

Optimizing the Operation of Power System Open Markets

Bruce Wollenberg University of Minnesota

Problem: How to measure of the impact of each transaction

- Consider a bilateral transfer of energy to be from one generator (seller) to one load (buyer)
- What is the impact of each such transfer on the transmission system

□ Losses

□ Transmission line loading

□ Bus voltage drop

□ Reactive power support

Management of Transmission one transaction at a time

Now done with linear (DC power flow) analysis: PTDF's and LODF's, NERC's TLR procedures

Linear analysis, as usual, only goes so far:

- □ Ignores voltage magnitudes, MVAR flow, MVA flow, etc.
- □ Losses are estimated using guess work resulting in constant (inaccurate) factors

Real power losses

■ Loss in a line (current in a resistor) □ 1 transaction : $Ploss = I^2R$

 $\Box 2 \text{ transactions}: \qquad Ploss = \left(I_a + I_b\right)^2 R$ $Ploss = I_a^2 R + I_b^2 R + 2I_a I_b R$

 \Box Problem: $Ploss \neq Ploss_a + Ploss_b$

Basic Concept

- Loss in a line : $Ploss = I_0^2 R$ Rate of change in loss in a line: $\frac{dPloss}{dI} = 2IR$
- Mid-Point Incremental Loss Formula:

$$Ploss = \left[\frac{dPloss}{dI}\Big|_{I = \frac{0}{2}}\right] I_0 = 2\left[\frac{I}{2}\right] I_0 R = I_0^2 R$$

Mid-Point Incremental Loss Formula

2-Transaction Example

$$I_{0} = I_{a} + I_{b}$$

$$Ploss = (I_{a} + I_{b})^{2} R = I_{a}^{2}R + I_{b}^{2}R + 2I_{a}I_{b}R$$

$$Ploss_{a} = \left(\frac{dPloss}{dI}\Big|_{I=\frac{I_{0}}{2}}\right)I_{a} = 2\left(\frac{I_{0}}{2}\right)R * I_{a} = 2\left(\frac{I_{a}+I_{b}}{2}\right)R * I_{a} = I_{a}^{2}R + I_{a}I_{b}R$$

$$Ploss_{b} = \left(\frac{dPloss}{dI}\Big|_{I=\frac{I_{0}}{2}}\right)I_{b} = 2\left(\frac{I_{0}}{2}\right)R * I_{b} = 2\left(\frac{I_{a}+I_{b}}{2}\right)R * I_{b} = I_{b}^{2}R + I_{a}I_{b}R$$

$$Ploss = Ploss_{a} + Ploss_{b}$$

Proposed Scheme Formulation

Base case electric quantity f

$$f^{0} = f(\mathbf{q}_{1}^{0}, V_{1}^{0}, ..., \mathbf{q}_{N}^{0}, V_{N}^{0})$$

• f changes from
$$f^0$$
 to $f^0 + Df$

• Allocation of Df to each transaction ?

Basic Derivation

Transaction $P_t(s) = s * P_{t-full}$ Trapezoidal Integration Method: $Df \cong \frac{\partial f}{\partial s} \Big|_{s=\frac{1}{2}} Ds$

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial q_1} \frac{\partial q_1(s)}{\partial s} + \frac{\partial f}{(\partial V_1/V_1)} \frac{(\partial V_1/V_1(s))}{\partial s} + \frac{\partial f}{(\partial V_N/V_N)} \frac{(\partial V_N/V_N(s))}{\partial s}$$

Trapezoidal Integration Method

Basic Derivation

Network state vector: $\underline{X} = (q_1, V_1, \dots, q_N, V_N)$ Set $\frac{\partial f}{\partial \underline{X}} = \begin{bmatrix} \frac{\partial f}{\partial q_1} & \frac{\partial f}{\partial V_1/V_1} & \dots & \frac{\partial f}{\partial q_N} & \frac{\partial f}{\partial V_N/V_N} \end{bmatrix}$ Then

$$\boldsymbol{D}f \cong \left. \frac{\partial f}{\partial s} \right|_{s=\frac{1}{2}} \boldsymbol{D}s = \left(\begin{array}{c} \frac{\partial q_{1}(s)}{\partial s} \\ \frac{\partial f}{\partial \underline{X}} \\ \frac{\partial f}{\partial \underline{X}} \\ \frac{\partial q_{N}(s)}{\partial s} \\ \frac{\partial V_{N}(s)}{\partial s} \\ \frac{\partial V_{N}(s)}{\partial s} \end{array} \right) \right|_{s=\frac{1}{2}} \boldsymbol{D}s$$

Numerical Studies

MAPP power system model :

