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Abstract 
To keep the electric power system reliable, grid operators procure reserve generation capacity to 
protect against generator failures and significant deviation from the load forecast. Current 
methods for determining reserve requirements use historical generator availability data (recorded 
as failure events) to compute the fraction of the time each unit in the power system was 
unavailable unexpectedly. These values are then combined using analytical or simulation 
methods to yield a distribution of available capacity. From this distribution, the reserve capacity 
needed to maintain a particular reliability target may be determined. Such an approach implicitly 
assumes that generator failures occur independently of one another and that generator availability 
is not seasonal.  
 
To test these assumptions, we process the more than two million event records reported to the 
Generating Availability Data System (GADS) database maintained by the North American 
Electric Reliability Corporation (NERC) between January 1, 2012 and December 31, 2015. This 
allows us to construct complete availability histories (hourly time series) for each of the 
approximately 8,000 generating units reporting to GADS during this period. Using these time 
series, we find strong evidence of correlated failures in most regions, even when removing 
Hurricane Sandy and the exceptionally cold month of January 2014 from the data. We find that 
correlated failures occur in all seasons. We do not find evidence of seasonality but note that 
seasonal structure may emerge with more data.  
 
In addition we determine the distribution of unscheduled unavailable capacity, unscheduled 
derating magnitudes, event durations, event arrival probabilities, and mean time between failure 
(MTBF) and mean time to recovery (MTTR) values. In each case, we report fit parameters to 
facilitate use by practitioners. The distributions of unscheduled unavailable capacity in each 
region are reasonably well modeled by Weibull and lognormal distributions. We find statistically 
significant differences in mean time between failure for small and large units for three unit types 
when aggregating over regions. Finally we present time series of unavailable capacity from 
unscheduled, maintenance, and scheduled events. These may be used in conjunction with load 
data to directly study resource adequacy risks without assuming independent failures or constant 
availability. Our findings suggest that power system resource planners should consider correlated 
outages as they identify reliability and reserve capacity requirements. 
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Highlights  

• Correlated failures of NERC electric power generators occurred in 2012-2015 
• Correlated failures happen in most NERC regions even when major storms are removed 
• Correlated outages should be considered in defining resource adequacy requirements 
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1. Introduction 
Extended low temperatures in much of the United States (U.S.) and Canada in January of 2014 
resulted in significant losses of electricity generation capacity. In the control area of PJM 
Interconnection LLC (PJM), a large regional transmission organization (RTO) in the eastern 
U.S., more than 20% of total capacity was unavailable during the peak of the polar vortex event 
[1].1 To avoid blackouts, PJM had to enact emergency measures, including making public 
appeals for conservation, calling on demand-response resources, reducing system voltage, and 
scheduling shared reserves with neighboring systems.  
 
Resource adequacy modeling (RAM) is the process of determining how much capacity is needed 
to achieve a given reliability standard.2 Probabilistic methods have been used to determine 
required reserve generation from power plant outage data for more than 80 years [2,3]. 
Significant advances were made in the immediate postwar period and led to the creation of a 
joint program of the Edison Electric Institute and the American Institute of Electrical Engineers 
on the application of probability methods [4–7].  
 
Current industry practice proceeds as follows. First, historical availability data are used to 
calculate an “availability statistic” for each generating unit. The predominant availability statistic 
in use in the U.S. is the equivalent forced outage rate of demand (EFORd) which seeks to 
estimate the conditional probability of a unit being unavailable when needed by the power 
system [8]. Second, the availability statistics for each generating unit in the power system are 
used to determine the distribution of available capacity for the system through analytical or 
simulation methods. Finally, the resulting distribution is compared to a forecast of system load to 
determine capacity requirements [9].3 
 
The availability statistic approach to RAM distills multiple years of availability history for each 
generating unit to a single number. Because all temporal information is discarded, it implicitly 
assumes failures are independent among generating units [10]. However, failures could be 
correlated for a number of reasons, including common weather events, fuel supply disruptions, or 
a common vintage of defective mechanical components, leading to biased estimates of the level 
of capacity needed to achieve a reliability standard [11]. For lack of a tractable alternative, the 
assumption of independent failures is also made by scholars working outside RAM: [12] assume 
independence when simulating the marginal cost curve for electricity supply in California to test 
for the exercise of market power. Finally, we note that the availability statistic approach to RAM 
also implicitly assumes that generator availability is not seasonal.  
 
Here we seek to test the validity of these two assumptions. To do this we devise a novel method 
for reconstructing the availability history of a generating unit from event records. We 
                                                 
1 The Pennsylvania-New Jersey Interconnection was a power pool formed in 1927. It was renamed the 
Pennsylvania-New Jersey-Maryland (PJM) Interconnection in 1956 when Maryland-based utilities joined. Its 
current footprint includes all or parts of 13 U.S. states and the District of Columbia.  
2 The most common reliability standard in use in North America is the “1-in-10” standard, usually interpreted to 
mean that a loss of load event due to insufficient generation capacity will occur on no more than one day in ten years 
on average [21,32]. It is also sometimes interpreted to mean no more than 24 hours of loss of load due to supply 
shortages will occur in ten years on average [33]; various reliability regions have other interpretations [14].  
3 Current resource adequacy planning procedures for several control areas in the United States may be found in the 
following sources: [34–39]. 
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demonstrate our method using the Generating Availability Data System (GADS), a proprietary 
database maintained by the North American Electric Reliability Corporation (NERC) [13]. 
GADS contains more than two million event records affecting approximately 8,000 generating 
units between 2012 and 2015. These units represent approximately 85% of generation capacity in 
the conterminous U.S. and Canadian provinces. We use the GADS data to create time series of 
unavailable capacity from unscheduled, maintenance, and scheduled events for each unit.  
 
Our primary objective is to use the hourly time series to test both for failure correlation among 
generating units and for seasonal availability patterns. While we are not the first to recognize the 
potential challenges posed by correlated failures for RAM, previous research has been hampered 
by a lack of access to the necessary data [10,14]. 
 
In addition, we use the time series to generate inputs for Markov modeling of power systems. 
This includes Weibull and lognormal distributions fit to each region’s series of unavailable 
capacity, Weibull distributions fit to unscheduled derating magnitudes by unit type, lognormal 
distributions fit to unscheduled event durations by event type, and lognormal distributions fit to 
hourly unscheduled event arrival probabilities. In each case we report the parameters of our fits. 
We also calculate the mean time between failure (MTBF) and mean time to recovery (MTTR) 
for every unit in the GADS data and test whether large and small units have different MTBF 
values by unit type. Finally, we present hourly time series of unavailable capacity from 
unscheduled, maintenance, and scheduled events and publish the data. These may be used in 
conjunction with load data to study resource adequacy risks without assuming either independent 
failures or constant generator availability, which we believe represents a significant advancement 
versus current RAM practice.  
 
The paper is organized as follows. Section 2 introduces the GADS data. Section 3 describes the 
steps we take to clean the data and generate time series of unavailable capacity. Section 4 
presents our results. Section 5 concludes.  
 
The novel results discussed in Section 4 are summarized here. We present the first evidence that 
correlated failures are present in most NERC regions, even when removing Hurricane Sandy and 
January 2014 from the data (a map of the NERC regions is Figure S-1 in the supplementary 
materials4). We find that correlated failures can occur in any season. We show distributions of 
unscheduled unavailable capacity in each NERC region and find that they are reasonably well 
modeled by Weibull and lognormal distributions. The distributions of normalized derating 
magnitudes vary by unit type; combined cycle and simple cycle gas units are not well 
approximated by common parametric fits. Three out of five unit types that we studied show 
statistically significant differences in mean time between failure for small and large units. The 
mean time between failure for fossil steam units tends to be shorter for large units, while the 
mean time between failure for simple cycle and hydroelectric units tends to be shorter for small 
units.  

                                                 
4 Tables and Figures presented in the online supplementary materials are denoted with the S- prefix. 
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2. Data 
A working group of the Institute of Electrical and Electronics Engineers (IEEE) Application of 
Probability Methods subcommittee began developing generator reliability definitions to support 
the use of probability methods in bulk power system planning in 1968. This led to the creation of 
IEEE Standard 762, which provides the basis for generator availability data collection today 
[15]. NERC, formed in 1968 to develop voluntary standards to support bulk power system 
reliability following the Northeast blackout of 1965, assumed responsibility for collecting 
generator availability data from the Edison Electric Institute in 1979, renaming the database 
GADS [16,17]. 
 
In response to rapid changes in the North American resource mix and NERC’s designation as the 
electric reliability organization in the U.S. in 2006, NERC phased in mandatory reporting to 
GADS [18]. Beginning in January 2012, all units with nameplate capacities greater than 50 
megawatts (MW), other than wind and solar generators, were required to report. This threshold 
was reduced to 20 MW in January 2013. There are approximately 8,000 units with events logged 
in GADS, representing approximately 85% of installed capacity in the conterminous U.S. and the 
Canadian provinces. The present analysis spans January 1, 2012 through December 31, 2015, the 
full period of mandatory reporting for which complete data were available at the time we began 
our work.  
 
