Evaluation of energy supply options for CMU

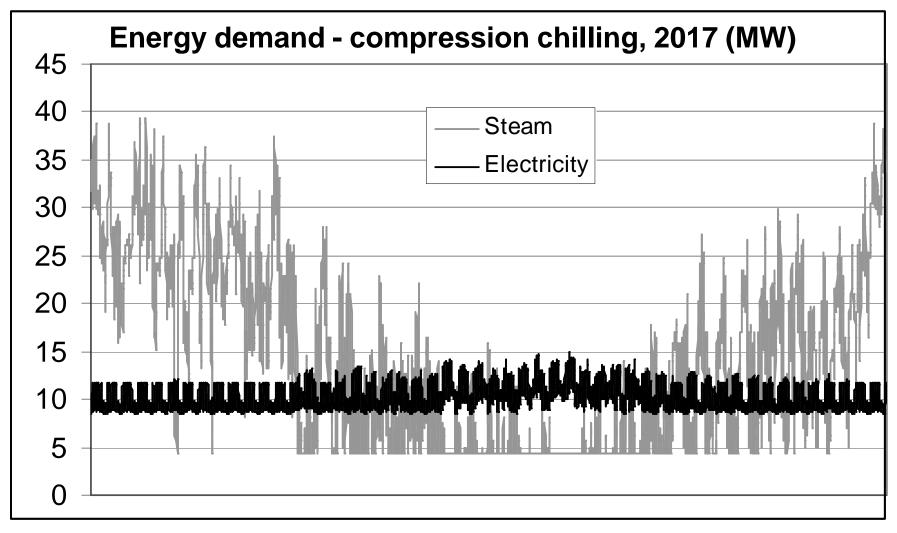
Alexander E. Farrell

Research Assistants: Dave Lorenzi Tony Paez

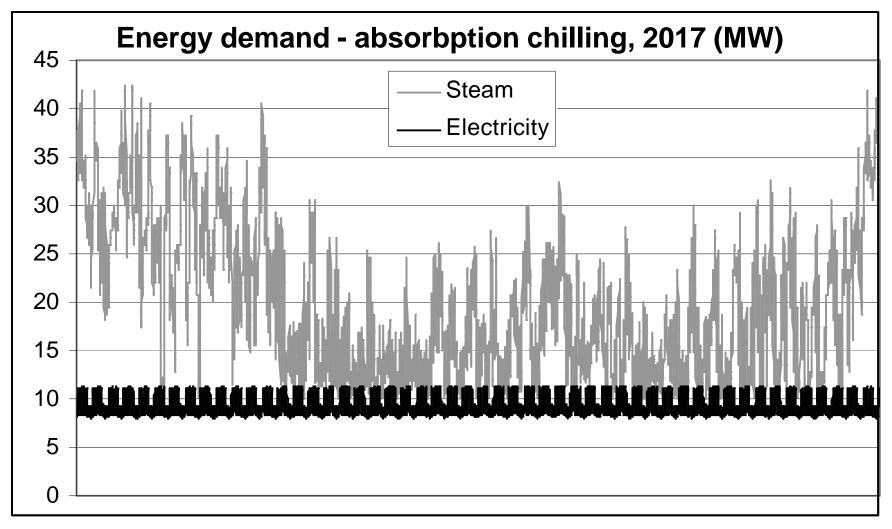
Carnegie Mellon Electricity Industry Center

