture
- Nuclear
 - Cost, waste, safety and security
- Fossil Energy
 - Zero emission, carbon storage and interconvertibility

Markets will drive efficiency, conservation and alternative energy

Small Energy Resources

- Hydro-electricity
 - Cheap but limited
- Biomass
 - Sun and land limited, severe competition with food
- Wind
 - Stopping the air over Colorado every day?
- Geothermal
 - Geographically limited
- Tides, Waves & Ocean Currents
 - Less than human energy generation

CCS is technically feasible

It is affordable It can start today It is likely to be a major contributor to CO₂ reductions worldwide

CARBON DIOXIDE CAPTURE AND STORAGE

Summary for Policymakers and Technical Summary

Intergovernmental Panel on Climate Change

Dividing The Fossil Carbon Pie

Removing the Carbon Constraint

Mineral carbonate disposal

Underground Injection

Gravitational Trapping Subocean Floor Disposal

Energy States of Carbon

Mineral Sequestration

$Mg_{3}Si_{2}O_{5}(OH)_{4} + 3CO_{2}(g) \rightarrow 3MgCO_{3} + 2SiO_{2} + 2H_{2}O(I) + 63kJ/mol CO_{2}$

Rockville Quarry

Belvidere Mountain, Vermont Serpentine Tailings

Oman Peridotite

Photo: Juerg Matter

Many Different Options

- Flue gas scrubbing
 - MEA, chilled ammonia
- Oxyfuel Combustion
 - Naturally zero emission
- Integrated Gasification Combined Cycle
 - Difficult as zero emission
- AZEP Cycles
 - Mixed Oxide Membranes
- Fuel Cell Cycles
 - Solid Oxide Membranes

Carbon makes a better fuel cell

 $C + O_2 \rightarrow CO_2$ no change in mole volume entropy stays constant $\Delta G = \Delta H$

$2H_2 + O_2 \rightarrow 2H_2O$ large reduction in mole volume entropy decreases in reactants made up by heat transfer to surroundings $\Delta G < \Delta H$

Proposed Membrane

Multi-Phase Equilibrium

 $CO_2 + O^{2-} = CO_3^{2-}$

Air Capture: A Different Paradigm

- Leave existing infrastructure intact
- Retain quality transportation fuels
- Eliminate shipping of CO₂
- Open remote sites for CO₂ disposal
- Enable fuel recycling with low cost electricity

Separate Sources from Sinks

Relative size of a tank

LENFEST CENTER FOR SUSTAINABLE ENERGY

Challenge: CO₂ in air is dilute

- Energetics limits options
 - Work done on air must be small
 - compared to heat content of carbon
 - 10,000 J/m³ of air
- No heating, no compression, no cooling
- Low velocity 10m/s (60 J/m³)

Solution: Sorbents remove CO₂ from air flow

CO₂ Capture from Air

1 m³of Air

40 moles of gas, 1.16 kg

wind speed 6 m/s

$$\frac{mv^2}{2} = 20 \,\mathrm{J}$$

0.015 moles of CO₂ produced by 10,000 J of gasoline

Ca(OH)₂ as an absorbent

Commess transfer is limited by diffusion in air boundary layer

(6m/sec)

Wind area that carries 10 kW

*O.2 m*² *for CO*₂ *Wind area that carries 22 tons of CO*₂ *per year*

50 cents/ton of CO_2 for contacting

80 m²

for Wind Energy

(1)
$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

(2) $Na_2CO_3 + Ca(OH)_2 \rightarrow 2NaOH + CaCO_3$
(3) $CaCO_3 \rightarrow CaO + CO_2$
(4) $CaO + H_2O \rightarrow Ca(OH)_2$
(5) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
(6) H_2O (1) $\rightarrow H_2O$ (g)

 $\Delta H^{O} = -171.8 \text{ kJ/mol}$ $\Delta H^{O} = 57.1 \text{ kJ/mol}$ $\Delta H^{O} = 179.2 \text{ kJ/mol}$ $\Delta H^{O} = -64.5 \text{ kJ/mol}$ $\Delta H^{O} = -890.5 \text{ kJ/mol}$ $\Delta H^{O} = 41. \text{ kJ/mol}$

Cost of CO₂ from Air

Sorbent Choices

Cost of CO₂ from Air (rescaled)

60m by 50m 3kg of CO₂ per second 90,000 tons per year 4,000 people or 15,000 cars

Would feed EOR for 800 barrels a day.

250,000 units for worldwide CO₂ emissions

The first of a kind

Materially Closed Energy Cycles

Carbon Capture and Storage for Carbon Neutral World

- CCS simplifies Carbon Accounting
 - Ultimate Cap is Zero
 - Finite amount of carbon left

