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Abstract 
Most current approaches to resource adequacy modeling assume that each generator in a 

power system fails and recovers independently of other generators with invariant 

transition probabilities. This assumption has been shown to be wrong. Here we present a 

new statistical model that allows generator failure models to incorporate correlated 

failures and recoveries. In the model, transition probabilities are a function of exogenous 

variables; as an example we use temperature and system load. Model parameters are 

estimated using 23 years of data for 1,845 generators in the USA’s largest electricity 

market. We show that temperature dependencies are statistically significant in all 

generator types, but are most pronounced for diesel and natural gas generators at low 

temperatures and nuclear generators at high temperatures. Our approach yields significant 

improvements in predictive performance compared to current practice, suggesting that 

explicit models of generator transitions using jointly experienced stressors can help grid 

planners more precisely manage their systems. 
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Symbols: 

A Available state of two-state Markov model 

AA Available-to-available transition 

AD Available-to-derated transition 

i Equals 1 if the ith observation used to fit the available model is AA, and 0 otherwise 

βA, βD Parameter vectors for the available and derated models, respectively 

D Derated state of two-state Markov model 

DA Derated-to-available transition 

DD Derated-to-derated transition 

i Equals 1 if the ith observation used to fit the derated model is DD, and 0 otherwise 

EFDH Equivalent forced derating hours, the sum of hours where the generator experiences a 

forced derating, reported in full-outage-equivalent hours 

EFOF Equivalent forced outage factor, a common availability statistic 

FOH Forced outage hours, the sum of hours where the generator experiences a forced outage 

ℒ(.) Likelihood function 

PH Period hours, total number of hours in the calculation period of interest 

Pi Probability of the generator remaining derated in the next hour when it is currently derated 

Qi Probability of the generator remaining available in the next hour when it is currently 

available 

Xi Vector of covariate observations 

 

 

Abbreviations and acronyms: 

C Celsius 

CC Combined cycle gas generator 

CT Simple cycle gas generator (combustion turbine) 

DS Diesel generator 

eGRID Emissions and Generation Resource Integrated Database 

GADS Generating Availability Data System 

GW Gigawatts 

HD Hydroelectric or pumped storage generator 

IEEE Institute of Electrical and Electronics Engineers 

NERC North American Electric Reliability Corporation, the electric reliability organization for the 

United States 

NU Nuclear generator 

PJM The PJM Interconnection, an independent system operator / regional transmission 

organization in the mid-Atlantic United States 

RAM Resource adequacy modeling 

ST Steam turbine generator (used equivalently as coal generator in PJM) 
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1. Introduction 
Grid planners procure enough electric power generation to meet predicted demand 

and reserve generation to cover the statistical chance that one or more generators will fail. 

The process of determining how much generation to procure is called resource adequacy 

modeling (RAM). It is well known that severe environmental conditions can lead to 

elevated failure probabilities for power system components [1–3]. Yet most current 

approaches to resource adequacy modeling are unable to account for these risks because 

they treat generators as homogeneous Markov models (i.e., having time-invariant 

transition probabilities) [1,4–8].*  

 

This assumption is inconsistent with results from recent empirical work using four 

years of Generating Availability Data System (GADS) data from the North American 

Electric Reliability Corporation (NERC) that demonstrated the existence of correlated 

failures in most NERC reliability regions [9]. The observation that generators fail 

simultaneously leaves open the question of how to model correlated failures and 

recoveries. Severe environmental conditions experienced by many generators 

simultaneously is one possible explanation of these results. 

 

Here we test this possibility with a time-varying (nonhomogeneous) Markov model 

fit using 23 years of data for 1,845 generators in the USA’s largest electricity market. The 

nonhomogeneous Markov model’s probabilities of transitioning, e.g. from fully available 

to partially or fully derated, depend on exogenous variables such as temperature and 

system load (the electric energy being used by customers). Many factors could affect 

transition probabilities. However, if failures (transitions from working to not working) 

depend on variables that are jointly experienced by many generators, such an approach 

could capture the observed correlated failures. Understanding the causes of correlated 

failures and recoveries can help in the procurement of reserves, payments for which 

amount to billions of dollars per year in the USA [10]. 

 

Markov models are widely used in power system reliability analyses. The traditional 

two-state model assumes generators are either fully available or fully unavailable [11,12]. 

Common generalizations allow additional states [13], different two-state models over a 

discrete set of environments: e.g. “normal weather” versus “adverse weather” [14–16], or 

generator “in demand” versus “not in demand” [17–19]. Particularly with respect to 

transmission and distribution system reliability, there has been significant scholarly 

attention to the effects of extreme weather and natural disasters [20–23]. Homogeneous 

Markov models are most commonly employed, which means that transition probabilities 

are constant [11,24,25]. To model correlated failures, a new state must be created for 

each combination of generators failing simultaneously [26–28]; the state space therefore 

grows geometrically as the number of generators increases. While this approach can be 

                                                 
* Standard RAM practice in the U.S. is as follows. First, the most recent five years of historical 

availability data are used to calculate an availability statistic for each generator. Second, the 

availability statistics are combined to calculate a distribution of available capacity for a future 

planning year for the power system. RAM assumes that the availability statistic corresponds to 

the generator’s probability of being unavailable due to an unscheduled failure in every hour of the 

planning year.  
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successfully used to model multiple generators in a power plant or a small number of 

transmission lines, the intractability of applying it to a fleet of generators in a large power 

system has led researchers to define states in terms of system capabilities or to merge 

states [6,29]. Computing transition probabilities that depend on variables such as 

temperature and load to capture correlated failures can require long time series of 

generator-level data; these data were not previously available.  

 

Using these generator-level data, we model each generator with only two states, but 

allow transition probabilities to depend on exogenous variables such as temperature. 

Similar approaches have been employed to study distribution and transmission system 

reliability [25,30–32], but to our knowledge none have been used to study correlated 

generator failures in a large power system. To conduct this analysis we create hourly time 

series of transitions for 1,845 generators in the eastern USA using 23 years of GADS data 

from the PJM Interconnection (PJM), the largest electric power market in the USA. For 

each generator, the two-state Markov model’s time-varying probabilities are modeled as 

functions of exogenous variables using logistic regression. We model transition 

probabilities as a function of temperature and system load, though the model can be 

extended to include additional covariates. Both temperature and load vary with time and 

are jointly experienced by many generators, thus transition probabilities in generators’ 

Markov chains can be correlated.  

2. Model 
We use logistic regression to model each generator’s transition probabilities as a 

function of covariates. We fit these models using the GLM library in R, with default 

initial values. While there are many binary classification algorithms, logistic regression is 

relatively insensitive to unbalanced data [33]. This is an important attribute for this 

analysis, as most generators fail infrequently. Unbalanced data makes accurately 

estimating transition probabilities more difficult [34]. 

 

We employ a two-state Markov model wherein each generator is treated as either 

fully available (subsequently referred to as available and abbreviated A) or at least 

partially unavailable (subsequently referred to as derated and abbreviated D). For each 

generator we separately model two pairs of transition probabilities: the probability of an 

available generator remaining available in the next hour versus becoming derated 

(failing), and the probability of a derated generator remaining derated in the next hour 

versus becoming available (recovering).  

 

As in [32], we allow transition probabilities to be a function of covariates. We 

consider temperature and load because they have time series dependence and affect 

multiple generators simultaneously. As a result, if they are found to have statistically 

significant associations with changes in transition probabilities, our model may be able to 

explain the correlated failures identified in [9]. If no covariates are statistically 

significant, this model reduces to the familiar homogeneous (time-invariant) Markov 

model of [12] (Fig. 1). Our modeling approach therefore allows us to relax the 

assumptions of unconditional independence and constant generator availability where 
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empirically warranted. It instead assumes that generator transitions are conditionally 

independent (after conditioning on relevant covariates) and allows generator availability 

to vary over time. 

