Energy Infrastructure and Security

Carnegie Mellon Electricity Industry Center Pittsburgh, PA April 1, 2004 Alex Farrell

Energy and Resources Group

UC Berkeley

Introduction

- Annual Review of Energy and Resources (vol 29)
- Co-authors: Hisham Zerriffi and Hadi Dowlatabadi
- What is 'Energy Security'?
 - A technical term in power engineering
 - Certainty of supply
 - A very old concept sieges of ancient cities.
 - No repeats of the 1970's oil crises
 - Preventing or coping with malicious attack (terrorism)
 - A sexy term to promote prior interests

Early Interest In Energy Security

- 19th century: Security of coaling stations for the Royal Navy
- 1865: *The Coal Question* (Jevons)
- 1911: The obsession with oil begins as Churchill shifts the Royal Navy to oil in the pursuit of higher speed and more capability
- 1940-45: Energy emerges as a key part of military strategy
 - Threats to Imperial Japan's oil supplies provide rationale for war.
 - Submarine campaigns against tankers are highly effective
 - Nazi Germany's need for petroleum forces desperate actions
 - Some battles hinge on fuel: N. Africa, Kursk, post-Bulge breakout
 - Allied air campaigns against electric power systems oddly ineffective
 - Size and future importance of Middle Eastern fields are recognized

Energy Security in the Cold War

- Focus on nuclear warfare and Soviet-sponsored terrorism
- 1958 "Emergency Plans Book"
 - Most energy infrastructure is destroyed, but, then, so is most demand.
 - "With strict rationing of petroleum products and allocation of coal, the surviving fuel production ... is sufficient to meet properly timephased military requirements and minimum essential civilian needs."
- 1979 OTA Report, "The Effects of Nuclear War"
 - One scenario: 10 (multi-warhead) missiles each targeted at U.S. and U.S.S.R. refining capacity destroys most of it
 - Devastating socio-economic changes
 - Suggest decentralization and redundancy as strategic responses.

Energy, Vulnerability and War (1981)

- DoD (later FEMA) study published in 1981
- Detailed examination of energy infrastructure and vulnerability to nuclear war
- Main options: efficiency, storage (i.e. superconducting magnets and hydrogen), fuel cells, renewables, and decentralized systems
- 250 Libyan- and Soviet-sponsored terrorist attacks on energy infra.
- Suggested institutional response: Defense Energy Districts, "which would be administratively responsible for categorizing, inventorying, and coordinating the implementation of dispersed, decentralized, and renewable energy technologies."

Brittle Power (1982)

- DoD (later FEMA) study
- Existing energy infrastructures are "Disasters Waiting To Happen"
- Centralization is the "root of the problem"
- Main options are efficiency and small-scale renewable energy
- Key concept is "resilience", which is borrowed from ecology (e.g. Holling) and is remarkably similar to "survivability"
- Minimize the need for social control to operate and protect the energy system
- Raise understandability of energy technologies to increase social acceptance
- "Ultimately, high national levels of end-use efficiency could ... allow the entire grid to depend on inherently resilient, largely local energy sources."

Common features

- Lopsided technological optimism with little or no technical detail
- Inextricable linkage between security, decentralization, renewability, and efficiency
- No conceptual space for decentralized, fossil-based systems
- Not much discussion of institutions (e.g. firms)
- Hard to imagine how then-current Pittsburgh, or then-current Berkeley, would function with wholly-local energy supplies, yet denial that this is a recipe for "social decentralization".

Critical Infrastructure Protection (CIP)

- Emerges in 1990s
 - 1993 World Trade Center truck bombing
 - 1996 Western states power outage
 - Y2K
 - Cyber security
- Critical Infrastructure:
 - "[S]ystems and assets, whether physical or virtual, so vital to the United States that the incapacity or destruction of such systems and assets would have a debilitating impact on security, national economic security, national public health or safety, or any combination of these matters" – USA Patriot Act
 - "...provide the foundation for our national security, governance, economic vitality, and way of life ... create a sense of confidence and form an important part of our national identity and purpose."
 National Strategy for Physical Protection of CIP and Key Assets

CIP in the U.S.