The GADS database comprises several tables. We use primarily the Units table, which records 
attributes of each generating unit reporting to GADS, and the Events table, which records each 
event affecting any generating unit reporting to GADS. Secondarily we use the Performance 
table, which records monthly summaries of the hours each generating unit spent in different 
operational states, to validate the Events table data.  
 
Units are required to report nearly every event that affects their ability to generate electricity, 
even if dispatch requirements can still be met.5 Approximately 500,000 events are logged each 
year under mandatory reporting. There are 20 event types in total, including startup failures 
(where the affected unit is fully unavailable due to a failure that occurred during its startup 
procedure), outages (where the affected unit is fully unavailable), deratings (where the affected 
unit is partially unavailable), reserve shutdowns (where the affected unit is offline for economic 
reasons but is not experiencing any reduction in its ability to generate power), unit retirements, 
and several others [19]. Each event logged in GADS reports the affected unit, the type of event, 
the start and end time of the event, and several additional details.  
 
Outages and deratings are further classified as unscheduled, maintenance, or scheduled events 
based on how much advance notice the unit operator had before the event went into effect 
(ranging from none to several weeks). We focus on the seven unscheduled (forced) event types: 
startup failures (the GADS term for these is SF), the three unscheduled outages (U1, U2, and 

                                                 
5 Reporting failures that represent less than 2% of a unit’s capacity and last less than 30 minutes is voluntary. Hydro 
and pumped storage units without automatic data recording equipment are not required to report reserve shutdown 
events, but as noted above these events do not affect a unit’s ability to generate power [19]. 
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U3), and the three unscheduled deratings (D1, D2, and D3).6 These are the primary event types 
considered in RAM. We next describe our methods for processing the raw GADS events data 
into time series of unavailable capacity. 

3. Methods 
3.1 Preprocessing 
Both the Units and Events tables required basic cleaning and preprocessing. Preprocessing of the 
Units table included removing any records missing a nameplate capacity value or having a 
NERC region code other than the eight corresponding to the conterminous U.S. and Canada. 
 
Derating event do not have their magnitude directly reported. Instead, each derating records the 
net available capacity (NAC) remaining for the affected generating unit at the start of that event. 
To ensure that all derating magnitudes will be calculated correctly (Section 3.2), we check that 
each unit’s nameplate capacity is greater than its largest reported NAC. An example is shown in 
Figure 1. Approximately 300 units’ nameplate capacity values were updated by this procedure. 
This accounts for unit up-ratings, as GADS nameplate capacity values are not generally kept up 
to date by operators. 
 

 
Figure 1: Illustration of scenarios for which updating the unit’s nameplate capacity is and is not 
necessary. In the example on the left, the unit experiences a derating event with a net available 
capacity (NAC) greater than its nameplate capacity so the nameplate is increased in order for all 
derating event magnitudes to be positive (see Section 3.2). In the example on the right, the unit’s 
current nameplate capacity is sufficient to yield a positive magnitude for each derating event.  
 
We also validate the reported time zone for each unit using ABB Velocity Suite [20]. For units 
whose time zone was updated by this process, we adjust the start and end times of its events 
accordingly.7 
 

                                                 
6 Among the seven unscheduled event types, there are still temporal gradations: SF, U1, and D1 events take effect 
immediately, U2 and D2 events take effect within six hours, and U3 and D3 events can be postponed beyond six 
hours but not beyond the end of the upcoming weekend. 
7 Subsequent conversations with members of the GADS Working Group identified that at least one large utility sets 
all of its units to adhere to the time zone of headquarters, even when that conflicts with the time observed in the 
state. We do not account for this as it would be extremely difficult to confirm this behavior for the hundreds of 
reporting entities, but believe the bias introduced should be small. 
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In the Events data, we remove any records missing a start or end date, as well as duplicate 
derating records. These are derating events that match on start time, end time, event type, and 
NAC. When derating events match on start time, event type, and NAC but have different end 
times, we keep only the event with the latest end time. These steps are necessary for correctly 
calculating the magnitudes of overlapping deratings, as described next.  

3.2 Calculating derating magnitudes 
Deratings account for 19-35% of all unscheduled unavailable MWh during our study period, 
depending on the NERC region. Thus it is important to treat reported deratings rigorously. If 
deratings never overlapped, each derating magnitude could be calculated as: 
 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜 𝑒𝑒𝑒𝑒𝑒 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜 𝑢𝑢𝑢𝑢 − 𝑁𝑁𝑁 𝑜𝑜 𝑒𝑒𝑒𝑒𝑒 (1) 
 
However, deratings can overlap and usually the magnitude of the succeeding derating must be 
calculated as a function of the derating(s) already underway [19]. For example, if just one 
derating was already in progress, the magnitude of the succeeding derating must be calculated 
against it rather than against the nameplate capacity of the unit: 
 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜 𝑒𝑒𝑒𝑒𝑒 = 𝑁𝑁𝑁 𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒 − 𝑁𝐴𝐴 𝑜𝑜 𝑒𝑒𝑒𝑒𝑒 (2) 
 
Any number of deratings can overlap, which makes determining the correct baseline event 
difficult. We develop specialized functions to handle all possible configurations of overlapping 
deratings. 

3.3 Calculating time series of unscheduled unavailable capacity 
With the derating magnitudes calculated, we next build hourly time series of unavailable 
capacity for each generating unit.8 For outages and startup failures, unavailable capacity is the 
unit’s nameplate capacity in every hour where an outage event is in effect. For deratings, 
unavailable capacity is the sum of the magnitudes of events in effect in each hour. We sum 
outages and deratings for each unit, cap the series at each unit’s nameplate capacity, and 
aggregate the unit-level series to the eight NERC regions.9 An example time series is shown in 
Figure 2.  
 

                                                 
8 Despite event starts and ends reported to the minute, the large plurality of start and end times fall on the hour. 
Histograms of start and end minute of each unscheduled event are shown in Figure S-6 and Figure S-7.  
9 Because the original purpose of the GADS database was to facilitate unit benchmarking, a derating in progress 
when an outage occurs is not modified to prevent unavailable capacity from being overstated. Other potential causes 
of overestimation include events appearing to overlap at the hourly resolution. 
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Figure 2: Illustrative unavailable capacity time series for one generating unit. In hour 1 the unit 
experiences an outage and is fully unavailable. In hour 2 the outage has been repaired and the unit 
is fully available. In hour 3 the unit experiences a 60-MW derating. In hour 4 the unit experiences a 
second derating (10 MW) in addition to the previous derating, so 70 MW is unavailable. In hour 5 
both deratings have been repaired and the unit is fully available.  

4. Results 
We begin by presenting a brief descriptive summary of the GADS data by NERC region (Section 
4.1). We then test for correlated failures (Section 4.2) and for seasonal patterns in unscheduled 
unavailable capacity (Section 4.3). Finally, we present a set of analyses with direct application 
for reliability analysis (Section 4.4). These include parametric fits to each NERC region’s 
distribution of unscheduled unavailable capacity; parametric fits to each unit type’s distribution 
of normalized derating magnitudes; parametric fits to each region’s distribution of event 
durations by event type; parametric fits to the hourly probability of an unscheduled event arrival 
by region; parametric fits to the distributions of mean time between failure and mean time to 
recovery by unit type and region; statistical tests of whether small and large units have different 
mean times between failure; and time series of unavailable capacity from unscheduled, 
maintenance, and scheduled events by unit type and region. 

4.1 Descriptive analysis of unscheduled unavailable capacity 
Installed capacity and unit counts for the eight NERC regions spanning the conterminous U.S. 
and the Canadian provinces are listed in Table 1. We show time series of unscheduled 
unavailable capacity for each NERC region as a percentage of installed capacity in Figure 3, 
using data from ABB Velocity Suite to construct an hourly series of each region’s installed 
capacity. Hourly time series of the percent of units (unweighted by capacity) affected by an 
unscheduled event are shown in Figure S-2 in the supplementary material.  
 
We report the mean (which may be thought of as the base rate of unscheduled unavailable 
capacity), median, maximum, and quartile coefficient of dispersion (QCD) for each region’s time 
series in Table S-1. Over the four years we analyzed, the regions’ mean unscheduled unavailable 
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capacity ranged from 2.8% of installed capacity in FRCC to 6.3% in SPP. We use the QCD as a 
measure of the spread of the unscheduled unavailable capacity rather than the standard deviation 
because the data are asymmetric. The QCD ranges from 0.13 for SERC to 0.30 for FRCC. The 
ratio of the maximum to the mean ranges from 1.8 in WECC to 4.0 in RFC. There is more than a 
three-fold difference in the regional maxima, ranging from 7.2% of installed capacity for WECC 
to 22.6% for RFC. 
 
Table 1: Description of the eight NERC regions in the conterminous U.S. and Canada. 