 

 
Fig. 1: Homogeneous (left) and nonhomogeneous (right) two-state Markov models. A 

indicates the available state, D indicates the derated state. Q and Qi are the constant and 

time-varying probabilities of an AA transition, respectively. P and Pi are the constant and 

time-varying probabilities of a DD transition, respectively. 

 

 

We fit our models using maximum likelihood estimation (iteratively reweighted least 

squares). Consistency and asymptotic normality of our coefficient estimates flow from 

traditional maximum likelihood estimation theory, which holds in our setting because all 

covariates are bounded [35]. The estimation procedure is conducted on each generator, 

using its hourly series of Markov state transitions and covariate data, described below. If 

the transition probabilities were constant, this would be equivalent to determining the 

probability of a coin coming up heads. The likelihood functions are: 

 ℒ(βA) =  ∏ Qi(βA)αi ∗ (1 − Qi(βA))1−αi

count(A)

i=1

 (1) 

 ℒ(βD) =  ∏ Pi(βD)δi ∗ (1 − Pi(βD))1−δi

count(D)

i=1

 (2) 

where βA and βD are vectors of parameters for the available and derated models, 

respectively; Qi is the probability of the generator remaining available in the next hour 

when it is currently available; Pi is the probability of the generator remaining derated in 

the next hour when it is currently derated; count(A) is the number of observations used 

to fit the available model; count(D) is the number of observations used to fit the derated 

model; αi = 1 if the ith available observation is AA and 0 otherwise; δi = 1 if the ith 

derated observation is DD and 0 otherwise; and the sum of count(A) and count(D) 

equals the number of Markov state transitions in the reporting period for the generator. 

The available and derated models are fit separately for each generator (Fig. 2). A 

generator’s hourly states are independent and identically distributed conditional on the 
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covariate values; dependence in the covariate values leads to a richer time series structure 

for the generator’s observations. 

 
 

Fig. 2: Defining a generator’s time series of transitions and allocating them to the 

available and derated models. The generator’s hourly time series of unavailable capacity 

is first used to determine which Markov state the generator is in in each hour. The series 

of hour-over-hour state transitions is then determined. These observations, along with 

our covariates (illustrated as a single vector of hourly temperatures for clarity of 

presentation) are then allocated to the available and derated models. Any observation in 

which a generator begins in the A state is assigned to the available model, whereas any 

observation in which a generator begins in the D state is assigned to the derated model. 

Note that there are one fewer transitions than original observations, so the final 

covariate observation is not used.  

 

We allow Qi and Pi to be functions of covariates while still ensuring all transition 

probabilities are bounded by [0,1] by employing the logistic function:  

 Q𝑖(βA) =  1 (1 + exp(−βAX𝑖))⁄  (3) 

 P𝑖(βD) =  1 (1 + exp(−βDX𝑖))⁄  (4) 

where Xi is a vector of covariate observations in hour i, with as many elements as the 

number of constants and covariates in the model.  

 

We consider the following model specification for both available and derated models 

for each generator:  

 Indexi =  β1 ∗ constant_hoti + β2 ∗ constant_cooli + β3 ∗ degrees_hoti   
                   + β4 ∗ (degrees_hoti)

2 + β5 ∗ degrees_cooli 
                   + β6 ∗ (degrees_cooli)

2 + β7 ∗ system_loadi 
 

(5) 
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where βXi = Indexi (linking Equations 3-5), degrees_hoti = max(temperaturei −
18.3, 0), degrees_cooli = max(18.3 − temperaturei, 0), system_loadi is the load 

residual in hour i, constant_hoti = 1 if temperature_cooli = 0 (and 0 otherwise), 

constant_cooli = 1 if temperature_cooli > 0 (and 0 otherwise), and temperaturei is the 

temperature in hour i, reported in degrees Celsius.† This specification allows for an 

asymmetric response to hot and cold temperature. 

 

So that our model can better generalize to temperatures and loads not observed in the 

data, we employ stepwise regression (backward elimination) as described in Procedure 1, 

selecting a significance level of 0.05. To reduce bias, we then eliminate any generator 

having fewer than 10 DA or AD transitions per statistically significant model covariate 

[36].‡ 

 

 

2.1 Simulating unavailable capacity from nonhomogeneous Markov models 

Procedure 2 simulates time series of unavailable capacity for each generator according to 

the hourly failure and recovery probability distributions defined by the historical series of 

covariate values. Any hour that was ignored when fitting a generator’s available or 

derated model is set to zero in both the empirical and simulated series. In order to have a 

true out-of-sample test of model performance, we refit the models using only 1995-2015 

data (rather than 1995-2018) and retain just the 1,047 generators that have sufficient 

transitions over the shortened time series. This leaves 2016-2018 as test data. We carry 

out this procedure 5,000 times and generate pointwise median and 95% confidence 

intervals from the result, which we plot along with the empirical time series (Fig. 4). 

Given the data limitations discussed in Section 3.2.4, we repeat the process fitting only 

                                                 
† 18.3 degrees Celsius is approximately 65 degrees Fahrenheit. This corresponds to the 

demarcation point used to define heating degree days and cooling degree days in the USA by the 

National Oceanic and Atmospheric Administration [49]. It also corresponds to the flattest region 

of the temperature-load relationship in the PJM area found by [50]. 
‡ DA or AD is always the least-experienced transition. 

Procedure 1: Adaptive logistic regression model fitting 

For each generator, do: 

 For each model (i.e., available and derated), do: 

o Fit full model specification (Equation 5) 

o While model has one or more linearly dependent or statistically insignificant 

covariates, do: 

 If model has one or more linearly dependent covariates, remove one 

linearly dependent covariate and re-estimate model 

 Else, remove covariate with smallest t-value magnitude and re-

estimate model 

o Save final model 

Remove generators that do not have at least 10 AD and 10 DA transitions per final model 

parameter 
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on 2004-2015 data, again leaving 2016-2018 as test data (Supplementary materials Fig. 

B.1§). For reference, we report annual installed capacity values for these generators 

(Table A.1 and Table B.1). 

 

 

2.2 Simulating unavailable capacity from time-invariant (homogeneous) Markov 

models per current RAM practice 

We compute the equivalent forced outage factor (EFOF**), a common availability 

statistic, as follows [37]: 

 EFOF = (FOH + EFDH) PH⁄  (6) 

where FOH (forced outage hours) is the sum of hours where the generator experiences a 

forced outage, EFDH (equivalent forced derating hours) is the sum of hours where the 

generator experiences a forced derating, reported in full-outage-equivalent hours, and PH 

(period hours) is the total number of hours in the period of interest. In accord with current 

RAM practice, we define the period supporting each planning year as the preceding five 

calendar years. For consistency with the logistic regression results, we carry out the 

procedure for the 1,047 generators retained when fitting models on 1995-2015 data and 

                                                 
§ Appendix A (with figures and tables numbered A.1, A.2, etc.) and Appendix B (with figures and 

tables numbered B.1, B.2, etc.) may be found in the supplementary materials.  
** More commonly, the equivalent forced outage rate (EFOR) is used [37]. EFOR = (FOH +
EFDH) ⁄ (FOH + SH + Synch + Pump + EFDHRS), where SH (service hours) is the total 

number of hours the generator produces electricity, Synch is the number of hours the generator 

operates in synchronous condensing mode, Pump is the number of hours a pumped-storage 

hydroelectric generator operates in pumping mode, and EFDHRS (equivalent forced derating 

hours during reserve shutdown) is the number of hours the generator experiences a forced 

derating during a reserve shutdown event, reported in full-outage-equivalent hours [39]. 

