Towards Systemic Analysis of Building Energy Systems

seminar presented at the Carnegie Mellon University Electricity Industry Center

> 30 May 2006 ^{by} Chris Marnay

<u>der.lbl.gov</u> <u>eetd.lbl.gov/ea/emp</u> C_Marnay@lbl.gov

collaborators: Afzal Siddiqui, Karl Maribu, Kristina Hamachi LaCommare, Michael Stadler, Ryan Firestone

research supported by the U.S. Dept of Energy and the California Energy Commission

Outline

- 1. Introduction to Microgrids
- 2. Distributed Energy Resources Customer Adoption Model (DER-CAM)
- 3. Example Study: San Bernardino CA USPS P&DC (parts A & B)
- 4. Power Quality and Reliability (PQR)
- 5. Lessons Learned/Future Work

History of U.S. Electricity Sector

phases of centralization

- 1. isolated developments (pre 1900)
- 2. consolidation and monopolization (1900-1933)
- fossilization and total centralization (1933-1980)
 phases of decentralization
- 1. independent investment (avoided cost) (1980-1995)
- 2. wholesale (and some retail) competition (1995-)
- 3. decentralization and full competition? (2000-)

What is a Microgrid?

A *controlled* grouping of energy (including electricity) sources and sinks that is connected to the macrogrid but can function independently of it.

Two Main Benefits to Developers of Microgrids:

- pushing efficiency limits by heat recovery (CHP)
- providing heterogeneous power quality and reliability (PQR)

There are other societal benefits.

Distributed Energy Resources Customer Adoption Model (DER-CAM)

DER Customer Adoption Model ⁶ (DER-CAM)

DER-CAM: Mathematical Model

- DER-CAM uses GAMS to model an MIP solved with Cplex
- minimize

- customer (annual) energy bill

(DER investment, DER operation, energy purchases, energy sales) annualized

• subject to:

cccccc

- energy balance
- electricity & NG tariffs
- DER characteristics (investment cost, heat rate, and maintenance cost)
- heat production/available waste heat/CHP technology

(heat storage & solar thermal assistance)

– solar insolation

3. San Bernardino Processing and Distribution Center Part A: 2002

San Bernardino USPS, Redlands CA

San Bernardino USPS: Temperature

source: Renewable Resource Data Center, National Renewable Energy Laboratory, http://rredc.nrel.gov/

BERKELEY LAI

San Bernardino USPS, Redlands CA

France

25 000 m² single-story

LIT THE FRANK

equipment runs mostly during evening and night

12

USPS July Weekday Electric Loads

San Diego USPS (Margaret L. Sellers Processing and Distribution Center)

-Environmental Energy Technologies Division

East Bay Municipal Utility District ¹⁴ Microturbine Installation with Cooling

3. San Bernardino Processing and Distribution Center Part B: 2005

San Bernardino USPS: Solar Radiation

Minimum Cost Results

- low temp. collectors are economic
- chosen system:
 - 1 MW (electric capacity) of reciprocating engines
 - 1.7 MW (thermal cooling capacity) single-effect abs. chiller
 - 1.5 MW (heat delivered) low temperature collectors
- but only provide 45% of heat
- and only lower the annual bill by 1%
- high temp. collectors and PV are not chosen

Meeting Absorption Chiller and ¹⁸ Electric Loads

Deteriorating Economics of DG-CHP

		2002		2004		2006		
		summer	winter	summer	winter	summer	winter	
electricity								
monthly fee (\$)		~300	~300	~300	~300	~300	~300	
demand charge	noncoincident	6.6	0.0	8.3	8.3	8.5	8.5	
(\$/kW monthly pea	k on-peak	18.0	0.0	21.7	0.0	29.7	0.0	
	mid-peak	2.7	0.0	3.3	0.0	4.8	0.0	
	off-peak	0.0	0.0	0.0	0.0	0.0	0.0	
volumetric charge	on-peak	0.195	n/a	0.122	n/a	0.163		
(\$/kWh)	mid-peak	0.109	0.121	0.072	0.091	0.094	0.118	
	off-peak	0.088	0.089	0.041	0.043	0.054	0.056	
natural gas								
monthly fee (\$)		~600	~600	~600	~600	~600	~600	
volumetric (\$/kWh)		0.014	0.013	0.02	0.021	0.024	0.024	
(\$/GJ)		3.89	3.61	5.56	5.83	6.67	6.67	
		to	to	to	to	to	to	
(\$/kWh)		0.02	0.023	0.026	0.028	0.032	0.041	
(\$/GJ)		5.56	6.39	7.22	7.78	8.89	11.39	
on-site generation marginal cost								
electricity only		0.042	0.039	0.061	0.064	0.073	0.073	
(\$/kWh)		to	to	to	to	to	to	
		0.061	0.070	0.079	0.085	0.097	0.124	
electricity and absorption cooling		0.039	0.037	0.056	0.059	0.068	0.068	
(\$/kWh)		to	to	to	to	to	to	
		0.056	0.065	0.073	0.079	0.090	0.116	