Introduction

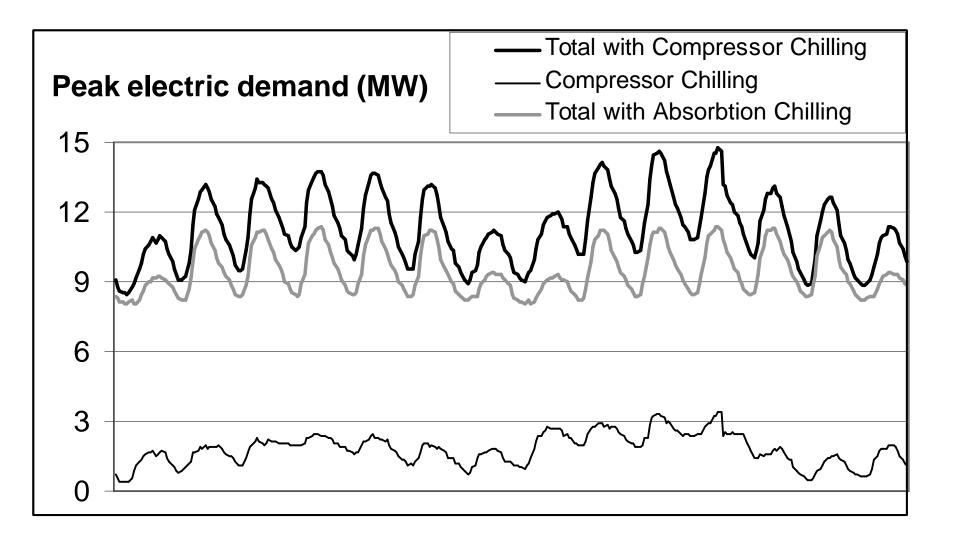
- Distributed generation (DG) in combined heat and power (CHP) applications is a significant fraction of generation in some systems (6% in the Netherlands).
 - Utility companies have incentive to cooperate
 - Policies must allow for flexible ownership and operations
 - Recapture of waste heat crucial to economics
- Thermal demand of U.S. buildings: less heat more cooling
 Less opportunity for waste heat recapture
- Can absorption cooling be used with DG to create a CH<u>C</u>P system that might be economically advantageous?

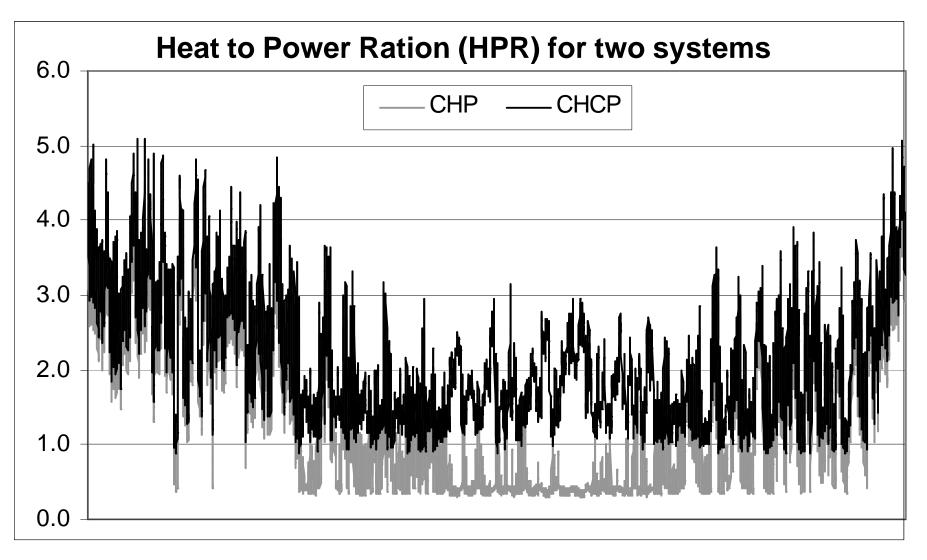

Approach

- CMU energy supply system
 - Electricity bought from grid (60% coal, 38% nuke/hydro, 2% gas)
 - 20% of electricity is wind (5% total energy)
 - Heat from district heating system (85% coal, 15% gas)
- Replacement of district heating system being considered
 - Base system (coal heat and grid electricity with wind purchase)
 - Gas-fired heat and grid electricity (more generalizable)
 - Onsite, gas-fired electricity generation with waste heat recapture
 - Compression chilling (current)
 - Absorption chilling
- Simulation model: 15-year NPV (2003-2017)
- Emissions mass and reduction credit values


Heat to Power Ratio (HPR)