However, using EFOF allows us to not worry about incomplete reporting of reserve shutdown 

events prior to 2004.  

Procedure 2: Simulating unavailable capacity from nonhomogeneous Markov models 

For each simulation, do: 

 For each generator, do: 

o Initialize the state of the generator to match its reported state during its first 

hour of data reporting 

o For each subsequent hour of the generator’s reporting period, do: 

 Use the current state of the generator and the current values of all 

model covariates to define the current transition probability distribution 

(AA/AD if currently available; DD/DA if currently derated) 

 Draw 0 or 1 using the probability distribution defined above, where 0 

indicates the generator is available and 1 indicates the generator is 

derated 

o Replace all 1s with the generator’s average unscheduled capacity reduction to 

yield a time series of unscheduled unavailable capacity 

o Zero out any unavailable capacity occurring during hours removed during 

model fitting 

 Sum over generators’ time series to obtain one simulated system-level time series 

Compute desired quantiles from simulation results (e.g. 2.5%, 50%, 97.5%) and save 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-18-02               www.cmu.edu/electricity 

 10 

we ignore contributions to FOH and EFDH that occur during any hour removed during 

model fitting. 

 

Procedure 3: Simulating unavailable capacity from homogeneous Markov models 

Define duration of data period supporting each planning year (e.g. 5 years) 

For each simulation, do: 

 For each planning year (e.g. 2000-2018), do: 

o For each generator, do: 

 If the generator was active during period supporting planning year 

and does not retire prior to planning year, do: 

 Compute EFOF (Equation 6) using all of generator’s data 

supporting current planning year, except for hours removed 

during model fitting 

 For each hour in planning year, draw a 1 with probability 

equal to generator’s EFOF and 0 otherwise, where 0 indicates 

the generator is available and 1 indicates the generator is 

unavailable 

 Replace all 1s with the generator’s nameplate capacity  

o Sum over generators’ time series to get one simulated system-level series for 

current planning year 

Compute desired quantiles from simulation results (e.g. 2.5%, 50%, 97.5%) and save 
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2.3 Characterizing unavailable capacity as a function of temperature 

 

 
 

3. Data 

3.1 GADS data description 

The GADS database records availability and design information for all generators 

serving the PJM control area, with the exception of wind, solar, and behind-the-meter 

generation. Reporting to GADS is mandatory, regardless of generator size [38]. We work 

primarily with the Events, Units, and Performance tables. The Events table reports any 

event affecting the ability of a generator to produce electricity, as well as other event 

types defined by the Institute of Electrical and Electronics Engineers (IEEE) Standard 

762 [37]. The Units table reports design details of each generator, such as generator type 

and nameplate capacity.†† The Performance table reports monthly summary statistics of 

each generator’s operating and non-operating time. We analyze data from January 1, 

1995 (database inception) through March 31, 2018. Over this period 1,845 generators 

representing 267 gigawatts (GW) of capacity have reported to GADS. 

3.2 GADS data processing 

3.2.1 Obtaining time series of availability state transitions  

PJM’s GADS database is virtually identical to that of NERC (albeit covering many 

more years), thus we prepare it for analysis as described in [9]. We calculate the 

                                                 
†† The generator types include combined cycle gas (abbreviated as CC in figures and tables), 

simple cycle gas (CT), diesel (DS), hydroelectric and pumped storage (HD), nuclear (NU), and 

steam turbine (ST). In 2017, the vast majority (95%) of ST generation in PJM was from coal, thus 

we use the two terms interchangeably [48]. 

Procedure 4: Characterizing unavailable capacity as a function of temperature 

For each desired quantile of load (e.g. 50th, 90th), do: 

 For each desired temperature value (e.g. spanning the range of temperatures 

experienced by the fleet, in 5-degree intervals), do: 

o Fix the value of temperature 

o Fix the value of load at the current load quantile, calculated on observations in 

the “neighborhood” of the current temperature value (e.g. within +/-10 

degrees) 

o For each generator, do: 

 Compute predicted transition probabilities using generator’s available 

and derated model and current temperature and load values 

 Define transition probability matrix as the transpose of Fig. 1 

 Normalize the first eigenvector of the eigendecomposition of the 

transition probability matrix to obtain the proportion of the time the 

generator is unavailable in expectation 

 Multiply result by generator’s nameplate capacity and its average 

unscheduled capacity reduction to obtain expected unavailable 

capacity 

o Sum expected unavailable capacity values over generators and save 
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3.2.3 Calculating the average derating magnitude for each generator 

Because derating magnitudes can take any value up to a generator’s nameplate 

capacity, but our model allows only one derated state, we calculate the average failure 

magnitude for each generator (Fig. A.1). We calculate this as a duration-weighted 

average of all unscheduled events experienced by the generator, excluding any hour 

removed when fitting either the available or derated model. The average and median 

failure magnitudes are 78% and 96% of nameplate capacity, respectively.  

3.2.4 A note on reserve shutdown events 

Reserve shutdown events are used to indicate when a generator is offline for 

economic reasons but is capable of coming online within its normal startup time if 

needed. With the exception of hydroelectric and pumped storage generators without 

automatic reporting equipment, all conventional generators participating in the PJM 

market became obligated to report reserve shutdown events to GADS in January 2004, 

nine years after the beginning of our data. 

 

When a reserve shutdown event is underway, a generator should neither be in service 

nor have repair work conducted. If one assumes that the incidence of a failure while a 

generator is not operating and not being repaired is much lower than when operating or 

when being repaired, reserve shutdown hours should also be excluded from both 

available and derated model fits. However, given that most generators fail infrequently 

and that we require a minimum of 10 AD and DA transitions per statistically significant 

covariate to keep a generator in our analysis, eliminating the first nine years of data 

results in significantly fewer generators retained, particularly for CTs. 

 

As a result, we fit our models twice: first using the full data period (1995-2018) 

ignoring reserve shutdown events, and second restricting to 2004-2018 and removing 

reserve shutdown hours from both available and derated model fits. Results based upon 

the former are presented in the main text and in Appendix A, while results based upon the 

latter are included in Appendix B. In general, we find reasonable agreement between the 

two sets of results. 

3.3 Geographic, weather, and load data processing 

3.3.1 Geocoding generators 

To determine the location of each generator, we match the GADS data to the 

Emissions and Generation Resource Integrated Database (eGRID), maintained by the 

USA Environmental Protection Agency [40–43]. This task was completed using a 

combination of automated and manual matching using generator names and other 

descriptive fields. We manually confirm each automated match and then associate the 

eGRID latitude/longitude data with the generator.  

3.3.2 Weather station data 

We obtain temperature data from the Global Surface Hourly database, maintained by 

the USA National Oceanic and Atmospheric Administration [44]. We include all weather 

stations active for the full study period in any state containing or adjacent to any 

generator. We process these data into hourly time series for each weather station by first 

rounding observations to the nearest hour and then removing observations with duplicate 
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time stamps. We discard any weather station missing more than 100 sequential 

observations or more than 5,000 total observations over the 23 years, with three 

exceptions to increase coverage in Pennsylvania.‡‡ We then fill missing observations by 

propagating forward the most recent non-missing observation.§§ Finally, we link each 

generator to its nearest weather station meeting our data criteria. We map the retained 

generators and matched weather stations (Fig. 3 and Fig. B.2).  