Acronym Definition Installed 
capacity, 
start (MW)1 

Installed 
capacity, 
end (MW)2 

Unit 
count3 

FRCC Florida Reliability Coordinating Council 60,100 60,300 328 
MRO Midwest Reliability Organization 56,100 56,300 523 
NPCC Northeast Power Coordinating Council 149,700 146,900 1,142 
RFC ReliabilityFirst Corporation 227,800 215,000 1,441 
SERC Southeast Reliability Corporation 264,400 264,300 1,688 
SPP Southwest Power Pool 58,100 59,000 423 
TRE Texas Reliability Entity 80,400 81,900 428 
WECC Western Electricity Coordinating Council 206,900 209,300 1,903 
1. Starting installed capacity is the sum of nameplate capacity of active conventional units with nameplate 
capacities greater than 20 MW on January 1, 2012; wind and solar units are excluded. Data source: ABB Velocity 
Suite. 
2. Ending installed capacity is the sum of nameplate capacity of active conventional units with nameplate 
capacities greater than 20 MW on June 30, 2015; wind and solar units are excluded. Data source: ABB Velocity 
Suite. 
3. The number of units experiencing an unscheduled event during the study period. 
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Figure 3: Unscheduled unavailable capacity as a percent of installed capacity, by unscheduled event 
type. Green: unscheduled outages only; red: unscheduled deratings only; blue: start-up failures 
only; black: all unscheduled events (the sum of green, red, and blue curves). 

 
We compute the breakdown of unscheduled unavailable megawatt-hours (MWh), the sum of the 
product of each event’s magnitude (MW) and duration (hours), by event type. On average, 
startup failures account for 3% (ranging from 2% to 5% for the eight NERC regions), deratings 
account for 27% (ranging from 19% to 35%), and outages account for 70% (ranging from 63% 
to 77%) of the total. These breakdowns are shown in Figure S-3. We present breakdowns of the 
count of unscheduled events by event type in Figure S-4.  

4.2 Testing for independence among generators 
We wish to test the assumption that generator failures are independent. From Figure 3 it is clear 
that several regions show instances of much greater unavailable capacity than their base rate. 
These could be due to correlated failures or to random chance.  
 
We test whether the peaks violate the independent failures assumption using two main methods. 
We describe each briefly here, then give details and results in the next sections. First we apply 
block subsampling to “shuffle” each unit’s observed time series independent of every other unit 
(Section 4.2.1). Summing over units to regions yields a simulated time series for each region that 
is representative of each unit’s observed performance, but which breaks any correlation among 
generator failures that may have been present. Repeating this process many times allows us to 
compare the prevalence and magnitudes of large unavailable capacity instances in the observed 
time series to what is possible under the null hypothesis of independent failures. We do this by 
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creating confidence bands from each region’s subsampled runs and plotting them along with the 
empirical series as exceedance curves.  
 
As a second test, we model each unit’s hourly availability as a binomial random variable using 
its observed time series to determine the probability of an event arrival in each hour (Section 
4.2.2). With these arrival probabilities we then simulate representative time series independently 
for each unit. As with block subsampling, we then aggregate the unit series to regions. Repeating 
this process many times allows us to compare the prevalence of large unavailable capacity 
instances in the observed series to what is possible under the null hypothesis of independent 
failures.  
 
With each method, we look for violations of the independent failures assumption both with and 
without Hurricane Sandy and the cold weather events of January 2014 in order to test the 
possibility that these two well-known events were responsible for all the observed violations 
during our study period.10 

4.2.1 Test of independent failures method 1: Block subsampling 
We first test whether the observed generator failures are independent using block subsampling 
with replacement on each unit’s time series. The time series of unavailable capacity for a 
generator has significant and important dependence over time. This dependence is preserved by 
sampling blocks of hours instead of individual hours. Sampling blocks independently ensures 
independence between distinct generators. In essence, block subsampling allows us to “shuffle” 
each unit’s series independent of every other series, breaking any dependence across units while 
preserving dependence within units. This allows us to generate new (simulated) regional 
distributions under the null hypothesis that generator failures are independent. By repeating this 
process many times, we can trace out the space of distributions that is consistent with 
independent failures (the null hypothesis) for each region.11 We reject the hypothesis that the 
generator failures are independent if a region’s empirical distribution exceeds the upper bound of 
its 99% confidence band at any point above the 50th percentile. 
 
We begin by generating 1000 subsampled series for each region using the full study period. This 
is consistent with current industry practice: it assumes not only independent failures among units, 
but also no seasonality in generator performance.12 We use these series to generate 95% and 99% 
confidence bands of the distribution of unscheduled unavailable capacity under the null 
hypothesis, which we plot together with the region’s empirical distribution as exceedance curves 
(termed survival curves in medical and some reliability literature) in Figure S-11. We summarize 
the percentiles at which each region’s empirical distribution exceeds the upper bound of the 99% 
confidence band, along with the maximum magnitude of exceedance, in the left-hand side of 
Table S-4. 

                                                 
10 We remove all hours from October 29, 2012 through November 30, 2012 for Hurricane Sandy and from January 
1, 2014 through January 31, 2014 for the Polar Vortex and the subsequent winter storms of January 2014 to allow 
time for some unit repairs to be completed. We do this in all regions for consistency. 
11 The block length is a function of the autocovariance sequence, the spectral density function, and the length of the 
time series [40]. We compute each unit’s block length using the “np” library in R [41,42]. Subsampling is carried 
out using the “boot” library in R [43,44]. 
12 Because there is no requirement that, for example, a winter observation be selected when populating winter hours 
in the subsampled series. 
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Six regions (MRO, NPCC, RFC, SERC, SPP, and TRE) show evidence of correlated failures at 
the 99% confidence level. FRCC and WECC are the only two regions whose empirical 
distributions do not exceed the upper bounds of their 99% confidence bands at any point in their 
respective domains. As a measure of whether the exceedances we observe in these regions 
represent a resource adequacy risk, we determine the amount of capacity that must be procured 
in order to achieve the 1-in-10 loss of load expectation (LOLE) standard under the assumption of 
independent failures. The “one day in ten years” interpretation of this rule translates to 2.4 hours 
of loss of load expectation per year, denoted 2.4 LOLH [21] as used in the SPP region; other 
NERC regions use slightly different interpretations. 2.4 LOLH is indicated via the dashed 
horizontal line in Figure S-11; the corresponding amount of capacity required at 95% and 99% 
confidence is indicated by the dashed vertical lines, drawn where the dashed horizontal line 
intersects the upper bound of each region’s confidence bands. We define a region as having 
“managerially significant” correlated failures if its empirical distribution exceeds the amount of 
capacity required to meet the 2.4 LOLH criterion at the 99% confidence level, at an incidence 
greater than that corresponding to 2.4 LOLH. Using this definition, we conclude that 
managerially significant correlated failures are present in NPCC, RFC, SERC and TRE during 
the full study period. 
 
Hurricane Sandy in 2012 and the two cold events in January 2014 were responsible for the 
largest violations of the independence assumption in our study period. To see if other correlated 
failures exist, we remove October 29-November 30, 2012 and January 2014 and repeat our 
analysis. As before, we plot exceedance curves (Figure S-12) and summarize the instances where 
each region’s empirical distribution exceeds the upper bound of its 99% confidence band, along 
with the maximum magnitude of exceedance (right-hand side of Table S-4). 
 
Even without Hurricane Sandy and January 2014, five regions (NPCC, RFC, SERC, SPP, and 
TRE) show evidence of correlated failures at the 99% confidence level. When considering the 
2.4 LOLH resource adequacy requirement, we conclude that managerially significant correlated 
failures were present at the 99% confidence level in only NPCC, RFC, and TRE. 

4.2.2 Test of independent failures method 2: Modeling hourly availability as a binomial 
random variable 
We next test whether the observed peaks in unavailable capacity are due to correlation or to 
random chance by modeling each unit’s hourly availability as a binomial random variable. We 
estimate the probability of an unscheduled event arrival at each unit in a given hour as: 
 
 

𝑃(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖) =
𝐶 �𝑒𝑒𝑒𝑒𝑒𝑒𝐷1:𝐷3,𝑆𝑆,𝑈1:𝑈3𝑖�

𝐶(ℎ𝑜𝑜𝑜𝑜1:𝑇) − 𝐶(ℎ𝑜𝑜𝑜𝑜𝑆𝑆,𝑈1:𝑈3𝑖)
 (3) 

 
where C indicates the count of the elements taken in its argument, i indexes generating units, T 
indicates the final hour of the study period, and D1:D3, SF, and U1:U3 refer to the seven 
unscheduled event types.13 When calculating this probability, we subtract the number of hours in 

                                                 
13 Assuming constant failure probabilities, as we do here, is again consistent with typical RAM practice in the U.S. 
which implicitly assumes no seasonality in generator availability.  
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which the unit is fully unavailable from the total period hours because no additional event 
arrivals can occur during these times. We retain only the units that are at least partially available 
for at least 1,000 hours (~6 weeks) during the study period; this removes nine units from the 
analysis. Histograms of the estimated probabilities are reported in Figure S-14. Parameters from 
lognormal fits to the estimated probabilities are reported in Table S-5.  
 
With the event arrival probabilities calculated for each unit, we then draw from each unit’s 
parameterized binomial distribution as many times as there are hours in the study period to create 
a simulated series of event arrivals for each unit. We populate each event’s magnitude and 
duration by sampling uniformly with replacement from the unscheduled events experienced by 
that unit. After completing this process, we cap each unit’s series of unavailable capacity at its 
nameplate capacity and aggregate the unit-level time series to the regions. We show exceedance 
curves in Figure 4.  
 