□ 3120 buses
□ 499 generators
□ 5257 branches
□ 24 control areas

Allocation of Change in Branch MW & MVAR Flows to Transactions

	1	Fransaction	1	Transaction 2			A	Sum of llocated Val	Actual Totals		
Branch Index	∆MW Flow	AMW DC Power Flow	AMVAR Flow	AMW Flow	∆MW DC Power Flow	∆MVAR Flow	AMW Flow	∆MW DC Power Flow	∆MVAR Flow	∆MW Flow	∆MVAR Flow
1	0.02	0.00	-20.10	-497.26	-500.00	44.35	-497.24	-500.00	24.24	-497.24	24.17
2	-497.02	-500.00	13.78	0.00	0.00	-2.43	-497.02	-500.00	11.34	-497.02	11.32
3	-135.66	-139.78	56.34	-0.79	-0.65	0.57	-136.45	-140.44	56.91	-136.43	56.84
4	-183.73	-190.18	16.07	0.88	0.77	-2.28	-182.84	-189.41	13.80	-182.85	13.82
5	-240.62	-240.11	31.17	27.00	26.75	-6.14	-213.62	-213.36	25.03	-213.61	25.78
6	-138.55	-150.77	42.69	-34.60	-34.84	-6.24	-173.15	-185.61	36.44	-173.14	36.42
7	43.47	48.44	40.87	138.29	139.10	-3.12	181.76	187.54	37.76	181.75	37.91
8	-141.80	-161.89	10.03	-133.65	-143.75	16.84	-275.45	-305.63	26.87	-275.55	27.27
9	241.09	245.32	72.08	-16.29	-16.98	28.57	224.80	228.34	100.65	224.77	100.77
10	79.91	91.64	9.34	127.92	131.17	20.78	207.83	222.81	30.12	207.81	30.09

Allocation of Change in Area MW & MVAR Losses to Transactions

Area Index	Trans	action 1	Tran	saction 2	Si All V	um of ocated alues	Actual Totals		
	AMW Loss	AMVAR Loss	AMW Loss	AMVAR Loss	AMW Loss	AMVAR Loss	AMW Loss	AMVAR Loss	
1	-0.03	-0.26	-0.01	-0.08	-0.04	-0.34	-0.04	-0.34	
2	0.02	-0.07	0.02	0.04	0.03	-0.03	0.04	-0.04	
3	0.06	0.66	0.04	0.47	0.10	1.13	0.10	1.14	
4	-0.03	2.98	-0.14	-0.20	-0.17	2.78	-0.17	2.86	
5	-0.13	-0.28	-0.07	-0.16	-0.20	-0.45	-0.19	-0.45	
6	-0.08	2.15	-0.22	-1.06	-0.29	1.09	-0.29	1.12	
7	0.33	5.91	-0.68	-3.89	-0.35	2.02	-0.35	1.79	
8	-0.31	0.29	-0.06	0.04	-0.38	0.33	-0.38	0.33	
9	0.64	3.02	0.24	1.13	0.87	4.14	0.87	4.12	
10	0.83	7.98	0.19	2.58	1.01	10.56	1.03	10.74	
11	0.40	2.45	0.86	5.29	1.25	7.75	1.26	7.77	
12	1.69	5.87	0.06	-2.92	1.75	2.95	1.75	3.00	
13	2.53	27.87	-0.75	7.02	1.78	34.89	1.77	35.40	
14	1.35	13.31	0.59	6.30	1.94	19.61	1.94	19.61	
15	8.70	42.80	-5.49	-55.40	3.21	-12.60	3.21	-12.77	
16	3.32	26.87	2.00	14.30	5.33	41.17	5.34	41.31	
17	4.31	39.40	1.49	12.97	5.80	52.36	5.81	52.58	
18	4.78	87.44	1.49	20.95	6.27	108.38	6.28	108.61	
19	39.97	487.60	2.17	25.09	42.14	512.69	42.16	512.41	
20	40.18	378.87	41.26	554.24	81.44	933.12	81.44	932.94	
Total	108.52	1134.87	42.99	586.71	151.51	1721.58	151.54	1722.13	

Allocating Load Responsibilities

Generators are identical

Two companies sharing one transmission system

- Each company operates independently
- Each company dispatches generation to meet its own load and its allocation of losses (calculated by integration method)
- Each company's dispatch affects the other through the losses on the transmission system

Pareto Optima

Min aCostA + (1-a)CostBSubject to:

$$P_{2}+P_{8} = Load_{A} + Loss_{A}$$
$$P_{3}+P_{6} = Load_{B} + Loss_{B}$$

Nash Equilibrium Simultaneous Solution of: CostA Min Min *CostB* Subject to subject to $P_2 + P_8 = Load_A + Loss_A | P_3 + P_6 = Load_B + Loss_B$

Two Independent Companies Trading between them

 $Min \qquad CostA + CostB$

Subject to

$$P_2 + P_8 + P_3 + P_6 = Load_A + Loss_A + Load_B + Loss_B$$

This is the same as a pool dispatch where all generators are treated as one company IEEE 14 Bus Power System

Central Market Designs

- PJM and NYISO are central markets based on Locational Marginal Price
- No identification of individual transactions
- Each generator and each load bids to sell (buy) from a central exchange.
- Central exchange calculates the bus LMP's which determine payments and transmission charges

Locational Marginal Price (LMP)