 

 
Fig. 3: Locations of 1,111 retained generators and linked weather stations, overlaid on 

corresponding USA states (1995-2018 model fits). Only generators with at least 10 

failure and recovery transitions per statistically significant model parameter are 

retained. All generators in multi-generator power plants have identical locations. Large 

black squares indicate weather stations. A small number of retained generators are not 

shown for presentation considerations: Alabama (3), Louisiana (5), Michigan (23), 

Mississippi (3), South Carolina (1), Texas (8). 

 

                                                 
‡‡ These three stations had 268, 65, and 103 sequential missing observations and 2937, 8962, and 

1370 total missing observations. 
§§ We initially filled missing observations by propagating forward the most recent non-missing 

observation at the same hour of the day, but discovered that several weather stations were 

systematically missing observations at particular times of the day over long durations.  
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3.3.3 Load data 

Finally we obtain hourly metered load data by PJM transmission zone for the full 

study period. We sum over all zones that have been part of the control area since January 

1995 to develop an hourly load series for the system.*** To account for non-stationarities 

in that series, we regress the load data on a constant, a linear time trend, and a quadratic 

time trend. The residuals from this linear regression are used as the load signal 

experienced by each generator. We plot the load time series with regression trend and 

residuals (Fig. A.2 and Fig. B.3). 

3.4 Model significance summaries 

When fitting models on the full dataset, we retain 1,111 of 1,845 generators, 

representing 78% of the capacity that has ever reported to GADS (Fig. A.3); when 

restricting to 2004-2018, we retain 748 generators representing 67% of capacity (Fig. 

B.4). While failures and recoveries for the remaining generators may indeed be 

influenced by temperature and/or load, they have so few transitions that we would not 

have confidence in the fitted models. We summarize the count and capacity of these 

generators (Table A.2 and Table B.2).  

 

We summarize marginal statistical significance of the covariates by plotting 

parameter t-values by generator type (Figs. A.4-A.5 and Figs. B.5-B.6) and reporting the 

number of times each model term is statistically significant at the 95% level by generator 

type (Tables 1-2 and Tables B.3-B.4). We include corresponding summaries of model 

coefficients (Figs. A.6-A.7 and Figs. B.7-B.8).  

 

Generator 

type 

Generator 

count 

Mean 

hot 

Mean 

cool 

Temp 

hot 

Temp 

hot2 

Temp 

cool 

Temp 

cool2 

Load 

CC 148 148 148 25 26 75 115 41 

CT 274 274 274 59 53 110 203 228 

DS 132 131 132 32 30 59 29 104 

HD 125 125 125 16 14 22 35 43 

NU 35 35 35 10 10 9 7 15 

ST 397 397 397 70 61 103 134 285 

All 1,111 1,110 1,111 212 194 378 523 716 

Table 1: Number of times each model term is statistically significant at the 95% level for 

the available model (1995-2018 model fits). Only generators with at least 10 failure and 

recovery transitions per statistically significant model parameter are retained. CC is 

combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped 

storage, NU is nuclear, ST is steam turbine. 

 

Generator 

type 

Generator 

count 

Mean 

hot 

Mean 

cool 

Temp 

hot 

Temp 

hot2 

Temp 

cool 

Temp 

cool2 

Load 

CC 148 147 148 38 35 61 52 100 

                                                 
*** We include: Allegheny Power, Atlantic City Electric Company, Baltimore Gas and Electric 

Company, Delmarva Power and Light Company, Jersey Central Power and Light Company, 

Metropolitan Edison Company, PPL Electric Utilities Corporation, Pennsylvania Electric 

Company, Philadelphia Electric Company, Potomac Electric Power Company, and UGI. 
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CT 274 270 272 65 54 104 124 242 

DS 132 131 130 40 31 56 67 113 

HD 125 124 124 24 16 39 41 93 

NU 35 35 35 13 11 12 6 10 

ST 397 397 397 73 79 125 101 192 

All 1,111 1,104 1,106 253 226 397 391 750 

Table 2: Number of times each model term is statistically significant at the 95% level for 

the derated model (1995-2018 model fits). Only generators with at least 10 failure and 

recovery transitions per statistically significant model parameter are retained. CC is 

combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped 

storage, NU is nuclear, ST is steam turbine. 

 

When fitting on the full dataset, linear and quadratic hot-temperature variables are 

statistically significant for 19% and 17% of generators’ available models; linear and 

quadratic cold-temperature variables are statistically significant for 34% and 47% of 

generators’ available models; and load is statistically significant for 64% of generators’ 

available models. For the derated model, linear and quadratic hot-temperature variables 

are statistically significant for 23% and 20% of generators; linear and quadratic cold-

temperature variables are statistically significant for 36% and 35% of generators; and 

load is statistically significant for 68% of generators. 

 

We summarize the joint statistical significance of model covariates by creating 

scatterplots of parameter t-values between all non-orthogonal covariate pairs, excluding 

constants (Figs. A.8-A.9 and Figs. B.9-B.10).††† We observe systematic joint statistical 

significance between linear and quadratic temperature parameters in both sets of models, 

suggesting true temperature dependence rather than individual temperature parameters 

being significant by random chance. We include corresponding bivariate summaries of 

model coefficients (Figs. A.10-A.11 and Figs. B.11-B.12). 

 

We report the number of statistically significant parameters for each generator (Table 

A.3 and Table B.5). We report similar information when restricting attention to linear and 

quadratic temperature parameters (Table A.4 and Table B.6). When fitting on the full 

dataset, 69% of generators have at least one statistically significant temperature covariate 

for the available model; 67% do for the derated model. These results demonstrate that 

temperature and load can have independent effects on transition probabilities. Finally, we 

compactly summarize variation in model predictions over the experienced covariate 

observations for each generator (Supplementary materials Fig. A.12 and Fig. B.13). 

4. Results 
In the previous section, we demonstrate that temperature and load can predict state 

transitions at the generator level. We use Monte Carlo simulation to demonstrate that the 

models can also predict correlated failures (Procedure 2). Even with our simple model 

specification using only temperature and load as covariates, we find that the median 

simulation generally tracks the empirical time series quite well (Fig. 4 and Fig B.1). The 

                                                 
††† Recall that hot-temperature covariates are defined orthogonal to cool-temperature covariates. 
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correlation between weekly average median simulation values and weekly average 

empirical values is 0.47 and 0.67 over the training and testing periods, respectively, for 

the 1995-2015 model fits and 0.47 and 0.69 during training and testing periods for the 

2004-2015 fits. The motivation for fitting models using two different time periods is 

explained in the previous section. 

 

Furthermore, it is rare for an empirical event to exceed the upper confidence band of 

our model. The largest instances of under-prediction by our model occurred during two 

known events in which significant generator outages were due to causes not included as 

covariates: the 2014 Polar Vortex (due to fuel unavailability events, which increase non-

linearly in cold weather) and Hurricane Sandy (an extreme weather event but not with 

regard to temperature). While many other factors may contribute to generator failures and 

recoveries [45–47], these results demonstrate that temperature and load are strongly 

correlated with system-level unavailable capacity dynamics.  

 

 
 
Fig.4: Simulated time series from logistic regression model (1995-2015 model fits). Results 

presented for 1,047 generators with at least 10 failure and recovery transitions per statistically 

significant model parameter when fitting on 1995-2015; 2016-2018 used as test of model 

performance. The split between training and testing periods is denoted with a dashed vertical 

line. Presented for 2000-2018 for consistency with Fig. 5. Weekly averages rather than hourly 

series. 5000 simulations conducted. Refer to Table A.1 for installed capacity by calendar year. 