We again adopt the convention of rejecting the hypothesis of independent failures if a region’s 
empirical distribution exceeds the upper bound of its 99% confidence band at any point above 
the 50th percentile. We conclude that all regions except FRCC violate the independence 
assumption. While this finding for WECC differs from the corresponding block subsampling 
result, we note that our definition of statistical significance ignores the magnitude of exceedance 
and that the results are qualitatively quite similar. When considering the 2.4 LOLH resource 
adequacy requirement, only NPCC, RFC, SERC, and TRE exhibit resource adequacy risk for the 
full study period, in  agreement with block subsampling.  
 

 
Figure 4: 95% and 99% confidence bands from 1000 binomial simulation runs shown in dark and 
light gray, respectively; empirical distributions from full study period shown in red. Dashed 
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horizontal line indicates 2.4 LOLH threshold; dashed vertical lines indicate intersection of 2.4 
LOLH threshold with the upper bound of each confidence band. 
We again remove the hours corresponding to our definition of Hurricane Sandy and January 
2014 and repeat our analysis. Now when creating the simulated series, we exclude events that 
start inside either deleted period; events that start prior to and continue into or beyond either 
period are not removed or altered. Exceedance curves of the results are shown in Figure 5. 
 
Without these two months of data we again conclude that all regions except FRCC exhibit 
violations of the independent failures assumption. When considering the 2.4 LOLH resource 
adequacy requirement, NPCC, RFC, SERC, and TRE were the only regions to exhibit resource 
adequacy risk. While this finding for SERC differs from the corresponding block subsampling 
result, we again note that our definition of statistical significance ignores the magnitude of 
exceedance and that the results are qualitatively quite similar.  
 

 
Figure 5: 95% and 99% confidence bands from 1000 binomial simulation runs shown in dark and 
light gray, respectively; empirical distributions from removing Hurricane Sandy and January 2014 
shown in red. Dashed horizontal line indicates 2.4 LOLH threshold; dashed vertical lines indicate 
intersection of 2.4 LOLH threshold with the upper bound of each confidence band. 
 

There is reasonable agreement between the block subsampling and the binomial results. In the 
full study period we conclude that six and seven regions, respectively, exhibit violations of the 
independent failures assumption under our basic definition of correlated failures. When 
removing Hurricane Sandy and January 2014 from the study period, five and seven regions, 
respectively, exhibit violations under this definition. By either method, NPCC, RFC, SERC, 
SPP, and TRE show clear evidence of violating the independent failures assumption, even when 
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Hurricane Sandy and January 2014 are removed. We also see reasonable agreement between 
block subsampling and binomial results for both study periods when applying our managerially 
significant correlated failures definition. We summarize these results in Table 2.  
 
Table 2: Summary of correlated failure test results. “--” indicates no correlated failures; “*” 
indicates correlated failures according to our basic definition (the region’s empirical trace exceeds 
the upper bound of its 99% confidence band above the 50th percentile); “**” indicates correlated 
failures according to our definition of managerial significance (the region’s empirical trace exceeds 
the level of capacity corresponding to the intersection of the upper bound of the 99% confidence 
band with the 2.4 LOLH, with greater incidence than allowed under 2.4 LOLH resource adequacy 
requirement). The definitions are nested such that a region cannot satisfy the second definition 
without also satisfying the first.  
 Full period Excluding Hurricane Sandy and 

January 2014 
Region Block 

subsampling 
Binomial Block 

subsampling 
Binomial 

FRCC -- -- -- -- 
MRO * * -- * 
NPCC ** ** ** ** 
RFC ** ** ** ** 
SERC ** ** * ** 
SPP * * * * 
TRE ** ** ** ** 
WECC -- * -- * 
 
While FRCC, MRO, and WECC show little to no evidence of violating the independent failures 
assumption over the period examined, we caution that four years of data is not sufficient to 
conclude that no such violations are possible in these regions. For example, on September 8, 
2011 WECC experienced system disturbances that resulted in a loss of 7 GW of capacity, 
representing a 4-sigma event for our study period, larger than any event we observed in the 
region during the four years we studied [22]. 

4.3 Seasonality 
We next wish to test whether there are intra-annual patterns in unscheduled unavailable capacity. 
Our goals are to understand whether violations of the independent failures assumption occur in 
only particular seasons and whether particular seasons experience more unscheduled unavailable 
capacity on average, more variability in unscheduled unavailable capacity, or a greater number 
of large unavailable capacity events than others. Systematic patterns in any of these attributes 
would support improved forecasting and could provide insight into whether reserve margins 
should be computed seasonally.  

4.3.1 When do correlated failures occur?  
For this analysis, we adopt NERC’s definition of the seasons: winter is December through 
February, spring is March through May, summer is June through September, and fall is October 
through November [23]. When considering winter and fall with and without January 2014 and 
Hurricane Sandy, respectively, we test six seasons in total. 
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We use block subsampling to generate 1000 simulated runs of unscheduled unavailable capacity 
for each region in each season.14 From this, we compute 95% and 99% confidence bands and 
plot them as exceedance curves along with the corresponding empirical distributions (Figure S-
15 through Figure S-20). We find violations of the independent failures assumption in all seasons 
using our basic definition of correlated failures: four regions (NPCC, RFC, SERC, and SPP) in 
each winter definition, four regions (MRO, RFC, SERC, and TRE) in spring, three regions 
(NPCC, RFC, and TRE) in summer, five regions (MRO, NPCC, RFC, SPP, and TRE) in the full 
fall definition, and three regions (RFC, SPP, and TRE) in the shortened fall definition. We 
conclude that violations of the independent failures assumption can likely occur in any season in 
any region.  

4.3.2 Seasonality in average unavailable capacity 
Since violations of the independent failures assumption are observed in all seasons, we next 
examine whether there are recurrent patterns in average unavailable capacity by month. We 
compute the average unscheduled unavailable capacity in each month for each region and plot 
autocorrelation functions for each region (Figure S-21).  
 
Significant seasonality would manifest as a lag-12 peak (corresponding to a one-year lag) that 
exceeds the 95% confidence bands. Except for FRCC, we see that each region’s lag-12 peak is 
not significant. However, every region shows a significant 1-month lag, suggesting that 
unscheduled unavailable capacity can be thought of as an autoregressive process of order 1 
(AR(1) process).15 This is intuitive: failures can occur anytime during the year and require time 
to repair, so our best prediction of average unavailable capacity next month is the average 
unavailable capacity this month. As a robustness check, we repeat this analysis by NERC season; 
the results are consistent with the monthly result (Figure S-22). From these results we conclude 
that generally we cannot support the hypothesis of seasonality in average unavailable capacity 
from unscheduled events.  
 
As a complementary approach, we make exceedance curves for the empirical distribution of 
unscheduled unavailable capacity in each of the 17 seasons fully or partially covered by our 
study period (Figure S-23).16 We observe significant overlap of the seasonal exceedance curves 
in most regions, indicating that periods of low and high unscheduled unavailable capacity can 
occur in any season.  

4.3.3 Heteroskedasticity 
We next study whether certain times of the year have more variability in unscheduled 
unavailable capacity. If so, these periods could represent elevated resource adequacy risks. We 
test for the presence of heteroskedasticity at the monthly level by fitting AR(1) terms to each 
region’s monthly series of average unavailable capacity and plotting the residuals (Figure S-25). 
The residuals resemble white noise and appear to be homoskedastic. Autocorrelation functions of 
the residuals show no significant remaining structure (Figure S-26). Values and t-statistics for the 
                                                 
14 We use only winter observations for winter, only spring observations for spring, and so on.  
15 A weakly stationary AR(1) model can be written xt = μ + ρxt-1 + εt where εt is an independent and identically 
distributed zero mean process with variance σ2 and |ρ|<1. The temporal dependence in xt is completely summarized 
by conditioning on only its previous value. 
16 The first winter includes only January and February 2012 (i.e. no December 2011); the fifth winter includes only 
December 2015 (i.e. no January and February 2016). 
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AR(1) parameters are reported in Table S-8. From these results we conclude that we cannot 
generally support the hypothesis that certain times of the year systematically have more 
variability in unscheduled unavailable capacity than do others. 

4.3.4 Would seasonal availability statistics improve RAM? 
Current RAM practice in North America calculates a single availability statistic for each 
generating unit using five years of historical data. This implicitly assumes that generator 
availability is constant throughout the year. If instead generator availability was seasonal, 
calculating availability statistics separately for each season could improve the accuracy of each 
season’s probability distribution of available capacity. To assess these potential benefits we 
combine the seasonal block subsampling results from Section 4.3.1 and plot the results as 
exceedance curves for both the full study period (Figure S-28) and when excluding Hurricane 
Sandy and the Polar Vortex (Figure S-29). Consistent with the results from our previous tests of 
seasonality, we find minimal benefits from calculating availability statistics separately for each 
season.  
 
