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Outline

1. Introduction to Microgrids

2. Distributed Energy Resources 
Customer Adoption Model (DER-CAM)

3. Example Study: San Bernardino CA USPS P&DC    
(parts A & B)

4. Power Quality and Reliability (PQR)

5. Lessons Learned/Future Work
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History of U.S. Electricity Sector

phases of centralization

1. isolated developments (pre 1900)

2. consolidation and monopolization (1900-1933)

3. fossilization and total centralization (1933-1980)

phases of decentralization

1. independent investment (avoided cost) (1980-1995)

2. wholesale (and some retail) competition (1995- )

3. decentralization and full competition? (2000- )
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What is a Microgrid?

A controlled grouping of energy (including 
electricity) sources and sinks that is 
connected to the macrogrid but can function 
independently of it.

Two Main Benefits to Developers of Microgrids:
• pushing efficiency limits by heat recovery (CHP)
• providing heterogeneous power quality and 

reliability (PQR)

There are other societal benefits.
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2.  Distributed Energy Resources 
Customer Adoption Model 

(DER-CAM)
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DER Customer Adoption Model 
(DER-CAM)
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DER-CAM:
Mathematical Model

• DER-CAM uses GAMS to model an MIP solved with Cplex 
• minimize

– customer (annual) energy bill
(DER investment, DER operation, energy purchases, 

energy sales) annualized
• subject to:

– energy balance
– electricity & NG tariffs
– DER characteristics (investment cost, heat rate, and maintenance cost)

– heat production/available waste heat/CHP technology
(heat storage & solar thermal assistance)

– solar insolation
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3. San Bernardino Processing and 
Distribution Center

Part A: 2002
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Redlands, 
California

San Bernardino USPS, 
Redlands CA
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San Bernardino USPS: Temperature

source: Renewable Resource Data Center, National Renewable Energy Laboratory, http://rredc.nrel.gov/
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San Bernardino USPS, 
Redlands CA

equipment runs mostly 
during evening and night

25 000 m2 single-story
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USPS July Weekday Electric Loads

site electric loads

How site electric loads are met.

peak load = 1500 kW
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San Diego USPS
(Margaret L. Sellers Processing and Distribution Center)
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East Bay Municipal Utility District 
Microturbine Installation with Cooling
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3. San Bernardino Processing and 
Distribution Center

Part B: 2005
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San Bernardino USPS: Solar Radiation
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Minimum Cost Results
• low temp. collectors are economic
• chosen system:

– 1 MW (electric capacity) of reciprocating engines
– 1.7 MW (thermal cooling capacity) single-effect abs. chiller
– 1.5 MW (heat delivered) low temperature collectors

• but only provide 45% of heat
• and only lower the annual bill by 1%
• high temp. collectors and PV are not chosen



18

Environmental Energy Technologies Division

Meeting Absorption Chiller and 
Electric Loads
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Deteriorating Economics of DG-CHP
2002 2004 2006

summer winter summer winter summer winter
electricity

monthly fee ($) ~300 ~300 ~300 ~300 ~300 ~300
demand charge noncoincident 6.6 0.0 8.3 8.3 8.5 8.5
($/kW monthly peak)on-peak 18.0 0.0 21.7 0.0 29.7 0.0

mid-peak 2.7 0.0 3.3 0.0 4.8 0.0
off-peak 0.0 0.0 0.0 0.0 0.0 0.0

volumetric charge on-peak 0.195 n/a 0.122 n/a 0.163
($/kWh) mid-peak 0.109 0.121 0.072 0.091 0.094 0.118

off-peak 0.088 0.089 0.041 0.043 0.054 0.056
natural gas

monthly fee ($) ~600 ~600 ~600 ~600 ~600 ~600
volumetric ($/kWh) 0.014 0.013 0.02 0.021 0.024 0.024
($/GJ) 3.89 3.61 5.56 5.83 6.67 6.67

to to to to to to
($/kWh) 0.02 0.023 0.026 0.028 0.032 0.041
($/GJ) 5.56 6.39 7.22 7.78 8.89 11.39

on-site generation marginal cost

electricity only 0.042 0.039 0.061 0.064 0.073 0.073
($/kWh) to to to to to to

0.061 0.070 0.079 0.085 0.097 0.124
electricity and absorption cooling 0.039 0.037 0.056 0.059 0.068 0.068
($/kWh) to to to to to to

