Power System Restoration -The Graceful Degradation Phase

Mike Adibi, IRD Corporation Bethesda, Maryland, USA madibird@aol.com

(c) IRD 2004

1

	Sequence	e of Events	
System	===→	Northeas	t PJM
Year	===→	1965	1967
Event	Initial	0	0
Islands	Numbers	5	3
Formed	Seconds	7	5
Blackout	Minutes	12	9
Restored	Hours	13	8

Under-frequency Load Shedding Load Rich

To match load with generation, underfrequency load shedding is used:

- Number of frequency step, 3
- Frequency set points, 59.3, 58.9 and 58.5Hz
- Load shed per step, 10%
- Fixed time delay per step, 5-8 cycles
- Correct operation of over 50%

(c) IRD 2004

13

Low Frequency Isolation Schemes Performance

Over 50 US utilities have successfully used LFIS to isolate one or more generators with matching loads.

The majority:

- Use automatic under-frequency relay to initiate the action,
- Select generators for isolation,
- Set the under-frequency relay between 58 and 58.5 Hz., &
- Allow time delay of 6 to 8 cycles, and

(c) IRD 2004

The Graceful Degradation Phase

Past Experience:

The probability of success in retaining initial sources of power by:

- Full and Partial Load Rejections,
- Under-frequency Load Shedding
- · Low Frequency Isolation Schemes,
- · Controlled System Separation, and

has been greater than 50%.

Future Challenge:

Need better control & protection coordination between:

- Prime mover's (BTG), and
- Electrical systems.

(c) IRD 2004

27

Power System Restoration After Subsequent Effect

The tasks are to:

- List and rank the critical loads by priority,
- List and rank the initial sources of power by availability, and
- Determine the most effective ways of bringing the two together.

(c) IRD 2004

31

Initial Critical Loads
After Subsequent EffectAfter Subsequent EffectPrioritiesCranking Drum-Type UnitsHighPipe-Type Cables Pumping System HighTransmission StationsMediumDistribution StationsMediumIndustrial LoadsLow*

Initial Sources of Power After Subsequent Effect

	Minutes	Success
		Probability
Run-of-the-River Hydro	5-10	High
Pump-Storage Hydro	5-10	High
Combustion Turbine	5-15	Medium (50%)
Tie-Line with Adjacent Systems	Short	Not Relied On *

* Policy: Provide Remote Cranking Power

(c) IRD 2004

33

Restoration After a Blackout Preparation Stage (1 to 2 Hours) Evaluate Pre-Disturbance Condition & the Post-Disturbance Status • Define the Target System • ٠ Restart Generators & Rebuild Transmission Network System Restoration (3 to 4 Hours) Energize Transmission Path • Restore Load to Stabilize Generation and Voltage ٠ ٠ Synchronize Islands and Reintegrate Bulk Power System Load Restoration (8 to 10 Hours) • Load Restoration is the Governing Control Objective • Load Pickup is Scheduled Based on Generation Availability • Load Restoration is Effected in Increasingly Larger steps (c) IRD 2004 34