

RPS	in	the	U.S.

- AZ Regulated utilities generate at least 1.1% of total retail energy sales from renewable sources by 2007. Emphasis on solar. \$0.000875/kwh Environmental Portfolio Surcharge (with caps).
- **CT** from 5% (now) to 7% in 2009.
- ME 30% standard (now 50% hydro, biomass, WTE)
- MA 1% in 2003, addition 0.5% annually through '09 and an additional 1% annually thereafter. (4.5% in 2010)
- NV 1% by 2010, half of which must be solar
- NJ 6.5% by 2012
- PA 2% now, additional 0.5% annually subject to cost caps
- And then there's Texas . . .

RPS in Texas

- Signed into law in 1999 by Gov. Bush as part of overall restructuring legislation.
 - Target from 850MW in 2000 to 2,850MW in 2009
 - Total capacity ~77MW (implies ~3.6% renewables)
- Electricity retailers responsible for holding proportional number of Renewable Energy Credits (RECs) each year.
- Enforcement lesser of $5\phi/kWh$ or mean value of REC.
- So far
 - Over ten wind farms for 930MW constructed
 - 12 new landfill gas plants (44MW) announced
 - 50MW hydro renovations announced
 - 2650MW of wind projects have applied for grid access.

Is the Answer to Effective Climate Change Mitigation Blowing in the Wind?

Joe DeCarolis Advisors: David Keith Alex Farrell

1

E	But Why Care About Wind?		
Technology	Cost	The Benefits	
	(¢ / kWh)	 Mature technology with 	
Wind	4-8	competitive capital costs.	
Biomass	6-8	Environmental benefits.	
Solar thermal	10-12	Renewable energy source.	
Photovoltaics	20-30	The Catch	
Coal	3-4	• Where, when, and how har	
	3-4	the wind blows determines	

When and How Hard Does the Wind Blow? Unpredictably and Intermittently.

- Wind speed is highly variable and difficult to predict more than an hour or two in advance.
- System operators forced to utilize spinning reserves and dispatchable capacity to complement periods of low wind power output.
- As wind capacity increases in size relative to the overall generation capability (>10%), the amplitude of power fluctuations from wind increase, making it difficult for system operators to maintain system stability.

6

Problem	Solution			
Remoteness	Long-distance transmission.			
Intermittency	 Long-distance transmission. Backup gas turbine capacity. Large-scale storage. 			

Parameters	Values	Units
Natural gas cost	3.5	\$ / GJ
GT capital cost	350	\$ / kW
GTCC capital cost	500	\$ / kW
Wind capital cost	700	\$ / kW
Transmission line cost ¹	530,000	\$ / mile
Transmission substation cost	100	\$ / kW
CAES capital cost ²	500	\$ / kW
GT Efficiency (HHV)	0.35	
GTCC Efficiency (HHV)	0.55	