- EO 13010 (1996), PCCIP (1997), PDD-63 (1998), EO 13228 (2001), various *National Strategies* (2000, 2002, 2003)
- Coordination, advocacy, R&D, cybersecurity, and 'guards, gates, and guns'
- 2003: Over 60 CIP bureaucracies in the federal government
 - Department of Homeland Security
 - National Infrastructure Protection Center (FBI)
 - Critical Infrastructure Assurance Office
 - National Infrastructure Simulation and Analysis Center (NISAC)
 - Office of Energy Assurance (DoE)
 - Information Sharing and Analysis Centers (ISAC)
 - Electricity: NERC www.esisac.com
 - Oil and Gas: API www.energyisac.com

CIP concerns

- Private ownership
 - Cost recovery in regulated industries?
 - Standards, incentives, or voluntary for competitive industries?
- Prioritization
- Who pays? Consumers or taxpayers? And which ones?
- Effect on competitiveness
- Information sharing with government
 - FERC rule on Critical Energy Infrastructure Information (CEII)
- Freedom Of Information Act and open government

CIP R&D Issues

- *Making the Nation Safer* (NRC 2002)
- Specific infrastructure vulnerabilities and interdependencies
- Robustness, resilience, and survivable systems
 - The 'intelligent grid'
 - The 'self-healing grid'
- Simulation and analysis of large, interdependent networks
- Wargaming
 - Blue Cascades
 - Silent Vector

Oil & Gas

- Supply interruption
 - State (OPEC, Russia) action and terrorism

Supply Shocks

- Common wisdom: Oil supply shocks cause recessions and can change governments (ORNL 1997)
 - 24 shocks 1950-2003, average 8 mo. and 3.4% world supply
 - Two types of costs: import expenses, macroeconomic adjustment
 - Asymmetrical and non-linear response
 - "Best" linear estimate: doubling oil prices for one year lowers GDP by 6.5% for two years.
 - Strategic Petroleum Reserves (SPR) can be effective in the short run if used properly.
- But is this effect really there?
 - U.S. domestic oil policies in the 1970s?
 - U.S. price controls and monetary policy in the 1970s?
 - Japan in the late 1970s?

Oil & Gas Infrastructure

- Concentrated assets
 - Production and gathering
 - Transport
 - Refining
- Little spare capacity
- Long, exposed systems with some long lead-time components
- Some contingency planning
- LNG is controversial:
 - Brittle Power: "as much energy as a small nuclear weapon"
 - CRS: "hazardous fuel...highly visible...can be vulnerable...exemplary safety record...not as [risky] as popularly believed"

Electric Power

- Still targeted by war planners
- Long history of attacks by various groups, but these groups are usually not as powerful as Mother Nature
- Non-nuclear Electro-Magnetic Pulse weapons
- 6 large blackouts in 6 weeks U.S. and Europe (2003)
 - \$1Billion + each, but no real agreement on measuring costs
- Modeling at Sandia (NISAC) suggests that ongoing attacks, even is smaller, might have a larger economic effect than a single large outage, which would be (and is) considered an anomaly
- Is turning out the lights attractive to terrorists?
 - Coordination, long time to repair/replace
- Fuel supply risk coal seems secure

Electricity Generation From Imported Oil

Importer	% World Oil Imports	% Generation From Imported Oil	
Singapore	3%	65%	
Italy and San Marino	5%	32%	
Philippines	0.9%	28%	
Portugal	0.7%	25%	
Greece	1%	16%	
Japan	11%	16%	
Thailand	2%	16%	
Belarus	0.5%	8%	
Korea, Republic of	6%	7%	
Spain	3%	7%	
Netherlands	3%	7%	

Electricity Generation from Imported Gas

		% Electricity Generation from Imported natural gas (by supply region)				
Importer	% World Gas	Russia	Algeria	Europe	Asia (incl. Mid-East)	
Belarus	Imports	87%				
Turkey	2%	19%	8%		2%	
Italy	8%	9%	12%	2%		
Belgium	3%		7%	15%		
Japan	13%				16%	
Kazakhstan	0.6%	14%			2%	
Finland	0.7%	14%				
Ukraine	10%	13%				
Hungary	2%	13%				
N. Korea	3%				11%	

Nuclear Power

- Attacks on facilities
 - Power plants
 - Waste storage
 - Reprocessing
- Concerns
 - Proliferation on nuclear arms
 - Release or radionuclides (attack or dirty bomb)
 - Common-mode failures
 - Panic
- Separate treatment: IAEA, NRC, National Guard

Strategic Responses

- Guards, gates, and guns
- Emergency preparedness
- Changes in energy infrastructure
- Institional change
 - Who's responsible?
 - Who pays?
 - How does this work in a competitive market?
- Decentralization
- Renewables
- Efficiency
- Intelligent grids and loads

Conclusion

- "Energy security" is an old concept with competing meanings.
- Energy security is a public good.
 - Dramatic events occasionally highlight energy security, but it the public and policymakers lose interest in it.
 - Little evidence of any commitment to invest in security
 - Little discussion and no resolution of 'Who Pays?'
- Centralization, organization and size of energy infrastructures emerge as key factors. Possibly renewability.
- Current CIP proposes to defend whatever energy infrastructure exists, with little to no thought about modifying it
- Emergence of non-state actors is new
- Will security concerns influence the future energy infrastructure?