In summary, even with just four years of data we see violations of the independent failures 
assumption in all seasons. We do not see recurrent seasonal patterns in unscheduled unavailable 
capacity on average or in terms of variance. Finally, we do not find evidence to suggest that 
seasonal availability statistics would significantly improve the accuracy of RAM. With a longer 
study period it is possible that more intra-annual structure would emerge (for example from 
hurricanes), thus we recommend that system planners repeat this analysis to assess implications 
of seasonality for RAM in their control areas.  
 

4.4 Reliability applications 
We next present a set of results that can be used to populate Markov models of the generating 
units in each NERC region. We report: (1) Weibull and lognormal distributions fit to each 
region’s series of unscheduled unavailable capacity; (2) Weibull distributions fit to each unit 
type’s normalized derating magnitudes; (3) lognormal distributions fit to each region’s event 
durations by event type; (4) lognormal fits to the hourly probability of an unscheduled event 
arrival by region; (5) mean time between failure and mean time to recovery values for each 
region and unit type, with fitted Weibull and gamma distributions; and (6) time series plots of 
unavailable capacity from unscheduled, maintenance, and scheduled events. 
 
Markov models of generator availability have long been employed in reliability analyses. In a 
standard two-state model, a unit is assumed to be either fully available or fully unavailable, with 
failure rate 𝜆 = 1/𝑀𝑀𝑀𝑀 and recovery rate 𝜇 = 1/𝑀𝑀𝑀𝑀 [24].17 These values can be used to 
define the steady-state availability and unavailability of a generating unit. Unit availability 
models are also implicitly employed in current RAM practice in the definition of the availability 
statistic computed for each unit [8]. Many extensions have been made to improve the 
applicability of these models. For example, additional Markov states have been added to model 
partial unit availability, maintenance and planned outages, and whether periods of unit 

                                                 
17 For completeness we note that sometimes the term mean time to failure (MTTF) is used to indicate the same 
concept as we are terming MTBF [24]. 
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unavailability coincide with periods of system need. Models have also been extended to sets of 
units, allowing for both independent and common-mode failure states [25,26]. 
 
The primary challenge for populating Markov models is data availability. NERC GADS and 
Strategic Power Systems’ Operational Reliability Analysis Program (ORAP) are the main 
sources for reliability data in the U.S., but neither makes sufficiently disaggregated data publicly 
available. Representative examples of reliability metrics published in the literature include 
MTBF values for 10 power stations [27], MTTR and MTTF values for a single coal-fired 
generating unit modeled with 10 availability states [28], MTBF values for seven gas turbine units 
in India [29], MTBF and MTTR values for 11 gas turbine units in Nigeria [30], and MTTF 
values for a single combined-cycle unit modeled with 8 availability states in Israel [31]. 
 
We are not aware of any published source of MTBF and MTTR data for all of the generating 
units in a large power system. We provide below the first such data for the vast majority of 
generation capacity in the U.S. and Canada. In conjunction with the fit parameters for time series 
of unavailable capacity from unscheduled events, the normalized magnitudes of unscheduled 
deratings, unscheduled event durations, and hourly event arrival probabilities, these data can be 
used to significantly improve the numeric accuracy of reliability modeling.  

4.4.1 Parametric fits to distributions of unscheduled unavailable capacity 
We fit Weibull and lognormal distributions to each region’s distribution of unscheduled 
unavailable capacity, both for the full study period (Figure S-30) and with January 2014 and 
Hurricane Sandy removed (Figure S-31). We report the parameters of each fit in Table S-9. 

4.4.2 Parametric fits to distributions of normalized derating magnitudes 
We fit Weibull distributions to each unit type’s distribution of normalized derating magnitudes 
(Figure S-32). We report the parameters of each fit in Table S-10. 

4.4.3 Parametric fits to unscheduled event durations by event type 
We present histograms of event durations by event type and overlaid with lognormal fits in 
Figure S-6 through S-8. We report the fit parameters in Table S-2.  

4.4.4 Parametric fits to hourly probabilities of unscheduled event arrivals 
We fit lognormal distributions to each region’s distribution of hourly probabilities of an 
unscheduled event arrival, calculated according to Equation 3. We present histograms of the 
results in Figure S-14. We report the parameters of each fit in Table S-5. 

4.4.5 Mean time between failure and mean time to recovery 
We determine the mean time between failure and mean time to recovery for each generating unit 
and fit Weibull and gamma distributions to the results. We define the mean time between failure 
(MTBF) as the average number of service hours that elapse between unscheduled reductions of 
availability of any magnitude.18 To do this, we first process the 1.6 million reserve shutdown 
(RS) events reported during our study period into hourly time series for each unit. Any hour 
when an RS event is in effect is removed from the unit’s corresponding time series of 

                                                 
18 Restricting our attention to service hours is important since peaking units are likely to be offline for economic 
reasons for large portions of the year. 



 18 

unscheduled unavailable capacity. We then calculate an MTBF for the unit by averaging the 
durations of all instances where it is fully available. 
 
We generate capacity-weighted histograms of these values by associating each unit’s nameplate 
capacity (reported in MW) with its MTBF (Figure 6 through Figure 10). In each of these plots 
we construct histograms with 50 bins. The heading of each plot reports the number of units for 
which an MTBF value can be calculated (numerator) and the number of units reporting at least a 
single unscheduled event during our study period (denominator), which serves as a proxy for the 
sample size.19 We exclude units with significant discrepancies in RS reporting between the 
Events and Performance tables, taking that to indicate that RS hours may be incompletely 
reported on those units and thus that our estimate of the MTBF restricted to service hours would 
be unreliable. Table S-14 summarizes the proportion of capacity that appears to incompletely 
report RS events. We report selected percentiles of MTBF values for each unit type in Table 3 to 
facilitate comparison. Larger MTBF values indicate greater reliability.  
 

 
Figure 6: Capacity weighted mean time between failure (MTBF) values for combined cycle gas 
units. Note the log scale for MTBF. Values are calculated with all reserve shutdown hours removed 
so as to restrict attention to service hours. Numerator indicates count of units for which an MTBF 
could be calculated. Denominator indicates count of units experiencing at least one unscheduled 
event during the study period (proxy for total count of active units during the study period). Units 
with significant reserve shutdown reporting discrepancies are excluded (see Table S-14). 

 

                                                 
19 We use this as an estimate of the number of units that were active during the study period as GADS does not 
always correctly record commercialization and retirement dates for units that are sold. 
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Figure 7: Capacity weighted mean time between failure (MTBF) values for simple cycle gas units. 
Note the log scale for MTBF. Values are calculated with all reserve shutdown hours removed so as 
to restrict attention to service hours. Numerator indicates count of units for which an MTBF could 
be calculated. Denominator indicates count of units experiencing at least one unscheduled event 
during the study period (proxy for total count of active units during the study period). Units with 
significant reserve shutdown reporting discrepancies are excluded (see Table S-14). 
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Figure 8: Capacity weighted mean time between failure (MTBF) values for fossil steam and 
fluidized bed units. Note the log scale for MTBF. Values are calculated with all reserve shutdown 
hours removed so as to restrict attention to service hours. Numerator indicates count of units for 
which an MTBF could be calculated. Denominator indicates count of units experiencing at least one 
unscheduled event during the study period (proxy for total count of active units during the study 
period). Units with significant reserve shutdown reporting discrepancies are excluded (see Table S-
14). 
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Figure 9: Capacity weighted mean time between failure (MTBF) values for hydroelectric units. 
There are no such units in FRCC. Note the log scale for MTBF. Values are calculated with all 
reserve shutdown hours removed so as to restrict attention to service hours. Numerator indicates 
count of units for which an MTBF could be calculated. Denominator indicates count of units 
experiencing at least one unscheduled event during the study period (proxy for total count of active 
units during the study period). Units with significant reserve shutdown reporting discrepancies are 
excluded (see Table S-14). 

 
 



 22 

 
Figure 10: Capacity weighted mean time between failure (MTBF) values for nuclear units. Note the 
log scale for MTBF. Values are calculated with all reserve shutdown hours removed so as to restrict 
attention to service hours. Numerator indicates count of units for which an MTBF could be 
calculated. Denominator indicates count of units experiencing at least one unscheduled event 
during the study period (proxy for total count of active units during the study period). No nuclear 
units had significant reserve shutdown reporting discrepancies (see Table S-14). 

 
Table 3: Selected percentiles of capacity-weighted mean time between failure values (hours) by unit 
type. Values have been calculated with all reserve shutdown hours removed so as to restrict 
attention to service hours. Units with significant reserve shutdown reporting discrepancies are 
excluded (see Table S-14). Abbreviations: CC combined cycle units, CT simple cycle gas units, 
FSFB fossil steam and fluidized bed units, HY hydroelectric, NU nuclear. 
 

 10th 20th 30th 40th 50th 60th 70th 80th 90th 
CC 250 362 464 572 669 808 1,002 1,336 1,984 
CT 66 102 135 176 220 297 410 589 1,076 
FSFB 84 119 167 213 263 335 445 576 853 
HY 573 1,013 1,328 1,698 2,113 2,495 3,298 4,286 6,107 
NU 702 1,097 1,503 1,839 2,032 2,412 2,850 3,629 4,889 
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We conclude that nuclear, hydro, and combined cycle units tend to run longer before failing than 
simple cycle and fossil steam units.20 We fit Weibull and gamma distributions to the MTBF 
values by unit type and report the parameters in Table S-11 and Table S-12. 
 
