Decentralized Power Generation: Opportunities in Rural India

Anshu Bharadwaj

India's Electricity Scenario

- Installed Capacity ~ 100,000 MW
 - Fifth largest in the world
 - 1,500 MW in 1947
- 95% of villages electrified
 - 40% of households have access
- Per Capita Consumption : 350 kWh
 - World Average: 2000 kWh
- Need to add 10,000 15,000 MW annually
 - Actually added 4000 5000 MW p.a.

Mismatch in Tariff & Consumption

- Agriculture supply subsidized
 - Free in some states
 - Not metered
- Average cost of supply: Rs 3.04/kWh
- Average Revenue: Rs 2.12/kWh

Category	Consumption	Tariff Rs/kWh	
Domestic	17%	Rs 1.20/kWh	
Agriculture	31%	Rs 0.22/kWh	
Industrial	35%	Rs 4.50/kWh	
Commercial	5%	Rs 4.70/kWh	

1 US \$ = Rs 48 Source: Karnataka Electricity Regulatory Commission

Rural Electricity Supply

- Intermittent
- Voltage and frequency fluctuations
 - Equipment damage
- Vicious circle: (World Bank, 2001)
 - Subsidized Tariffs
 - Low Investments
 - Poor quality
- T&D Losses > 30% (I²R + Theft)

Advantages of DG

- Generate close to rural load centers (NRECA, US Department of Energy, FERC, California Energy Commission)
 - Reliability of supply
 - Lower distribution losses
 - Improve voltage profiles
 - Peak shaving
 - Local supply of reactive power
- Create incentives for increasing agricultural tariff
 - Willingness to pay for good quality power (*World Bank, 2001*)

Biomass for Decentralized Generation

- Biomass power potential 17,000 MW
 - Gasifier-reciprocating engine
 - + 5,000 MW from sugarcane bagasse and rice husk cogeneration

Sugar Mills (> 2500 Tons per Day)

Export 5 – 30 MW

SEB Policy for Renewable (DG):

- Buy-Back: Rs. 3.01/kWh
 - Expensive
 - Interconnect at 66/33 kV
 - Delay of months in payments
 - No reduction in SEB's losses
- Wheeling: up to 20% charges
 - SEBs view DG as a threat
- Reactive power not valued
- Present policies overlook potential benefits of DG

Cost of Power in Karnataka 2001-02

(Karnataka Electricity Regulatory Commission, Bangalore)

- Techno-Economic Analysis of Rural Micro-Grids
 - Break the vicious circle
- Options for Pricing Reactive Power
- Rational basis for assessing wheeling charges

Present Tariffs & Consumption

Consumer	Tariff Rs/kWh	Units Consumed	
Domestic	1.20	183,940	
Commercial	4.50	900	
Irrigation Pumps	0.20	?	
Industrial	4.75	13,320	
Losses (?		
Losses (Co	?		
ТО	7,831,400		

Load Flow Studies (3 Phase AC)

- We know:
 - Total kWh at the sub-stations
 - Sanctioned load at each bus (kW)
 - Length and impedances of conductors between buses
- We don't know:
 - kWh at each bus
 - Power factor (hence kVAR at each bus)
 - Unauthorized connections (theft)
 - Sub-Station Voltage

Capacitors in Grid

CAPACITOR[MVAR] IN THE GRID						
SOURCE: KPTCL A	ADMIN REPORTS					
YEAR	110KV	66KV	33KV	11KV	TOTAL MVAR	
96-97	640	871	170	559.12	2240.12	
97-98	800	1051	170	559.12	2580.12	
98-99	840	1091	170	559.12	2660.12	
99-00	840	1091	170	559.12	2660.12	
99-00	840	1091	170	559.12	2	

Consumption Forecast Under Increased Supply

- Elasticity of Demand not applicable
- Obtain Upper Limit of consumption
 - Increase hours of supply to ~ 12 - 14
 - Can't flood the fields !!
- Technical Losses: 2%
- Commercial Losses: 15%

Scenario I – No Tariff Changes DG's Perspective Third Party SEB Rs 10.1 Millior Rs 29.3 Million DG 2.5 MVA Revenues Expected : Rs 41.6 Million @ Rs. 3.01/KWh

Scenario I – No Tariff Changes SEB's Perspective

Loss of HT Consumer to IPP	2.82 MU	- Rs 13.5 Million
Disbursement to IPP		- Rs 29.3 Million
Savings of Power from the Micro-grid & Potential Sale to HT Consumer	7.8 MU	Rs 34.0 Million
Net	- Rs 8.8 Million	

Reactive Power Pricing Options

- Ancillary service in deregulated world (FERC Order # 888)
 - Most rural buses have low power factor
 - DG Can supply reactive power
 - BUT, at the cost of real power
- Classical economic definition (Baughman 1997, Chattopadhyaya 1995, Dai 2001)
 - Optimal Power Flow: Marginal cost of reactive power at a bus
 - Problem: Intermittent supply & lack of data in rural India.
- Avoided cost of synchronous condensers (Silva 2001)
- Cost of not producing real power (Generator Capability Curve)

Reactive Power Pricing: Generator Capability Curve

Make the generator indifferent to producing reactive power.

Wheeling of Power Current policy: Wheeling rates ~ 20% Not allowed in some states. Rationale:

- Threat to SEB's cash cow.
- Impose the T&D Losses (20%) as wheeling charges.
- But, wheeling benefits the utility also.
- More scientific basis needed for estimating wheeling charges.

Estimating Wheeling Charges

- Strict Economic Definition: (Schweppe 1988, Caramanis 1986)
 - Solve Optimal Power Flow and obtain the marginal costs from Lagrangian Dual.
 - Wheeling Rate between bus i & j = Difference of marginal cost of power at the two buses.
 - Wheeling rates can be negative if it results in lower T&D Losses.
- Load Flow Studies
 - Lower Distribution Losses ~ 2%
 - Voltage Support to SEB.
 - Wheeling rates should be low, if not negative.

Conclusions

- Rural micro-grids can benefit SEB & consumers
 - Lower losses
 - Improved quality of supply
- Reactive power pricing useful
- Rational basis for assessing wheeling charges