Black trace is the empirical time series; blue trace is the concatenation of pointwise median 

simulation values; red traces are the concatenation of pointwise 2.5% and 97.5% simulation 

values.  

 

We next compare the performance of our model to that of current RAM practice. This 

entails computing an availability statistic for each generator in each planning year 

(Equation 6), and then using those statistics in Monte Carlo simulations (Procedure 3).  

 

We plot the pointwise median and 95% confidence intervals from 5,000 simulations 

of the current RAM practice (Fig. 5). As anticipated, the current practice approach does 
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not capture correlated failures because the distribution of unavailable capacity is the same 

in every hour of a given planning year. The correlation between weekly average median 

simulation values and weekly average empirical values is 0.15 over 18 years and 0.11 

during the testing period.‡‡‡ In addition, the pointwise 95% confidence intervals are wider 

than those for our model, averaging 5% of installed capacity over 18 years compared to 

3.1% of installed capacity for the logistic regression model.  

 

Comparing the two figures, we observe that the homogeneous Markov model 

simulating current RAM practice would both under-procure reserve generation for ~10 

events and over-procure reserves most of the time. That the nonhomogeneous model 

tracks observed failure dynamics substantially better than the current practice model 

suggests its potential utility both for improving the accuracy of RAM and for predicting 

correlated failures over time horizons relevant to procurement of operating reserves.  

 
 
Fig. 5: Simulated time series from current practice model (1995-2015 model fits). Results 

presented for the same set of 1,047 generators as in Fig. 4. Time series restricted to 2000-2018 

because five years of data are used to calculate the availability statistic (Equation 6). Traces are 

flat within each calendar year because current practice model assumes failure probabilities are 

constant in each hour of a given year. Small discontinuities at year boundaries are due to weekly 

averaging not respecting calendar year boundaries, in conjunction with capacity additions and 

retirements occurring at the start of the year. Weekly averages rather than hourly series. 5000 

simulations conducted. Refer to Table A.1 for installed capacity by calendar year. Black trace is 

the empirical time series; blue trace is the concatenation of pointwise median simulation values; 

red traces are the concatenation of pointwise 2.5% and 97.5% simulation values. 

4.1 Resource adequacy risk as a function of temperature and load 
We next examine resource adequacy risks for the fleet of generators in PJM. For 

fixed values of temperature and load, each generator’s available and derated models 

imply a stationary distribution over the available and derated states. We make use of this 

                                                 
‡‡‡ Note that the predictions of the current practice model are always out of sample, in contrast 

with those of the logistic regression model prior to 2016.  
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fact to determine the proportion of the time each generator is unavailable in expectation. 

By calculating this result over a range of temperature values, we determine expected 

unavailable capacity as a function of temperature for the modeled fleet (Procedure 4). We 

determine the analogous result under current modeling practice by first computing an 

unconditional transition probability matrix for each generator using all available years of 

data and then following the remainder of the inner loop of Procedure 4. We present 

results by generator type (Fig. 6 and Fig. B.14) and report the prevalence of temperatures 

experienced by the fleet of modeled generators (Fig. A.13 and Fig. B.15).  

 

With the exception of nuclear, all generator types perform worse in very cold weather 

than recognized under current modeling practice. This result is consistent with analysis 

conducted by PJM [2]. Poor cold-weather performance is particularly pronounced for gas 

and diesel generators. In addition, all generator types perform worse in very hot weather 

than recognized under current practice. Because loads are high at both temperature 

extremes, the resource adequacy risk implied by these performance penalties is 

compounded: less generation capacity is available when demand is greatest. In power 

systems with organized forward-capacity markets, these temperature-dependent 

performance penalties could be used to improve capacity payments. Rather than use a 

generator’s unconditional forced outage rate to determine capacity payments [48], 

thereby penalizing the generator for its average unavailability, the grid planner could 

calculate a conditional forced outage rate during relevant extreme weather conditions that 

represent increased resource adequacy risk. 

 

Finally, we repeat the preceding analysis switching the role of temperature and load 

in order to visualize resource adequacy risk as a function of load. Because the 

relationship between load and unavailable capacity could be different at high and low 

temperatures, we generate two sets of results: one for observations where the temperature 

is below 18.3 degrees, and one for observations where temperature is above 18.3 degrees. 

With these modifications, we repeat Procedure 4. We again present results by generator 

type (Figs. A.14-A.15 and Figs. B.16-B.17).  

 

In Fig. A.14, at median temperature values, only coal generators at very high loads 

show noticeable divergence from the unconditional level of unavailable capacity. When 

considering low-percentile temperatures, gas and diesel generators also exhibit 

divergence from the unconditional result at higher loads. Nuclear generators show no 

load response for cold-temperature observations, regardless of load level or temperature 

quantile, consistent with Fig. 6. In Fig. A.15, coal and nuclear generators diverge from 

their respective unconditional levels of unavailable capacity at high loads regardless of 

temperature percentile considered. Diesel generators show some divergence at very low 

loads.  
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Fig. 6: Expected levels of unavailable capacity as a function of temperature under logistic 

regression (dots) and current practice (dashed horizontal line) (1995-2018 model fits). Black dots 

calculated using median load from temperature neighborhood, red dots calculated using 90th 

percentile load from temperature neighborhood. Temperature neighborhood is defined as +/- 10 

degrees. Not all generators experience full temperature range; see Fig. A.13 for prevalence of 

temperatures. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and 

pumped storage, NU is nuclear, ST is steam turbine. 
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5. Discussion 
We have presented a model of how correlated failures previously identified in the 

North American power system [9] can occur. Our approach is a novel, computationally 

tractable generalization of the traditional two-state Markov model widely used in power 

system reliability analyses [12]. We demonstrate a simple specification in which 

transition probabilities between the available and derated states are modeled as a function 

of temperature and load, but we note that any desired covariates could be employed.  

 

We fit these models using logistic regression with 23 years of availability data for 

1,845 generators serving the PJM regional transmission organization. To reduce bias, we 

discard any generator with fewer than 10 failure or recovery events per statistically 

significant covariate. We retain 78% of the generation capacity that has ever reported to 

PJM GADS. We find that temperature and load can predict generator transitions: 

temperature and load are each statistically significant for two-thirds of the retained 

generators.  

 

We demonstrate that our model specification captures most of the correlated failures 

observed in PJM since 2000 and that it significantly outperforms the homogeneous 

Markov model underlying current resource adequacy modeling practice. The correlation 

of our median simulation with the observed series of unavailable capacity at the weekly 

level is 0.47 over 18 years, whereas that of the median simulation from current practice is 

0.15. Our model also has narrower confidence intervals, averaging 3.1% of installed 

capacity compared to 5% for current practice. 

 

We demonstrate that all generator types are susceptible to extreme temperatures. With 

the exception of nuclear generators, which have reduced availability during only hot 

weather, all generator types have reduced availability at both temperature extremes. The 

cold-weather penalty for gas and diesel generators is particularly pronounced, as is the 

hot-weather penalty for nuclear generators. These availability penalties, which represent 

temperature-dependent forced outage rates, could be used to determine capacity 

payments that better incentivize generators to be available during key times of grid stress. 

Finally, we demonstrate that nuclear and coal generators experience an availability 

penalty at high loads; for nuclear generators this penalty is present only in conjunction 

with high temperatures. These risks are not captured in current approaches to resource 

adequacy modeling.  