0.056 0.065 0.073 0.079 0.090 0.116
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Optimal System Results  (130 g/kWh)
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N
atural gas

no investment 0.0 0.0 0.0 0.0 932 0 0 930 2 9770 13.9 1271
CHP, no solar 1.0 1.7 1.1 0.0 813 58 37 437 281 6092 9326 1277
low temp. $150/kW 1.0 1.7 1.1 1.5 802 75 35 426 266 5224 10197 1236
high temp. $500/kW 1.0 1.6 0.9 0.8 798 95 32 424 247 5886 8168 1190
high temp. $900/kW 1.0 1.6 0.6 0.1 819 69 24 515 211 6933 6825 1256

* capacity in units of 0.5 MW engines
**

*** capacity in units of rated thermal power transfer
**** capacity in units of thermal power production at 1 kW/m^2 solar radiation

Installed Capacity (MW) Energy cost (k$/a) Energy purchase 
(MWh/a)

chiller capacity stated as amount of thermal power consumed.  Chillers are single effect for the low temp. case and double 
effect for the high temp. cases.

Carbon 
emissions 

(t/a)
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Carbon Constraint Results
• high temp. collectors provide carbon 

savings at lower control cost than low 
temp. collectors

• for low carbon reductions PV is…
– more economic than high temp. collectors
– competitive with low temp. collectors

• solar thermal is still valuable because of 
storage which offsets evening cooling 
loads
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DER Equipment Installation Under 
Carbon Constraint (130 g/kWh)
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Pareto Minimization of Cost and 
Carbon Emissions (130 g/kWh)
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Cost of Carbon Savings 
(130 g/kWh)
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Source of Carbon Emissions
(130 g/kWh)
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4. Power Quality and Reliability
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Electricity Reliability, Technology, and 
Cost (Traditional)
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What Does Power Quality and 
Reliability Really Cost?
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Temporal Electricity Price Variation is Familiar
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An PQR Pyramid
• Loads are often broken 

down by time and enduse 
but not by PQR 
requirements. 

• The most demanding PQR 
requirements are not met.

• Highly sensitive loads are 
small and they could be 
smaller.

• Local supply could tailor 
PQR to the needs of the 
enduse.
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5. Lessons Learned/Future Work/
Conclusion
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Lessons Learned

• reciprocating engines are the strongly incumbent technology
• mixed technology systems sometimes economically attractive
• DER economics are driven more by electricity than fuel prices
• optimal systems are larger than are typically built today
• DER-CAM sizes more to meet electricity than heat loads
• in moderate climates, cooling loads can justify CHP systems
• PV becomes economic with subsidies or carbon constraints
• demand charges encourage bigger systems
• energy efficiency gains significant when CHP involved, but 

modest overall 
• efficiency constraints can run counter to system economics
• markets are highly regionalized and building specific
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DER-CAM On-Going Work
• bottom up modeling of effects of DER/microgrid 

adoption (environmental/PQR?)

• evaluating economics of microgrid technology 
improvements 

• extending storage capability to electricity
• estimation of national benefits of U.S. DER 

adoption and DG R&D
• development of EnergyManager capabilities
• applying algorithms in Energy+
• PQR valuation
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Conclusion
• DER-CAM has been developed to identify cost minimizing 
technology neutral microgrid systems

• useful energy flow requirements are met systemically by 
equipment investments and operations, including CHP and 
endogenous effects

• devices/investments interaction endogenously solved

• results provide valuable starting point yardstick for building 
analysis or can be generalized to produce higher level 
estimates of DER adoption

• incorporating PQR is the big challenge
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THE  END


