Cost and Performance Baseline for Fossil Energy Plants

CMU Seminar

September 26, 2007

Julianne Klara, National Energy Technology Laboratory

Fossil Energy Plant Baseline Study

-Report ContainsSubcritical PC
Supercritical PC
IGCC
NGCC

- Consistent design requirements
- Up-to-date performance and capital cost estimates
- Technologies built now and deployed by 2010

Technical Approach

1. Extensive Process Simulation (ASPEN)

- All major chemical processes and equipment are simulated
- Detailed mass and energy balances
- Performance calculations (auxiliary power, gross/net power output)

3

2. Cost Estimation

- Inputs from process simulation (Flow Rates/Gas Composition/Pressure/Temp.)
- Sources for cost estimation
 Parsons
 - Vendor sources where available
- Follow DOE Analysis Guidelines

Study Matrix

Plant Type	ST Cond. (psig/°F/°F)	GT	Gasifier/ Boiler	Acid Gas Removal/ CO ₂ Separation / Sulfur Recovery	CO ₂ Cap
	1800/1050/1050		05	Selexol / - / Claus	
	(non-CO ₂		GE	Selexol / Selexol / Claus	90%
IGCC	capture cases)	F	СоР	MDEA / - / Claus	
IGCC	1800/1000/1000	Class	E-Gas	Selexol / Selexol / Claus	88%¹
	(CO ₂ capture cases)		Shell	Sulfinol-M / - / Claus	
				Selexol / Selexol / Claus	90%
	2400/1050/1050		Subcritical	Wet FGD / - / Gypsum	
PC	2400/1030/1030		Subcritical	Wet FGD / Econamine / Gypsum	90%
PC	3500/1100/1100		Supercritical	Wet FGD / - / Gypsum	
	3300/1100/1100	Supercriti		Wet FGD / Econamine / Gypsum	90%
NGCC	2400/1050/050	F Class	HRSG		
NGCC	NGCC 2400/1050/950 F CI		пкос	- / Econamine / -	90%

 $^{^{\}rm 1}~{\rm CO_2}$ capture is limited to 88% by syngas ${\rm CH_4}$ content

GEE – GE Energy CoP – Conoco Phillips

Design Basis: Coal Type

Illinois #6 Coal Ultimate Analysis (weight %)

	As Rec'd	Dry
Moisture	11.12	0
Carbon	63.75	71.72
Hydrogen	4.50	5.06
Nitrogen	1.25	1.41
Chlorine	0.29	0.33
Sulfur	2.51	2.82
Ash	9.70	10.91
Oxygen (by difference)	6.88	7.75
	100.0	100.0
HHV (Btu/lb)	11,666	13,126

Environmental Targets

Pollutant	IGCC ¹	PC ²	NGCC ³
SO ₂	0.0128 lb/MMBtu	0.085 lb/MMBtu	< 0.6 gr S /100 scf
NOx	15 ppmv (dry) @ 15% O ₂	0.07 lb/MMBtu	2.5 ppmv @ 15% O ₂
PM	0.0071 lb/MMBtu	0.017 lb/MMBtu	Negligible
Hg	> 90% capture	1.14 lb/TBtu	Negligible

¹ Based on EPRI's CoalFleet User Design Basis Specification for Coal-Based IGCC Power Plants

² Based on BACT analysis, exceeding new NSPS requirements

³ Based on EPA pipeline natural gas specification and 40 CFR Part 60, Subpart KKKK

Economic Assumptions

Startup	2010	
Plant Life (Years)	20	
Capital Charge Factor, %		
High Risk		
(All IGCC, PC/NGCC with CO ₂ capture)	17.5	
Low Risk		
(PC/NGCC without CO ₂ capture)	16.4	
Dollars (Constant)	2007	
Coal (\$/MM Btu)	1.80	The state of the s
Natural Gas (\$/MM Btu)	6.75	
Capacity Factor		
IGCC	80	
PC/NGCC	85	

Total Plant Cost

Includes

- Equipment
 - Initial chemicals and catalyst loadings
- Materials
- Labor
 - Direct and Indirect
- Engineering and Construction Management
- Project and ProcessContingencies

Excludes

- Owner's costs
 - Land, licensing and permitting, AFUDC
- Escalation to period of performance
- Taxes (except payroll)
- Site specific considerations
- Labor incentives in excess of 5 day/10 hour work week
- EPC premiums

Costs do not include "Risk Wrap"

Contract approach assumed for study

- EPCM (engineering, procurement, construction management)
 - Owner has control of project
 - Risk is reduced with time as scope definition improves by time of contract award

as opposed to.....