- Crucial parameter for matching energy supply and loads
- Typical average values for two states:
 NY avg. = 2.3, NY coldest = 7, FL avg. = 1.1, FL hottest = 0.5
- Inherent values for different generation technologies:
 - Fuel cell 1.4
 - Diesel ICE 1.6
 - Gas ICE 2.1
 - Gas Turbine 2.0
 - Micro Turbine 2.6
- ICE exhaust temperatures sometimes too low to drive absorption chillers


Data – Energy Demand (1)


Data – Energy Demand (2)

Data – Energy Demand (3)

Data – HPR

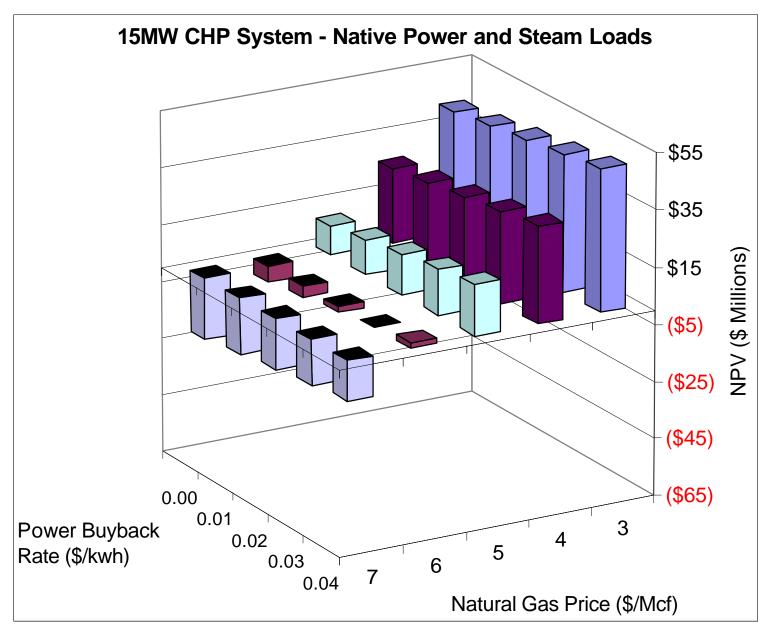
• Peak heating demand sets system size

Simulation

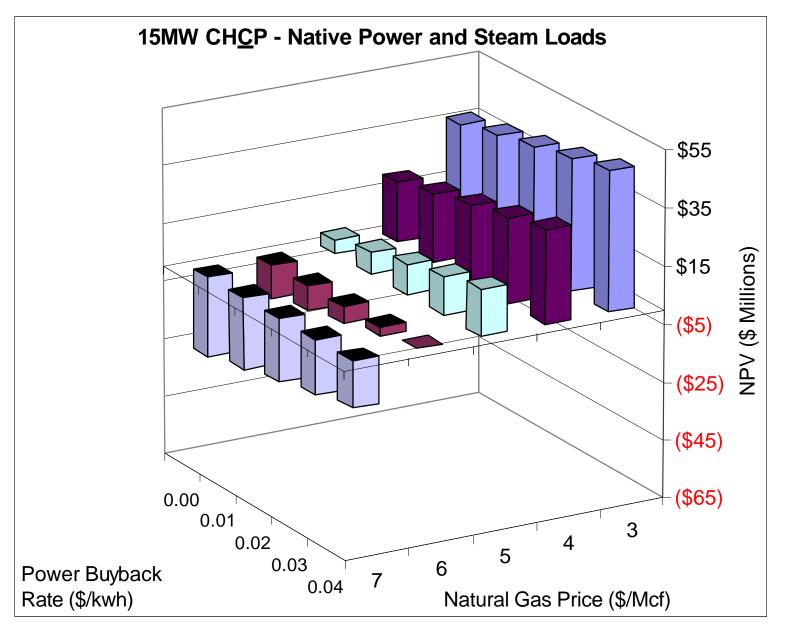
- Excel/Visual Basic
- Set input parameters (demand growth, capital and fuel costs, equipment specifications)
- Set operating strategy
 - Native Baseload
 - Native Steam and/or Electricity Demand
 - Full Capacity
- Meet hourly demand (8760 x 15)
- Calculate NPV, fuel consumption, emissions