 

Taken together, our results demonstrate that there are systematic relationships 

between temperature, load, and generator availability. Accounting for these relationships, 

as we have done here, is likely to enable more accurate determination of power system 

reserve capacity requirements. In particular, given that peak loads typically coincide with 

either very low or very high temperatures, the relationships we have identified suggest 

that current RAM practice may be underestimating power system reserve capacity 

requirements. Future work should examine the specific causes of the temperature 

dependence of generator availability and what improvements in reserves procurement can 

be achieved now that correlated failures can be successfully modeled.  
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Appendix A: Figures and tables for 1995-2018 model fits

Year CC CT DS HD NU ST All

2000 4.2 7.1 0.1 3.3 19.5 69.2 103.5
2001 5.2 8.0 0.1 6.4 32.7 79.4 131.8
2002 6.3 9.8 0.1 6.4 32.7 80.4 135.7
2003 9.1 10.2 0.1 6.5 32.7 83.0 141.5
2004 15.6 11.1 0.1 7.2 34.9 83.8 152.9
2005 20.3 12.9 0.1 6.3 36.3 96.5 172.4
2006 21.2 12.9 0.2 5.9 36.3 96.6 173.1
2007 23.1 13.2 0.2 5.9 36.3 103.8 182.5
2008 24.9 13.4 0.3 6.0 36.3 103.3 184.1
2009 26.0 13.5 0.3 6.0 36.3 102.9 184.9
2010 25.8 13.6 0.3 6.0 36.3 103.1 185.1
2011 25.8 13.6 0.3 6.1 36.3 103.0 185.1
2012 28.1 13.3 0.4 6.1 36.3 95.7 179.8
2013 28.3 13.6 0.4 6.1 36.3 95.7 180.3
2014 29.1 13.0 0.4 6.1 36.3 94.0 178.9
2015 29.1 11.4 0.4 6.1 36.3 86.2 169.5
2016 29.1 10.9 0.4 6.1 36.3 85.2 167.9
2017 28.5 10.8 0.4 6.1 36.3 83.1 165.0
2018 28.5 10.8 0.4 6.1 36.3 82.9 164.9

Table A.1: Installed capacity (GW) of 1,047 retained generators by year and generator type
(1995-2015 model fits). For use in conjunction with Figure 4 and Figure 5. CC is combined cycle, CT
is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.
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Figure A.1: Histogram of average generator failure magnitudes. Calculated for the 1,748 generators
with at least one full calendar year of data reporting and at least one unscheduled transition during 1995-
2018. Values calculated as a duration-weighted average of the magnitudes all unscheduled events experienced
by the generator, excluding any hour removed when fitting either the available or derated model.
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Figure A.2: Metered load time series (1995-2018 model fits). Left: hourly time series of metered
system load for PJM transmission zones that have been part of PJM since database inception, with time
trend (red curve) as described in Section 3.3.3. Right: residuals from fitting time trend to the original series.
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Figure A.3: Histogram of the count of least frequently experienced transition by generator
(1995-2018 model fits). The 1,748 generators with at least one full calendar year of data reporting and
at least one unscheduled transition during 1995-2018 are plotted in light gray. Of these, the 1,111 generators
with at least 10 failure and recovery transitions per statistically significant parameter are then overplotted
in dark gray. Above 70 such transitions the full model specification (Equation 5) can be supported, so no
generators in corresponding bins are discarded. Note the log scale on the abscissa.

Generator type Total count Retained count (%) Total capacity Retained capacity (%)

CC 224 148 (66) 53.4 33.5 (63)
CT 663 274 (41) 44.9 16.5 (37)
DS 236 132 (56) 0.8 0.5 (58)
HD 244 125 (51) 11.0 8.3 (75)
NU 35 35 (100) 37.2 37.2 (100)
ST 443 397 (90) 119.5 113.1 (95)

All 1,845 1,111 (60) 266.8 209.0 (78)

Table A.2: Summary of total and retained generator counts and capacity, by generator type
(1995-2018 model fits). Only generators with at least 10 failure and recovery transitions per statistically
significant model parameter are retained. Capacity reported in GW. CC is combined cycle, CT is simple
cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.
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Figure A.4: Summarizing t-values for the available model by covariate and generator type
(1995-2018 model fits). Only generators for which the covariate is statistically significant at the 0.05
level are included. Thresholds for significance (+/-1.96) indicated by dashed vertical lines. Constants are
excluded. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage,
NU is nuclear, ST is steam turbine.
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Figure A.5: Summarizing t-values for the derated model by covariate and generator type
(1995-2018 model fits). Only generators for which the covariate is statistically significant at the 0.05
level are included. Thresholds for significance (+/-1.96) indicated by dashed vertical lines. Constants are
excluded. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage,
NU is nuclear, ST is steam turbine.
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Figure A.6: Summarizing coefficients for the available model by covariate and generator type
(1995-2018 model fits). Only generators for which the covariate is statistically significant at the 0.05
level are included. Dashed vertical lines indicate 0. Constants are excluded. Temperature units are degrees
Celsius. Load units are GW. Abscissa scales set independently. CC is combined cycle, CT is simple cycle,
DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.
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Figure A.7: Summarizing coefficients for the derated model by covariate and generator type
(1995-2018 model fits). Only generators for which the covariate is statistically significant at the 0.05
level are included. Dashed vertical lines indicate 0. Constants are excluded. Temperature units are degrees
Celsius. Load units are GW. Abscissa scales set independently. CC is combined cycle, CT is simple cycle,
DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.
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Figure A.8: Summarizing t-value relationships for non-orthogonal covariate pairs for the
available model (1995-2018 model fits). Thresholds for significance at 0.05 level (+/-1.96) indicated
by dashed red lines. To be included in a plot in this figure, both relevant covariates must be present in the
final available model. Black is combined cycle gas (CC), red is simple cycle gas (CT), green is diesel (DS),
blue is hydroelectric (HD), cyan is nuclear (NU), magenta is steam turbine (ST).
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Figure A.9: Summarizing t-value relationships for non-orthogonal covariate pairs for the
derated model (1995-2018 model fits). Thresholds for significance at 0.05 level (+/- 1.96) indicated by
dashed red lines. To be included in a plot in this figure, both relevant covariates must be present in the final
derated model. Black is combined cycle gas (CC), red is simple cycle gas (CT), green is diesel (DS), blue is
hydroelectric (HD), cyan is nuclear (NU), magenta is steam turbine (ST).
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Figure A.10: Summarizing coefficient relationships for non-orthogonal covariate pairs for the
available model (1995-2018 model fits). To be included in a plot in this figure, both relevant covariates
must be present in the final available model. Black is combined cycle gas (CC), red is simple cycle gas
(CT), green is diesel (DS), blue is hydroelectric (HD), cyan is nuclear (NU), magenta is steam turbine (ST).
Dashed lines indicate 0. Temperature units are degrees C. Load units are GW. Axis scales set independently
in each plot.
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Figure A.11: Summarizing coefficient relationships for non-orthogonal covariate pairs for the
derated model (1995-2018 model fits). To be included in a plot in this figure, both relevant covariates
must be present in the final derated model. Black is combined cycle gas (CC), red is simple cycle gas (CT),
green is diesel (DS), blue is hydroelectric (HD), cyan is nuclear (NU), magenta is steam turbine (ST). Dashed
lines indicate 0. Temperature units are degrees C. Load units are GW. Axis scales set independently in each
plot.
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Model 0 1 2 3 4 5 6 7

Available 0 1 125 338 338 236 64 9
Derated 0 2 130 366 294 235 72 12

Table A.3: Number of statistically significant parameters (including constants) for the 1,111
generators with at least 10 instances of the less-common transition per parameter in both
available and derated models (1995-2018 model fits).