We note that these results depend to some degree on our definition of a failure. While we have 
defined a failure as any reduction from full availability, any desired threshold could be used. We 
include a sensitivity analysis over a range of failure definitions (Figure S-38). The MTBF results 
are quite insensitive to alternative failure definitions. We present histograms of the number of 
between-failure periods used to calculate each unit’s MTBF in Figure S-33 through Figure S-37. 
We note that some units’ MTBFs are calculated based on only a single between-failure period. 
With a longer time series, the proportion of units with MTBFs based on very few between-failure 
periods would decrease, increasing confidence in the robustness of these results. We also note 
that metrics such as the equivalent forced outage rate (EFOR) can complement the MTBF by 
summarizing the average availability of a unit over a desired study period, rather than just the 
frequency of reductions in availability.  
 
We define the mean time to recovery (MTTR) as the average number of hours that elapse while a 
unit experiences some reduction in availability—i.e. the average duration of failure periods. In 
contrast to MTBF, we do not need to remove RS hours prior to calculating MTTR, so no units 
are excluded on the basis of their RS reporting fidelity. We present capacity-weighted histograms 
of the MTTR results (Figure S-39 through Figure S-43). The heading of each plot reports the 
number of units for which an MTTR value can be calculated (numerator) and the number of units 
reporting at least a single unscheduled event during our study period (denominator), which again 
serves as a proxy for the sample size. We summarize selected percentiles of MTTR values for 
each unit type in Table 4. Smaller MTTR values indicate shorter average repair durations.  
 
Table 4: Selected percentiles of capacity-weighted mean time to recovery values by unit type 
(hours). Abbreviations: CC combined cycle units, CT simple cycle gas units, FSFB fossil steam and 
fluidized bed units, HY hydroelectric, NU nuclear. 

 10th 20th 30th 40th 50th 60th 70th 80th 90th 
CC 6 10 13 17 21 28 38 60 115 
CT 5 9 14 20 31 50 79 161 409 
FSFB 15 21 27 34 44 56 74 107 240 
HY 4 6 9 14 22 32 57 134 370 
NU 49 69 81 97 126 176 332 680 1,058 

 
We conclude that combined cycle units typically have among the lowest MTTR values while 
nuclear units have among the highest.21 We fit Weibull and gamma distributions to the MTTR 
values by unit type and report the parameters in Table S-15 and Table S-16. We present 
histograms of the number of failure periods used to calculate each unit’s MTTR in Figure S-44 
through Figure S-48. We note that some units’ MTTRs are calculated based on only a single 

                                                 
20 We note that our results do not control for the type of failures, the age of the units, operations and maintenance 
expenditures, or other variables that may affect the MTBF. 
21 We note that our results do not control for the type of failures, the age of the units, operations and maintenance 
expenditures, or other variables that may affect the MTTR. 
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failure period. With a longer time series, the proportion of units with MTTRs based on very few 
failures periods would decrease, increasing confidence in the robustness of these results.  

4.4.6 Testing whether MTBF values differ for small and large units 
We next test whether the MTBF values of large and small units differ. For each of the five unit 
types we consider, we define “large” units as those with nameplate capacities greater than or 
equal to the median value for that unit type, and “small” otherwise. We employ two tests of 
stochastic dominance: the Mann-Whitney U test (two-sample unpaired Wilcoxon test) and the 
two-sample Kolmogorov-Smirnov test.  
 
For each of the 40 region-by-unit-type cases we examine, the Mann-Whitney U test sorts the 
MTBF values and uses the resulting arrangement of the labels (i.e. whether each data point 
represents a small or large unit) to compute a test statistic representing how “separated” the large 
and small units are. If the separation is great enough, we reject the null hypothesis that there is no 
statistically significant difference. We conduct both directions of a one-sided test for each of the 
40 cases (i.e. testing both that small units have lower MTBF values than large units, and that 
large units have lower MTBF values than small units)—only one of which can be significant—
and report the results in Table 5. We also conduct the test when aggregating over regions. Table 
6 provides selected percentiles of nameplate capacity by unit type for reference. We present 
histograms with the MTBF values of small and large units overlaid in Figure S-49 through 
Figure S-53.  
 
Table 5: Mann-Whitney U test results for stochastic dominance comparing MTBF values of small 
(S) and large (L) units by unit type and region. Large units are those with nameplate capacities 
greater than or equal to the median value for that unit type. “L < S” indicates that large units have 
a statistically significantly lower MTBF than small units at the indicated significance level. Reserve 
shutdown hours have been removed. Units with significant reserve shutdown reporting 
discrepancies are excluded (see Table S-14). Abbreviations: CC combined cycle units, CT simple 
cycle gas units, FSFB fossil steam and fluidized bed units, HY hydroelectric, NU nuclear. 

 CC CT FSFB HY NU 
FRCC S < L **** -- L < S * N/A1 N/A2 
MRO L < S * S < L **** L < S *** -- N/A2 
NPCC -- S < L **** L < S *** S < L **** S < L * 
RFC L < S ** S < L **** L < S **** L < S *** L < S * 
SERC L < S *** S < L **** L < S *** S < L *** -- 
SPP -- -- L < S **** -- N/A2 
TRE L < S **** S < L ** L < S ** -- N/A2 
WECC -- S < L *** L < S **** S < L **** N/A2 
Combined -- S < L **** L < S **** S < L **** -- 
Significance levels: ‘--’ ≥ 0.1; ‘*’ < 0.1; ‘**’ < 0.05; ‘***’ < 0.01; ‘****’ < 0.001 
1. FRCC has no hydroelectric units, so no test could be conducted. 
2. Five regions do not have any nuclear units in one size category, so no test could be 
conducted. 
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Table 6: Selected percentiles of nameplate capacity values by unit type. Here units with significant 
reserve shutdown reporting discrepancies are included, so median nameplate capacity values do not 
always match the threshold used to define “small” and “large” units for the MTBF comparisons. 
Abbreviations: CC combined cycle units, CT simple cycle gas units, FSFB fossil steam and fluidized 
bed units, HY hydroelectric, NU nuclear. 

 10th 20th 30th 40th 50th 60th 70th 80th 90th 
CC 60 91 155 173 182 191 217 269 370 
CT 19 24 40 49 57 66 85 100 165 
FSFB 50 80 111 150 199 265 394 527 661 
HY 2 3 8 14 24 34 47 70 113 
NU 663 867 887 946 1,022 1,155 1,175 1,207 1,274 

 
For combined cycle gas units, large units have statistically significantly lower MTBF values than 
small units in four regions (MRO, RFC, SERC, and TRE), FRCC exhibits the reverse 
relationship, and the remaining three regions show no significant difference.  
 
For simple cycle gas units, small units have statistically significantly lower MTBF values than 
large units in six regions, while FRCC and SPP showed no statistically significant difference.  
 
For fossil steam units, all eight regions show statistically significantly lower MTBF for large 
units than small units.  
 
For hydroelectric units, three of the regions (NPCC, SERC, and WECC) show smaller units 
having lower MTBF values than large units, RFC exhibits the reverse relationship, three regions 
(MRO, SPP, and TRE) showed no significant difference, and FRCC had no hydroelectric units.  
 
Finally, for nuclear units, five of the regions did not have representation from both “small” and 
“large” categories so no test could be conducted, SERC showed no significant difference, NPCC 
showed smaller units having statistically significantly lower MTBF values than large units, and 
RFC exhibited the reverse relationship.  
 
In the aggregate only simple cycle, fossil team, and hydroelectric units showed statistically 
significant MTBF values between small and large units.  
 
As a robustness check, we also conduct two-sample Kolmogorov-Smirnov tests for each region-
by-unit-type case. This test similarly seeks to determine whether two data samples come from 
the same population. The test statistic is the greatest discrepancy between the empirical 
distribution functions of the small and large units for the current region-by-unit-type case. The 
test statistic is compared to a critical value defined by the sample sizes and desired significance 
level. Results were consistent with the Mann-Whitney U test and are reported in Table S-13. 

4.4.7 Time series of unavailable capacity from unscheduled, maintenance, and scheduled 
events 
In addition to the seven unscheduled event types, GADS also includes maintenance and 
scheduled outages and deratings. Maintenance events have flexible start dates and are less urgent 
than unscheduled events. Scheduled (planned) events are set well in advance and are of 
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predetermined durations.22 We present time series of these events, overlaid with our time series 
of unscheduled events for context, by unit type (Figure 11 through Figure 15). We also publish 
these data so that others may work with them. These time series can be used to model the 
statistical relationship of unavailable capacity and relevant features such as weather, attributes of 
the generating unit, and system load. Such a model could then be used to determine capacity 
requirements for a power system without making any assumptions about independence or 
seasonality. 
 

 
Figure 11: Unscheduled (black), maintenance (red), and scheduled (blue) unavailable capacity for 
combined cycle units. 