Optimal System Results (130 g/kWh)

	Installed Capacity (MW)			Energy cost (k\$/a)				Energy purchase (MWh/a)		Carbon emissions		
	NG ICE*	Abs. chiller**	Heat exchanger***	Solar collector****	Total	DER	Maint-enance	Elec-tricity	Natural Gas	Electricity	Natural gas	(t/a)
no investment	0.0	0.0	0.0	0.0	932	0	0	930	2	9770	13.9	1271
CHP, no solar	1.0	1.7	1.1	0.0	813	58	37	437	281	6092	9326	1277
low temp. \$150/kW	1.0	1.7	1.1	1.5	802	75	35	426	266	5224	10197	1236
high temp. \$500/kW	1.0	1.6	0.9	0.8	798	95	32	424	247	5886	8168	1190
high temp. \$900/kW	1.0	1.6	0.6	0.1	819	69	24	515	211	6933	6825	1256

* capacity in units of 0.5 MW engines

- ** chiller capacity stated as amount of thermal power consumed. Chillers are single effect for the low temp. case and double effect for the high temp. cases.
- *** capacity in units of rated thermal power transfer
- *** capacity in units of thermal power production at 1 kW/m^2 solar radiation

Carbon Constraint Results

- high temp. collectors provide carbon savings at lower control cost than low temp. collectors
- for low carbon reductions PV is...
 - more economic than high temp. collectors
 - competitive with low temp. collectors
- solar thermal is still valuable because of storage which offsets evening cooling loads

DER Equipment Installation Under²² Carbon Constraint (130 g/kWh)

Pareto Minimization of Cost and ²³ Carbon Emissions (130 g/kWh)

Cost of Carbon Savings (130 g/kWh)

Source of Carbon Emissions (130 g/kWh)

25

4. Power Quality and Reliability

Electricity Reliability, Technology, and Cost (Traditional)

Electricity Reliability, Technology, and Cost (Distributed)

What Does Power Quality and ²⁹ Reliability Really Cost?

Temporal Electricity Price Variation is Familiar

An PQR Pyramid

- Loads are often broken down by time and enduse but not by PQR requirements.
- The most demanding PQR requirements are not met.
- Highly sensitive loads are small and they could be smaller.
- Local supply could tailor PQR to the needs of the enduse.

BERKELEY LAD

5. Lessons Learned/Future Work/ Conclusion

Lessons Learned

- reciprocating engines are the strongly incumbent technology
- mixed technology systems sometimes economically attractive
- DER economics are driven more by electricity than fuel prices
- optimal systems are larger than are typically built today
- DER-CAM sizes more to meet electricity than heat loads
- in moderate climates, cooling loads can justify CHP systems
- PV becomes economic with subsidies or carbon constraints
- demand charges encourage bigger systems
- energy efficiency gains significant when CHP involved, but modest overall
- efficiency constraints can run counter to system economics
- markets are highly regionalized and building specific

DER-CAM On-Going Work

- bottom up modeling of effects of DER/microgrid adoption (environmental/PQR?)
- evaluating economics of microgrid technology improvements
- extending storage capability to electricity
- estimation of national benefits of U.S. DER adoption and DG R&D
- development of EnergyManager capabilities
- applying algorithms in Energy+
- PQR valuation

Conclusion

- DER-CAM has been developed to identify cost minimizing technology neutral microgrid systems
- useful energy flow requirements are met systemically by equipment investments and operations, including CHP and endogenous effects
- devices/investments interaction endogenously solved
- results provide valuable starting point yardstick for building analysis or can be generalized to produce higher level estimates of DER adoption
- incorporating PQR is the big challenge

THE END