Model 0 1 2 3 4

Available 346 341 323 84 17
Derated 365 351 288 88 19

Table A.4: Number of statistically significant temperature parameters (excluding constants)
for the 1,111 generators with at least 10 instances of the less-common transition per parameter
in both available and derated models (1995-2018 model fits).
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Figure A.12: Summarizing the empirical range of hourly transition probabilities (1995-2018
model fits). Plots include 1,111 generators with at least 10 failure and recovery events per statistically
significant model parameter. Each generator is represented as a vertical line at an integer index (1 to 1,111).
In each plot, generators are sorted by generator type and maximum experienced transition probability. Black
is combined cycle gas (CC), red is simple cycle gas (CT), green is diesel (DS), blue is hydroelectric (HD),
cyan is nuclear (NU), magenta is steam turbine (ST).
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Figure A.13: Prevalence of temperatures experienced by 1,111 modeled generators by generator
type (1995-2018 model fits). For use in conjunction with Figure 6. Note the log scale on the ordinate.
CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is
nuclear, ST is steam turbine.

Figure A.14: Expected levels of unavailable capacity as a function of load under logistic re-
gression (dots) and current practice (dashed horizontal line) when restricting to temperatures
below 18.3 degrees Celsius (1995-2018 model fits). Black dots computed at median temperature from
load neighborhood; blue and red dots correspond to 10th and 90th percentile temperatures from load neighbor-
hood, respectively. Load neighborhood defined analogously to temperature neighborhood of Figure 6. Current
practice dashed line matches that of Figure 6. Plot domain defined using only observations below 18.3 de-
grees. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU
is nuclear, ST is steam turbine.
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Figure A.15: Expected levels of unavailable capacity as a function of load under logistic re-
gression (dots) and current practice (dashed horizontal line) when restricting to temperatures
above 18.3 degrees Celsius (1995-2018 model fits). Black dots computed at median temperature from
load neighborhood; blue and red dots correspond to 10th and 90th percentile temperatures from load neighbor-
hood, respectively. Load neighborhood defined analogously to temperature neighborhood of Figure 6. Current
practice dashed line matches that of Figure 6. Plot domain defined using only observations above 18.3 de-
grees. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU
is nuclear, ST is steam turbine.
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Appendix B: Figures and tables for 2004-2018 model fits

As discussed in Section 3.2.4 of the main text, there was incomplete reporting of reserve shut-
down (RS) events to PJM GADS prior to 2004. RS events are used to indicate when a generator
is offline for economic reasons rather than due to a failure event. If one assumes that the incidence
of a failure while a generator is not operating and not being repaired is much lower than when
operating or when being repaired, reserve shutdown hours should be excluded from both available
and derated model fits. However, given that most generators fail infrequently and that we require
a minimum of 10 AD and DA transitions per statistically significant covariate to keep a generator
in our analysis, eliminating the first nine years of data results in significantly fewer generators
retained. As a result, we fit our models twice: once using the full data reporting period for all
generators (results presented in the main text and in Appendix A) and once discarding all data
prior to 2004 (results presented here).

Figure B.1: Simulated time series from logistic regression model (2004-2015 model fits). Re-
sults presented for 703 generators with sufficient state transitions to support their available and derated
models when fitting on 2004-2015; 2016-2018 used as test of model performance. The split between training
and testing periods is denoted with a dashed vertical line. Weekly averages rather than hourly series. 5000
simulations conducted. Refer to Table B.1 for installed capacity by calendar year. Black trace is the em-
pirical time series; blue trace is the concatenation of pointwise median simulation values; red traces are the
concatenation of pointwise 2.5% and 97.5% simulation values.
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Year CC CT DS HD NU ST All

2004 14.8 1.6 0.1 2.9 31.8 79.3 130.5
2005 19.5 1.6 0.1 3.0 33.2 92.1 149.4
2006 20.4 1.6 0.1 3.0 33.2 92.3 150.5
2007 21.9 1.6 0.1 3.0 33.2 99.4 159.2
2008 23.1 1.6 0.1 3.0 33.2 98.8 159.9
2009 23.5 1.6 0.2 3.0 33.2 98.4 159.9
2010 23.3 1.8 0.2 3.0 33.2 98.7 160.1
2011 23.2 1.8 0.2 3.1 33.2 98.6 159.9
2012 25.1 1.8 0.2 3.1 33.2 92.6 155.9
2013 25.4 1.8 0.3 3.1 33.2 92.6 156.2
2014 25.4 1.8 0.3 3.1 33.2 91.0 154.6
2015 25.3 1.3 0.3 3.1 33.2 83.2 146.4
2016 25.3 1.3 0.3 3.1 33.2 82.2 145.4
2017 25.1 1.3 0.3 3.1 33.2 80.2 143.0
2018 25.1 1.3 0.3 3.1 33.2 80.2 143.0

Table B.1: Installed capacity (GW) of 703 retained generators by year and generator type
(2004-2015 model fits). For use in conjunction with Figure B.1. CC is combined cycle, CT is simple
cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.
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Figure B.2: Locations of 748 generators and linked weather stations, overlaid on corresponding
U.S. states (2004-2018 model fits). Only generators with 10 transitions per statistically significant model
parameter when fitting models using 2004-2018 data are retained. Note that all generators in multi-generator
power plants have identical locations. Large black squares indicate weather stations. A small number of
retained generators are not shown for presentation considerations: Alabama (2), Louisiana (3), Michigan
(12), Mississippi (3), South Carolina (1), Texas (7).
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Figure B.3: Metered load time series (2004-2018 model fits). Left: hourly time series of metered
system load for PJM transmission zones that have been part of PJM since database inception, with time
trend (red curve) as described in Section 3.3.3. Right: residuals from fitting time trend to the original series.
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Figure B.4: Histogram of the count of least frequently experienced transition by generator
(2004-2018 model fits). The 1,748 generators with at least one full calendar year of data reporting and
at least one unscheduled transition during 1995-2018 are plotted in light gray (consistent with Figure A.3).
Of these, the 748 generators with at least 10 failure and recovery transitions per statistically significant
parameter during 2004-2018 are then overplotted in dark gray. In contrast to Figure A.3, not all generators
with at least 70 failure and recovery transitions are retained due to the more restrictive time period. Note
the log scale on the abscissa.

Generator type Total count Retained count (%) Total capacity Retained capacity (%)

CC 224 126 (56) 53.4 31.2 (58)
CT 663 44 (7) 44.9 1.9 (4)
DS 236 120 (51) 0.8 0.4 (46)
HD 244 68 (28) 11.0 4.2 (38)
NU 35 32 (91) 37.2 34.2 (92)
ST 443 358 (81) 119.5 106.4 (89)

All 1,845 748 (41) 266.8 178.3 (67)

Table B.2: Summary of total and retained generator counts and capacity, by generator type
(2004-2018 model fits). Only generators with at least 10 failure and recovery transitions per statistically
significant model parameter are retained. Capacity reported in GW. CC is combined cycle, CT is simple
cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.
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Figure B.5: Summarizing t-values for the available model by covariate and generator type
(2004-2018 model fits). Only generators for which the covariate is statistically significant at the 0.05
level are included. Thresholds for significance (+/-1.96) indicated by dashed vertical lines. Constants are
excluded. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage,
NU is nuclear, ST is steam turbine.
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Figure B.6: Summarizing t-values for the derated model by covariate and generator type (2004-
2018 model fits). Only generators for which the covariate is statistically significant at the 0.05 level are
included. Thresholds for significance (+/-1.96) indicated by dashed vertical lines. Constants are excluded.
CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is
nuclear, ST is steam turbine.
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Generator type Count Mean hot Mean cool Temp hot Temp hot2 Temp cool Temp cool2 Load

CC 126 126 126 17 21 43 80 21
CT 44 44 44 9 6 11 26 16
DS 120 120 120 36 29 57 27 93
HD 68 68 68 11 13 17 12 31
NU 32 32 32 9 2 4 4 12
ST 358 358 358 68 53 84 91 204

All 748 748 748 150 124 216 240 377

Table B.3: Number of times each model term is statistically significant at the 95% level for
the available model (2004-2018 model fits). Results reported for the 748 generating generators with at
least 10 instances of the less-common transition per parameter in both available and derated models.