 

                                                 
22 NERC defines maintenance events as those that can be deferred beyond the end of the upcoming weekend (i.e. 
beyond Sunday 2400 hours) if the event occurs prior to Friday 2400 hours, or beyond the end of the subsequent 
weekend if the event occurs after Friday 2400 hours (NERC, 2017). While NERC does not give a precise definition 
for scheduled events, system operators typically require requests for scheduled events to be submitted with at least 
30 days notice (PJM, 2017b). 
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Figure 12: Unscheduled (black), maintenance (red), and scheduled (blue) unavailable capacity for 
simple cycle gas units. 

Figure 13: Unscheduled (black), maintenance (red), and scheduled (blue) unavailable capacity for 
fossil steam and fluidized bed units. 
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Figure 14: Unscheduled (black), maintenance (red), and scheduled (blue) unavailable capacity for 
hydroelectric units. 

 
Figure 15: Unscheduled (black), maintenance (red), and scheduled (blue) unavailable capacity for 
nuclear units. 
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5. Conclusions 
Using four years of generator availability data for approximately 85% of installed capacity in the 
conterminous U.S. and the Canadian provinces, we have shown that correlated failures represent 
a significant resource adequacy risk. While FRCC and WECC were exceptions in this analysis23, 
we note that neither region is likely immune to correlated failures; they simply did not 
experience correlated failures during our four-year study period. 
 
We found little evidence for seasonal patterns in unscheduled unavailable capacity in the eight 
NERC regions. Instead we found that large unavailable capacity events can occur in any season 
and that unavailable capacity should be thought of as an AR(1) process, where the best 
prediction of average unavailable capacity this month is average unavailable capacity last month. 
These findings suggest that a seasonal resource adequacy construct, whereby an availability 
statistic is calculated for each unit in each season, may not meaningfully reduce resource 
adequacy risk. However, these conclusions may change with a longer study period.  
 
Our findings highlight an important limitation of current resource adequacy modeling (RAM) 
practice: distilling the availability history of a generating unit to a single value (e.g. EFORd, the 
equivalent forced outage rate during times of high demand) discards important information about 
when units in a power system fail in relation to one another. Only by incorporating the full 
availability history of each unit into RAM can we account for correlations among generator 
failures when determining the capacity needs of a power system. We strongly recommend that 
system planners incorporate correlated failure analysis into their RAM practice. 
 
Noting that the largest correlated failure instances were caused by extreme weather (Hurricane 
Sandy and the cold weather events of January 2014), we further recommend that unscheduled 
unavailable capacity be modeled as a function of relevant features (e.g. temperature and other 
weather variables, unit age, maintenance histories, system load). In conjunction with temperature 
and load forecasts for a desired planning year, system planners could likely compute improved 
estimates of capacity requirements. We are currently pursuing this research. 
 
In addition to our study of correlated failures and seasonality, we reported the results of a set of 
analyses that can be used to populate Markov models of generator availability for a power 
system. These included parametric fits to distributions of unscheduled unavailable capacity, 
derating magnitudes, event durations, hourly failure probabilities, and mean time between 
failures (MTBF) and mean time to recovery (MTTR) values. In each case we report the fit 
parameters for use by reliability practitioners. The final component needed to allow for 
correlated failures under a Markov model is a correlation matrix for the generating units. We do 
not report this due to confidentiality requirements, but note that it can be readily calculated using 
time series of unscheduled unavailable capacity; it cannot be computed when using the 
availability statistic approach to RAM. In addition we tested for statistically significant 
differences in the MTBF between small and large units. We found many significant differences 
when looking at regions individually; when aggregating over regions, simple cycle gas, fossil 

                                                 
23 FRCC showed no evidence of correlated failures during our study period. WECC showed evidence of correlated 
failures under our binomial modeling approach but not under our block subsampling approach. 
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steam, and hydroelectric units showed statistically significant differences while combined cycle 
gas and nuclear units did not. 
 
The requirement for mandatory reporting to GADS has allowed the development of the analyses 
presented. As additional years of data accumulate, the techniques used here will allow more 
robust results that may differ from the conclusions reached based on only four years of data. 
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Glossary 
 
CC: Combined cycle units 
CT: Simple cycle units 
D1, D2, D3: Unscheduled deratings (partial failures), event types in GADS 
FERC: Federal Energy Regulatory Commission 
FRCC: Florida Reliability Coordinating Council, a NERC Regional Entity 
FSFB: Fossil steam and fluidized bed combustion units 
GADS: Generating Availability Data System, a database of historical generator availability 
HY: Hydroelectric and pumped storage units 
MRO: Midwest Reliability Organization, a NERC Regional Entity 
NAC: Net available capacity, a variable reported in a GADS event record indicating the amount 
of available capacity remaining on the unit at the start of the corresponding event 
NERC: North American Electric Reliability Corporation, the FERC-designated Electric 
Reliability Organization for the United States 
NPCC: Northeast Power Coordinating Council, a NERC Regional Entity 
NU: Nuclear units 
ORAP: Operational Reliability Analysis Program, a database of historical generator availability 
PJM: PJM Interconnection LLC, a regional transmission operator in the eastern United States 
RAM: Resource adequacy modeling 
RFC: ReliabilityFirst Corporation, a NERC Regional Entity 
RS: Reserve shutdown event type 
RTO: Regional transmission operator 
SERC: Southeast Electric Reliability Council, a NERC Regional Entity 
SF: Startup failure, an unscheduled event type in GADS 
SPP: Southwest Power Pool, a NERC Regional Entity 
TRE: Texas Reliability Entity, a NERC Regional Entity 
U1, U2, U3: Unscheduled full outages, event types in GADS 
WECC: Western Electricity Coordinating Council, a NERC Regional Entity 
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1 Characteristics of the generator availability data  
 
A map of the eight NERC regions in the conterminous United States and the Canadian provinces 
is shown below in Figure S-1.  
 

 
Figure S-1: The NERC regions. Source: NERC. 
 
Overall outage statistics for each region’s time series are below in Table S-1. 
 
Table S-1: Summary statistics for the regional time series of unscheduled unavailable 
capacity. 

Region Mean (%) Median (%) Maximum (%) QCD1 
FRCC 2.8 2.8 8.4 0.30 
MRO 4.9 4.7 12.2 0.24 
NPCC 2.9 2.8 10.22 0.25 
RFC 5.7 5.5 22.63 0.19 
SERC 5.0 5.0 15.63 0.13 
SPP 6.3 6.1 16.4 0.21 
TRE 4.8 4.5 14.1 0.28 
WECC 4.0 3.9 7.2 0.15 
1. The quartile coefficient of dispersion (QCD) is calculated as (Q3–Q1)/(Q3+Q1), 
where Q1 and Q3 refer to the first and third quartiles, respectively. 
2. Hurricane Sandy, October 2012. 
3. Polar Vortex, January 2014. 
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We present hourly time series of the percent of generating units in each region affected by an 
unscheduled event in Figure S-2. In contrast to Figure 3 in the main text, Figure S-2 shows 
correlated failures without weighting by capacity. Higher values in this plot denote instances 
where a large number of units are simultaneously affected by an unscheduled event, without 
regard to the nameplate capacity of the unit or, in the case of partial failures, the magnitude of 
the failure itself. Where this figure differs from Figure 3 in the main text can help identify when 
a large unavailable capacity event is due to a few large units failing together.  
 

 
Figure S-2: Percent of units in each region reporting an unscheduled event in each hour of 
time series Green: unscheduled outages only; red: unscheduled deratings only; blue: start-
up failures only; black: all unscheduled events (the sum of green, red, and blue curves). 
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The percent of unavailable capacity from each of the unscheduled event types (startup failures, 
unscheduled outages, and unscheduled deratings) is shown as a pie chart for each region in 
Figure S-3. This weights the prevalence of unscheduled events by their magnitude. We 
complement this with the percent of event counts by unscheduled event type in Figure S-4. 
Deratings are the most common unscheduled event type in every region but full outages always 
represent more unscheduled unavailable MWh.  
 

 
Figure S-3: Proportion of unscheduled unavailable MWh by event type category. 
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Figure S-4: Proportion of unscheduled event counts by event type category. 
 
A histogram of the number of months each unit was in operation during the four years of our 
analysis is shown in Figure S-5. This supports the MTBF, MTTR, and correlated failures 
analyses, which implicitly assume that all units are in operation for the full study period. More 
than 60% of units were active the entire study period and 80% were active for at least three 
years.  
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Figure S-5: Histogram of months each unit was in operation (2012-2015). 
 
In order to facilitate some forms of statistical analysis of the durations of unscheduled events, we 
show histograms of the duration of unscheduled events by event type in Figures S-6, S-7, and S-
8 for the full four-year study period. In all regions the distributions are long-tailed: while the 90th 
percentile duration is less than 100 hours in each region, the maximum is always a full calendar 
year (i.e., either 8760 or 8784 hours). Events that span multiple calendar years are broken into 
calendar year components automatically in GADS, though this does not affect any of our 
primary results. 
 