Baseline Costs

- Current prices:
 - Gas ~\$6/Mcf,
 - Electricity $\sim 7 c/kWh$ with a \$10/kW demand charge
 - Steam ~\$8/Mcf
- FY 2001 CMU energy bill = \$8.4Million
 - NPV = \$100M \$200M (depends mostly on power price)
 - model assumptions (3% growth, r = 2.5%, n = 15 years)
- Demand charge for 13MW peak (avg.) = \$130,000/mo.
 NPV = \$24 Million (included in energy bill above)


Initial Results

- Two baseline systems
 - Current system: coal heat + grid electricity
 - Gas heat system: gas heat + grid electricity (similar to coal + grid w/ wind power purchase)
- System
 - 2 x 7.5MW Solar Turbine "Taurus" gas turbines
 - 1 x supplemental gas boiler
- Operating Strategies
 - 1) CHP, Native Steam and Power
 - 2) CH<u>C</u>P, Native Steam and Power
 - 3) CHCP, Full Capacity


Limitations

- Emissions
- Demand charge reduction and backup charge
- Part-load performance
- Double-effect absorption chiller
- Deterministic
 - Gas price
 - Power price
 - Allowance prices

NPV 1

NPV 2

NPV 3

Fuel Consumption (GJ)

	Gas	Coal	Other (nuke/hydro)	Total
Coal heat, grid electricity	13,000	850,000	210,000	1,100,000
Gas heat, grid electricity	340,000	520,000	210,000	1,100,000
CHP – native load	920,000	-66,000	-27,000	830,000 (78%)
CH <u>C</u> P – native load	910,000	-93,000	-37,000	780,000 (73%)
CH <u>C</u> P – full capacity	1,400,000	-400,00	-160,000	830,000 (77%)

• Negative values are energy not consumed due to power export

CO₂ emissions

	Emissions (ktons CO ₂)	Change, Coal Baseline (Gas Heat or Grid w/Wind)	Annual Credit Revenue (\$10/ton CO ₂ , Coal baseline)	NPV (n=15, r=2.5%)
Coal heat + grid electricity	240			
Gas heat + grid electricity (or coal + grid w/wind)	210	-12% (0%)	\$140,000	\$16M
1 - CHP native load	81	-66% (-61%)	\$780,000	\$12M
2 - CH <u>C</u> P native load	71	-70% (-66%)	\$830,000	\$12M
3 - CH <u>C</u> P full capacity	23	-90% (-89%)	\$1,100,000	\$2M

- Onsite generation backs out baseload coal
- Wind purchase about -4% CO₂ emissions, NPV about -\$1M

Some practical concerns

- Bellefield partners (Pitt, UPMC, Phipps, etc.)
- Current legal structure, management, and labor force
- Duquesne Light Company interest/cooperativeness
- Value of grid support or reliability
- Capital requirements
- Modularity/advanced energy conversion
- Building As Power Plant integration (i.e. remote DG-CHP)

Fuel Consumption (GJ)

		Gas	Coal	Other (nuke/hydro)	Total
Coal heat and grid electricity	Onsite Offsite Net	13,000 0 13,000	323,000 523,000 850,000	0 210,000 210,000	1,100,000
Gas heat and grid electricity	Onsite Offsite Net	13,000 323,000 340,000	0 520,000 520,000	0 210,000 210,000	1,100,000
CHP native load	Onsite Offsite Net	920,000 0 920,000	0 -66,000 -66,000	0 -66,000 -27,000	830,000 (78%)
CH <u>C</u> P native load	Onsite Offsite Net	910,000 0 910,000	0 -66,000 -93,000	0 66,000 37,000	780,000 (73%)
CH <u>C</u> P full capacity	Onsite Offsite Net	1,400,000 0 1,400,000	0 -66,000 -400,00	0 -66,00 -160,00	830,000 (77%)

• Negative values are energy not consumed due to power export