- EPC (engineer, procure, construct)
 - Lump sum contract where contractor assumes all risk for performance, schedule, and cost
 - If willing to accept risk, premiums applied can raise costs dramatically

Power Plant Configurations

Current State-of-the-Art

Current Technology IGCC Power Plant

11

Humidification/steam injection used only when necessary to

meet syngas specification of ~120 Btu/scf LHV

Steam: 1800psig/1050°F/1050°F

Pre-Combustion Current Technology *IGCC Power Plant with CO₂ Scrubbing*

12

Post-Combustion Current Technology Pulverized Coal Power Plant with CO₂ Scrubbing

Current Technology Natural Gas Combined Cycle*

*Orange Blocks Indicate Unit Operations Added for CO₂ Capture Case

NOx Control: LNB + SCR to maintain 2.5 ppmvd @ 15% O₂

Steam Conditions: 2400 psig/1050°F/950°F

IGCC Power Plant Cost and Performance

No CO₂ capture

IGCC Performance Results

No CO₂ Capture

	GE Energy	E-Gas	Shell
Gross Power (MW)	770	742	748
Auxiliary Power (MW)			
Base Plant Load	23	25	21
Air Separation Unit	103	91	90
Gas Cleanup 4		3	1
Total Aux. Power (MW)	130	119	112
Net Power (MW)	640	623	636
Heat Rate (Btu/kWh)	8,922	8,681	8,304
Efficiency (HHV)	38.2	39.3	41.1

IGCC Economic Results

No CO₂ Capture

	GE Energy	E-Gas	Shell	
Plant Cost (\$/kWe) ¹				
Base Plant	1,323	1,272	1,522	
Air Separation Unit	287	264	256	
Gas Cleanup	Gas Cleanup 203		199	
Total Plant Cost (\$/kWe)	1,813	1,813 1,733		
Capital COE (¢/kWh)	4.53	4.33	4.94	
Variable COE (¢/kWh)	3.27	3.20	3.11	
Total COE ² (¢/kWh)	7.80	7.53	8.05	

¹Total Plant Capital Cost (Includes contingencies and engineering fees)

²January 2007 Dollars, 80% Capacity Factor, 17.5% Capital Charge Factor, Coal cost \$1.80/10⁶Btu

IGCC Power Plant Cost and Performance

With CO₂ Capture

Impact of Adding CCS

	GE Energy		
CO ₂ Capture	NO	YES	
Gross Power (MW)	770	745	Steam for WGS and Selexol
Auxiliary Power (MW)			Colone
Base Plant Load	23	23	↑ in ASU air comp.
Air Separation Unit	103	121	load w/o CT integration
Gas Cleanup/CO ₂ Capture	4	18	megration
CO ₂ Compression	-	27	Includes H ₂ S/CO ₂
Total Aux. Power (MW)	130	189	Removal in Selexol Solvent
Net Power (MW)	640	556	
Heat Rate (Btu/kWh)	8,922	10,505	↑ in auxiliary load for
Efficiency (HHV)	38.2	32.5	compression to 2200 ps
Energy Penalty ¹	-	5.7	

 $^{{}^{1}\}text{CO}_{2}$ Capture Energy Penalty = Percent points decrease in net power plant efficiency due to CO_{2} Capture

Impact of CCS on IGCC Capital Cost

CCS = Carbon capture and sequestration

CCS increases TPC by about 35 percent (or ~ \$660/kW)

Impact of CCS on IGCC Efficiency

CCS = Carbon capture and sequestration

Average energy penalty for CCS is 7 percentage points

21

Impact of CCS on IGCC Cost of Electricity

PC Power Plant Cost and Performance

Pulverized Coal Performance Summary

	Subc	ritical	Super	critical
Coal Flow Rate	5,252	7,759	4,935	7,039
CO ₂ Captured (Ton/day)	0	16,566	0	15,029
Gross Power (MW)	584	681	580	664
Auxiliary Power (MW)				
Base Plant Load	19	36	21	32
Forced + Induced Draft Fans	10	14	9	13
Flue Gas Cleanup	4	5	3	5
CO ₂ Capture	1	24	1	21
CO ₂ Compression	1	52		47
Total Aux. Power (MW)	33	131	30	118
Net Power (MW)	550	550	550	546
Efficiency (%HHV)	36.8	25.0	39.1	27.2
Energy Penalty (% Points))	11.8	-	11.9