Generator type Count Mean hot Mean cool Temp hot Temp hot2 Temp cool Temp cool2 Load

CC 126 124 126 26 27 52 47 69
CT 44 44 44 9 6 18 20 39
DS 120 120 119 41 24 55 62 100
HD 68 67 67 8 15 23 26 56
NU 32 32 32 9 10 5 5 6
ST 358 358 358 58 66 111 87 128

All 748 745 746 151 148 264 247 398

Table B.4: Number of times each model term is statistically significant at the 95% level for
the derated model (2004-2018 model fits). Results reported for the 748 generating generators with at
least 10 instances of the less-common transition per parameter in both available and derated models.
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Figure B.7: Summarizing coefficients for the available model by covariate and generator type
(2004-2018 model fits). Only generators for which the covariate is statistically significant at the 0.05
level are included. Dashed vertical lines indicate 0. Constants are excluded. Temperature units are degrees
C. Load units are GW. Abscissa scales set independently. CC is combined cycle, CT is simple cycle, DS is
diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.
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Figure B.8: Summarizing coefficients for the derated model by covariate and generator type
(2004-2018 model fits). Only generators for which the covariate is statistically significant at the 0.05
level are included. Dashed vertical lines indicate 0. Constants are excluded. Temperature units are degrees
C. Load units are GW. Abscissa scales set independently. CC is combined cycle, CT is simple cycle, DS is
diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.
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Figure B.9: Summarizing t-value relationships for non-orthogonal covariate pairs for the
available model (2004-2018 model fits). Thresholds for significance at 0.05 level (+/-1.96) indicated
by dashed lines. To be included in a plot in this figure, both relevant covariates must be present in the final
available model. Black is combined cycle gas (CC), red is simple cycle gas (CT), green is diesel (DS), blue
is hydroelectric (HD), cyan is nuclear (NU), magenta is steam turbine (ST).
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Figure B.10: Summarizing t-value relationships for non-orthogonal covariate pairs for the
derated model (2004-2018 model fits). Thresholds for significance at 0.05 level (+/- 1.96) indicated
by dashed lines. To be included in a plot in this figure, both relevant covariates must be present in the final
derated model. Black is combined cycle gas (CC), red is simple cycle gas (CT), green is diesel (DS), blue is
hydroelectric (HD), cyan is nuclear (NU), magenta is steam turbine (ST).
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Figure B.11: Summarizing coefficient relationships for non-orthogonal covariate pairs for the
available model (2004-2018 model fits). To be included in a plot in this figure, both relevant covariates
must be present in the final available model. Black is combined cycle gas (CC), red is simple cycle gas
(CT), green is diesel (DS), blue is hydroelectric (HD), cyan is nuclear (NU), magenta is steam turbine (ST).
Dashed lines indicate 0. Temperature units are degrees C. Load units are GW. Axis scales set independently
in each plot.
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Figure B.12: Summarizing coefficient relationships for non-orthogonal covariate pairs for the
derated model (2004-2018 model fits). To be included in a plot in this figure, both relevant covariates
must be present in the final derated model. Black is combined cycle gas (CC), red is simple cycle gas (CT),
green is diesel (DS), blue is hydroelectric (HD), cyan is nuclear (NU), magenta is steam turbine (ST). Dashed
lines indicate 0. Temperature units are degrees C. Load units are GW. Axis scales set independently in each
plot.
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Model 0 1 2 3 4 5 6 7

Available 0 0 141 282 184 110 28 3
Derated 0 0 150 237 169 145 42 5

Table B.5: Number of statistically significant parameters (including constants) for the 748
generators with at least 10 instances of the less-common transition per parameter in both
available and derated models (2004-2018 model fits).

Model 0 1 2 3 4

Available 287 247 166 41 7
Derated 263 233 187 57 8

Table B.6: Number of statistically significant temperature parameters (excluding constants)
for the 748 generators with at least 10 instances of the less-common transition per parameter
in both available and derated models (2004-2018 model fits).
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Figure B.13: Summarizing the empirical range of hourly transition probabilities (2004-2018
model fits). Plots include 748 generators with at least 10 failure and recovery events per statistically
significant model parameter. Each generator is represented as a vertical line at an integer index (1 to 748).
In each plot, generators are sorted by generator type and maximum experienced transition probability. Black
is combined cycle gas (CC), red is simple cycle gas (CT), green is diesel (DS), blue is hydroelectric (HD),
cyan is nuclear (NU), magenta is steam turbine (ST).
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Figure B.14: Expected levels of unavailable capacity under logistic regression (dots) and cur-
rent practice (dashed horizontal line), as a function of temperature (2004-2018 model fits).
Black dots calculated using median load from temperature neighborhood, red dots calculated using 90th per-
centile load from temperature neighborhood. Temperature neighborhood is defined as +/-10 degrees. Not all
generators experience full temperature range; see Figure B.15 for prevalence of temperatures. CC is combined
cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam
turbine.

Figure B.15: Prevalence of temperatures experienced by 748 modeled generators by generator
type (2004-2018 model fits). For use in conjunction with Figure B.14. Note the log scale on the ordinate.
CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is
nuclear, ST is steam turbine.
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Figure B.16: Expected levels of unavailable capacity as a function of load under logistic re-
gression (dots) and current practice (dashed horizontal line) when restricting to temperatures
below 18.3 degrees Celsius (2004-2018 model fits). Black dots computed at median temperature from
load neighborhood; blue and red dots correspond to 10th and 90th percentile temperatures from load neigh-
borhood, respectively. Load neighborhood defined analogously to temperature neighborhood of Figure B.14.
Current practice dashed line matches that of Figure B.14. Plot domain defined using only observations below
18.3 degrees. Abscissa spans different values than Figure A.14 because load stationarizing procedure com-
puted independently for 2004-2018 model fit. CC is combined cycle, CT is simple cycle, DS is diesel, HD is
hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.
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Figure B.17: Expected levels of unavailable capacity as a function of load under logistic re-
gression (dots) and current practice (dashed horizontal line) when restricting to temperatures
above 18.3 degrees Celsius (2004-2018 model fits). Black dots computed at median temperature from
load neighborhood; blue and red dots correspond to 10th and 90th percentile temperatures from load neigh-
borhood, respectively. Load neighborhood defined analogously to temperature neighborhood of Figure B.14.
Current practice dashed line matches that of Figure B.14. Plot domain defined using only observations above
18.3 degrees. Abscissa spans different values than Figure A.15 because load stationarizing procedure com-
puted independently for 2004-2018 model fit. CC is combined cycle, CT is simple cycle, DS is diesel, HD is
hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.
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