- Requires a Security Constrained Optimal Power Flow
- Usually coupled with Unit Commitment (SCUC)
- The only transmission management scheme now in use that uses full AC network model

CASE 1 (cont)

Schedule of generation:

Ask	MW	Price
А	400	5.00
С	200	6.50
В	300	7.50 clearin

7.50 clearing price (same for both buses)

CASE 2

Generator 1							
Ask	MW	Price					
А	400	5.0					
В	200	7.50					

	Genera	tor 2
Ask	MW	Price
С	200	6.50
D	100	8.00

CASE 2 (cont)

clearing price at bus 1 = 7.50clearing price at bus 2 = 8.00

Bus 1	generation	n schedule	Bus 2 generation schedue				
Ask	MW	Price	Ask	MW	Price		
А	400	5.0	С	200	6.50		
В	200	7.50 clearing price	e D	100	8.00 clearing		

Case 1 Accounting

Revenue Collected from	Revenue paid to
Loads	generators and Transmission
	Owners
Load 1:	Gen 1:
500 x 7.50 = 3750	$700 \ge 7.50 = 5250$
Load 2:	Gen 2:
$400 \ge 7.50 = 3000$	$200 \ge 7.50 = 1500$
	Transmission
	= 0
Total: 6750	Total: 6750

Case 2 Accounting

Revenue Col Loads	lected from	Revenue paid to generators and Transmission					
Load 1: 500 x 7.50 =	3750	Gen 1: 600 x 7.50 =	4500				
Load 2: 400 x 8.00 =	3200	Gen 2: 300 x 8.00 =	2400				
		Transmission 100(8.00-7.50)= 50				
Total:	6950	Total:	6950				

Financial Transmission Right (FTR)

- Transmission charge in an LPM market is: □(LPMi-LMPj)*MWflow
- Holder of FTR receives credit of: □(LPMi-LMPj)*MWflow

□ Where MWflow is the "amount" purchased

 Holder can transfer the amount of the FTR from location i to j at no charge (credit cancels transmission charge)

FERC Standard Market Design

- FERC's proposal mirrors the PJM and NY ISO market designs
- Key elements of SMD
 - LMP based congestion management
 - Financial Transmission Rights
 - Financially binding day-ahead energy markets
 - Real time balancing markets
 - Capacity markets (initial reluctance, gradual acceptance)
 - Market power mitigation

Harry Singh, PSE&G

US Markets

Roberto Paliza, MISO

Seams Problem

Both regions A and B operate by LPM calculations.

They will get different costs along the boundary o seam between them

If both A and B were operated as one market with one LMP calculation – there would be no such difference

Problems with Seams

Trading across the seam is difficult due to price differences that are only due to regional OPF solutions

Solution to the "Seams" Problem

Information Exchanged

- All regions have the same network model covering all regions
- After the solution of each region's OPF:
 □ exchange power injections, LMP's for each bus
 □ exchange binding transmission constraint lambdas
- Each region now recalculates with a penalty term for its effect on other region's constraints
- Usually converges in three iteration for linear case

Iterative Solution to the Constrained Market

Region Bus No.		Start Iteration	1 st Iteration	2 nd Iteration	3 rd Iteration	Final Iteration
1	Price (\$/MW)	50	82.30	82.95	83.00	83.00
	Load (MW)	2000	923	900	900	900
2	Price (\$/MW)	50	33.62	32.63	32.90	32.90
	Load (MW)	-1000	-454	-421	-430	-430
3	Price (\$/MW)	50	42.24	42.75	42.38	42.38
	Load (MW)	-1000	-741	-758	-746	-746
4	Price (\$/MW)	50	31.43	31.95	32.00	32.00
	Load (MW)	-1000	-381	-398	-400	-400
5	Price (\$/MW)	50	71.32	72.43	72.38	72.38
	Load (MW)	2000	1289	1252	1254	1254
6	Price (\$/MW)	50	47.93	46.97	47.00.	47.00
	Load (MW)	-1000	-931	-899	-900	-900
7	Price (\$/MW)	50	44.03	43.27	43.29	43.30
	Load (MW)	-1000	-801	-776	-776	-777
8	Price (\$/MW)	50	36.91	36.64	36.64	36.65
	Load (MW)	-1000	-564	-555	-555	-555
9	Price (\$/MW)	50	60.23	60.43	60.40	60.40
	Load (MW)	2000	1659	1652	1653	1654

Congestion Constraints

Branch I No.	1	2	3	4	5	6	7	8	9	10	11	12
From Bus	1	1	2	2	3	4	4	5	6	7	7	8
To Bus	2	3	3	7	4	5	6	6	8	8	9	9
Lambda	-69.98	-20.79	0.00	0.00	0.00	65.73	0.00	0.00	0.00	0.00	0.00	40.78

Research Challenge for Seams Problem

- Do all of the OPF matching using an AC network model, an AC OPF and AC security analysis
- This presents a great problem wrt convergence and stability of solutions
- Added complexity: solve the seams problem within a SCUC