CO₂ Capture decreases net efficiency by ~12 percentage points

Subcritical PC Performance

	Subo	critical	
Coal Flow Rate	5,252	7,759	48% Increase in
CO ₂ Captured (Ton/day)	0	16,566	Coal Flow Rate
Gross Power (MW)	584	681	
Auxiliary Power (MW)			
Base Plant Load	19	36	Larger Base Plant
Forced + Induced Draft Fans	10	14	Larger base i lant
Flue Gas Cleanup	4	5	NEA 0 111
CO ₂ Capture	-	24	MEA Scrubbing
CO ₂ Compression	-	52	~17,000 TPD to
Total Aux. Power (MW)	33	131	2,200 Psig
Net Power (MW)	550	550	
Efficiency (%HHV)	36.8	25.0	
Energy Penalty (% Points)	-	11.8	

Pulverized Coal Economic Results

	Sub	critical	Supercritical		
CO ₂ Capture	NO	YES	NO	YES	
Plant Cost (\$/kWe) ¹					
Base Plant	1,302	1,689	1,345	1,729	
Gas Cleanup (SOx/NOx)	246	323	229	302	
CO ₂ Capture	-	792	-	752	
CO ₂ Compression		89	-	85	
Total Plant Cost (\$/kWe)	1,549	2,895	1,575	2,870	
		PC CO ₂ capt	ure results	in:	
Capital COE (¢/kWh)	3.41	Increase in Capital Cost (TPC) ~ \$1,325/kW			
Variable COE (¢/kWh)	2.99	Increase in C	OE ~5 cents	/kWh (~ 1839	%)
CO ₂ TS&M COE (¢/kWh)	0.00	0.43	0.00	0.39	
Total COE ² (¢/kWh)	6.40	11.88	6.33	11.48	
Increase in COE (%)	-	85	-	81	
\$/tonne CO ₂ Avoided	-	75	-	75	

¹Total Plant Capital Cost (Includes contingencies and engineering fees)

²January 2007 Dollars, 85% Capacity Factor, 16.4% (no capture) 17.5% (capture) Capital Charge Factor, Coal cost \$1.80/10⁶Btu, Natural Gas cost \$6.75/10⁶Btu

Technology Comparison

IGCC, PC and NGCC

Net Plant Efficiency

CCS = Carbon capture and sequestration

Total Plant Cost

CCS = Carbon capture and sequestration

NETL

Cost of Electricity

January 2007 Dollars, Coal cost \$1.80/10⁶Btu, Gas cost \$6.75/10⁶Btu CCS = Carbon capture and sequestration TS&M = transport, storage, and monitoring

CO₂ Mitigation Costs

Criteria Pollutant Emissions for All Cases

32

Raw Water Usage per MW_{net} (Absolute)

Result Highlights

- Coal-based plants using today's technology are efficient and clean
- 20 year levelized COE: PC lowest cost generator
 - IGCC total plant cost ~20% higher than PC
- With CCS: IGCC lowest coal-based option for CCS
 - PC TPC > IGCC TPC
 - PC efficiency < IGCC efficiency
- LCOE* equal when natural gas price is:
 - No Capture IGCC: \$7.99/MMBtu PC: \$6.15/MMBtu
 - With Capture IGCC: \$7.73/MMBtu PC: \$8.87/MMBtu

34

* At baseline coal cost of \$1.80/MMBtu

NETL Viewpoint

- Improved efficiencies and reduced costs are required to improve competitiveness of advanced coal-based systems
 - In today's market and regulatory environment
 - Also in a carbon constrained scenario
- Opportunities for Fossil Energy RD&D
 - Improve performance and cost of clean coal power systems including development of new approaches to capture and sequester greenhouse gases

Thank You!!

Report, Desk Reference & Slides Available

http://www.netl.doe.gov/technologies/coalpower/refshelf.html

"Cost and Performance Baseline of Fossil Energy Plants," DOE/NETL-2007/1281, May 2007.

"Fossil Energy Power Plant Desk Reference" 2007/1282, May 2007.

DOE/NETL-

Backup Slides

Removal Cost versus Avoided Cost

\$/tonne of CO2 captured (removed)

- Function of the bulk quantity of CO2 removed from the capture power plant and the increase in COE required for capture
 - Difference in COE divided by amount of CO2 captured in the capture plant

\$/tonne of CO2 avoided (mitigation cost)

- Accounts for the extra energy (auxiliary power) spent to capture CO2, which increases total CO2 per net MWh
 - Difference in COE divided by difference in emissions between reference plant and capture plant

Comparison of CO2 Removed and Avoided

The amount of CO2 avoided is always less than the amount of CO2 captured

GE Energy Radiant

<u>Design</u>: Pressurized, single-stage, downward firing, entrained flow, slurry feed, oxygen blown, slagging, radiant and quench cooling

Note: All gasification performance data estimated by the project team to be representative of GE gasifier

ConocoPhillips E-GasTM

42

IGCC Performance Results

	GE Energy		E-Gas		Shell	
CO ₂ Capture	NO	YES	NO	YES	NO	YES
Gross Power (MW)	770	745	742	694	748	693
Auxiliary Power (MW)						
Base Plant Load	23	23	25	26	21	19
Air Separation Unit	103	121	91	109	90	113
Gas Cleanup/CO ₂ Capture	4	18	3	15	1	16
CO ₂ Compression	-	27	-	26	- 1	28
Total Aux. Power (MW)	130	189	119	176	112	176
Net Power (MW)	640	556	623	518	636	517
Heat Rate (Btu/kWh)	8,922	10,505	8,681	10,757	8,304	10,674
Efficiency (HHV)	38.2	32.5	39.3	31.7	41.1	32.0
Energy Penalty ¹	-	5.7	-	7.6	- 1	9.1

43

 $^{{}^{1}\}text{CO}_{\underline{2}}$ Capture Energy Penalty = Percent points decrease in net power plant efficiency due to $\text{CO}_{\underline{2}}$ Capture

IGCC Economic Results

	GE E	GE Energy E-Gas		Sh	ell	
CO ₂ Capture	NO	YES	NO	YES	NO	YES
Plant Cost (\$/kWe) ¹						
Base Plant	1,323	1,566	1,272	1,592	1,522	1,817
Air Separation Unit	287	342	264	329	256	336
Gas Cleanup/CO ₂ Capture	203	414	197	441	199	445
CO ₂ Compression	-	68	-	69	-	70
Total Plant Cost (\$/kWe)	1,813	2,390	1,733	2,431	1,977	2,668
Capital COE (¢/kWh)	4.53	5.97	4.33	6.07	4.94	6.66
Variable COE (¢/kWh)	3.27	3.93	3.20	4.09	3.11	3.97
CO, TS&M COE (¢/kWh)	0.00	0.39	0.00	0.41	0.00	0.41
Total COE² (¢/kWh)	7.80	10.29	7.53	10.57	8.05	11.04
Increase in COE (%)	-	32	-	40	- 1	37
\$/tonne CO ₂ Avoided	-	35	-	45	-	46

¹Total Plant Capital Cost (Includes contingencies and engineering fees)

²January 2007 Dollars, 80% Capacity Factor, 17.5% Capital Charge Factor, Coal cost \$1.80/10⁶Btu

PC and NGCC Performance Results

	Subcritical		Supercritical		NGCC				
CO ₂ Capture	NO	YES	NO	YES	NO	YES			
Gross Power (MW)	583	680	580	663	570	520			
Base Plant Load	29	48	26	43	10	13			
Gas Cleanup/CO ₂ Capture	4	30	4	27	0	10			
CO ₂ Compression	-	52	-	47	0	15			
Total Aux. Power (MW)	33	130	30	117	10	38			
Net Power (MW)	550	550	550	546	560	482			
Heat Rate (Btu/kWh)	9,276	13,724	8,721	12,534	6,719	7,813			
Efficiency (HHV)	36.8	24.9	39.1	27.2	50.8	43.7			
Energy Penalty ¹	-	11.9	-	11.9	-	7.1			

 $^{{}^{1}\}text{CO}_{\underline{2}}$ Capture Energy Penalty = Percent points decrease in net power plant efficiency due to $\text{CO}_{\underline{2}}$ Capture

PC and NGCC Economic Results

	Subcritical		Supercritical		NGCC				
CO ₂ Capture	NO	YES	NO	YES	NO	YES			
Plant Cost (\$/kWe) ¹									
Base Plant	1,302	1,689	1,345	1,729	554	676			
Gas Cleanup (SOx/NOx)	246	323	229	302		-			
CO ₂ Capture	-	792	-	752	- 1	441			
CO ₂ Compression	-	89	-	85	- 1	52			
Total Plant Cost (\$/kWe)	1,549	2,895	1,575	2,870	554	1,172			
Capital COE (¢/kWh)	3.41	6.81	3.47	6.75	1.22	2.75			
Variable COE (¢/kWh)	2.99	4.64	2.86	4.34	5.62	6.70			
CO ₂ TS&M COE (¢/kWh)	0.00	0.43	0.00	0.39	0.00	0.29			
Total COE ² (¢/kWh)	6.40	11.88	6.33	11.48	6.84	9.74			
Increase in COE (%)	-	85	-	81	- 1	43			
\$/tonne CO ₂ Avoided	-	75	-	75	-	91			

¹Total Plant Capital Cost (Includes contingencies and engineering fees)

²January 2007 Dollars, 85% Capacity Factor, 16.4% (no capture) 17.5% (capture) Capital Charge Factor, Coal cost \$1.80/10⁶Btu, Natural Gas cost \$6.75/10⁶Btu

46