We note that in NPCC the most common event duration is 24 hours—representing 60% of all 
unscheduled events reported in the region. More than 99% of these 24-hour events are deratings. 
When derating magnitudes vary over time, NERC allows generating unit operators to either 
report one derating corresponding to the average availability reduction or to report separate 
deratings each time the unit’s availability changes [1]. This suggests that generating unit 
operators in NPCC are more likely than in other regions to report separate deratings each time 
the unit’s availability changes, and to do so on a daily basis. Again, this does not affect any of 
our primary results but it does illustrate a human element of GADS reporting.  
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Figure S-6: Histogram of durations for startup failures. Full study period. Note the log 
scale for event durations. 
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Figure S-7: Histogram of durations for unscheduled outages. Full study period. Note the 
log scale for event durations. 
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Figure S-8: Histogram of durations for unscheduled deratings. Full study period. Note the 
log scale for event durations. 
 
Parameters of lognormal distributions fit to each region’s unscheduled event durations are 
reported by event type in Table S-2. 
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Table S-2: Parameters of lognormal distributions fit to each region’s unscheduled event 
durations by event type. Standard errors in parentheses. 
 Startup failures Unscheduled outages Unscheduled deratings 

meanlog sdlog meanlog sdlog meanlog sdlog 
FRCC 1.47 

(0.049) 
1.42 
(0.035) 

1.93 
(0.028) 

1.70 
(0.020) 

1.89 
(0.019) 

1.43 
(0.014) 

MRO 1.38 
(0.056) 

1.58 
(0.039) 

2.45 
(0.023) 

1.89 
(0.016) 

1.96 
(0.013) 

1.60 
(0.0090) 

NPCC 1.04 
(0.023) 

1.35 
(0.016) 

1.65 
(0.0097) 

1.71 
(0.0069) 

3.01 
(0.0028) 

0.97 
(0.0012) 

RFC 1.69 
(0.035) 

1.53 
(0.025) 

2.39 
(0.012) 

1.83 
(0.0084) 

2.14 
(0.0065) 

1.63 
(0.0046) 

SERC 1.36 
(0.027) 

1.48 
(0.019) 

2.32 
(0.011) 

1.76 
(0.0079) 

1.86 
(0.0094) 

1.73 
(0.0066) 

SPP 1.22 
(0.041) 

1.57 
(0.029) 

2.45 
(0.023) 

1.90 
(0.016) 

2.03 
(0.012) 

1.50 
(0.0084) 

TRE 0.84 
(0.032) 

1.14 
(0.023) 

2.01 
(0.018) 

1.70 
(0.013) 

1.69 
(0.011) 

1.43 
(0.0079) 

WECC 1.14 
(0.023) 

1.38 
(0.016) 

1.93 
(0.0099) 

1.84 
(0.0070) 

1.61 
(0.0065) 

1.43 
(0.0046) 

All 1.24 
(0.011) 

1.44 
(0.0080) 

2.07 
(0.0048) 

1.81 
(0.0034) 

2.31 
(0.0026) 

1.49 
(0.0019) 

 
Another human element of the GADS data is the time resolution of reported events. While 
GADS allows the precise start and end time of an event to be recorded, the observed data shows 
that nearly 40% of event starts and event ends are recorded on the hour. Event starts and ends are 
next most commonly logged on the half-hour, with significant representation in all other 
multiples of five minutes. Histograms of the start and end minute of each unscheduled event are 
shown in Figures S-9 and S-10.  
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Figure S-9: Histogram of recorded start minute of unscheduled events. 
 

 
Figure S-10: Histogram of recorded end minute of unscheduled events. 
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Summary statistics of the number of unscheduled events experienced by each generating unit are 
shown in Table S-3. 
 
Table S-3: Selected percentiles of the number of unscheduled events experienced during 
our 4-year study period in each NERC region. 
 
Region 10th 20th 30th 40th 50th 60th 70th 80th 90th 
FRCC 3 5 7 9 13 19 25 32 43 
MRO 2 4 6 9 11 16 22 38 99 
NPCC 8 15 21 27 36 47 69 131 491 
RFC 3 6 9 13 17 26 41 80 179 
SERC 3 5 7 10 13 18 27 42 84 
SPP 3 7 10 15 22 29 42 62 130 
TRE 5 10 15 20 27 33 44 56 83 
WECC 4 6 9 14 18 23 30 41 65 
 

2 Tests for independence among generators 
2.1 Block subsampling supplementary data 
Figure S-11 shows the distribution of each region’s empirical series of unscheduled unavailable 
capacity along with confidence intervals generated from 1000 block subsampling runs as 
exceedance curves for the full study period. Figure S-12 shows the same with the months 
containing Hurricane Sandy and January 2014 removed. We summarize the percentiles at which 
each region’s empirical distribution exceeds the upper bound of the 99% confidence band, along 
with the maximum magnitude of exceedance, in the left-hand side of Table S-4. The right two 
columns show the same results when removing the periods that encompass Hurricane Sandy and 
the extreme cold month of January 2014. 
 
As can be seen from the figures and table, all regions except FRCC and WECC exceed the upper 
bound of the 99% confidence band at some point in each region’s domain during the study 
period. When removing Hurricane Sandy and January 2014, MRO no longer exceeds the upper 
bound of its 99% confidence band. As a measure of whether the exceedances we observe in these 
six (five) regions represent a resource adequacy risk, we determine the amount of capacity 
needed to be procured in order to achieve the 1-in-10 loss of load expectation (LOLE) standard 
under the assumption of independent failures. Using the “one day in ten years” interpretation of 
this rule translates to 2.4 hours loss of load expectation per year, denoted 2.4 LOLH [2]. 2.4 
LOLH is indicated via the dashed horizontal line in Figure S-11 and Figure S-12; the 
corresponding amount of capacity required at 95% and 99% confidence is indicated by the 
dashed vertical lines, drawn where the dashed horizontal line intersects the upper bound of each 
regions confidence bands. Using this approach, we conclude that managerially significant 
correlated failures are present in NPCC, RFC, SERC and TRE during the full study period, and 
only in NPCC, RFC, and TRE when removing Hurricane Sandy and January 2014.  
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Figure S-11: 95% and 99% confidence bands from 1000 block subsampling runs (non-
seasonal subsampling, full 2012-2015 period) in dark and light gray, respectively; full 
empirical distributions in red. Dashed horizontal line indicates 2.4 LOLH threshold; 
dashed vertical lines indicate intersection of 2.4 LOLH threshold with the upper bound of 
each confidence band. 
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Figure S-12: 95% and 99% confidence bands from 1000 block subsampling runs (non-
seasonal subsampling, Hurricane Sandy and January 2014 removed) in dark and light 
gray, respectively; empirical distributions (excluding Hurricane Sandy and January 2014) 
in red. Dashed horizontal line indicates 2.4 LOLH threshold; dashed vertical lines indicate 
intersection of 2.4 LOLH threshold with the upper bound of each confidence band. 
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Table S-4: Summarizing percentiles for which empirical distribution exceeds block 
subsampling confidence band and magnitude of exceedance via block subsampling, for 
both the full study period (left) and when removing Hurricane Sandy and January 2014 
(right). 

 Full period Removing Sandy and January 2014 
Region Percentiles Max divergence Percentiles Max divergence 
FRCC -- -- -- -- 
MRO 97 2% -- -- 
NPCC 79-100 47% 79-100 28% 
RFC 73-100 115% 70-100 29% 
SERC 100 73% 100 14% 
SPP 98-99 5% 99 4% 
TRE 87-100 17% 89-100 16% 
WECC -- -- -- -- 
 
We present histograms of the block length (in hours) used for each generating unit for the block 
subsampling analysis (Figure S-13). Block lengths range from a single hour to a maximum of 
562 hours (~23 days).  
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Figure S-13: Histograms of optimal block length used in the block subsampling analysis. 
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2.2 Binomial event arrivals supplementary data 
We present histograms of each unit’s hourly probability of experiencing an unscheduled event 
arrival for the full study period, overlaid with a fitted lognormal distribution, in Figure S-14. 
Each unit’s event arrival probability is estimated according to Equation 3 in the main text.  

 
Figure S-14: Event arrival probabilities by region with fitted lognormal distribution 
overlaid. Probabilities estimated via Equation 3 in the main text. Full study period. 
Excludes the nine units that are not at least partially available for 1000 or more hours 
during the study period. 
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We summarize the parameters of lognormal fits to each region’s distribution of unscheduled 
event arrival probabilities in Table S-5. 
 
Table S-5: Parameters of lognormal fits to distribution of unscheduled event arrival 
probabilities, by region. Full period. Standard errors in parentheses.  
 meanlog sdlog 
FRCC -8.10 (0.065) 1.19 (0.046) 
MRO -7.94 (0.061) 1.40 (0.043) 
NPCC -6.77 (0.044) 1.49 (0.031) 
RFC -7.53 (0.040) 1.52 (0.028) 
SERC -7.93 (0.032) 1.33 (0.230) 
SPP -7.50 (0.069) 1.42 (0.049) 
TRE -7.37 (0.057) 1.19 (0.041) 
WECC -7.73 (0.027) 1.20 (0.019) 
Combined -7.60 (0.016) 1.41 (0.011) 
 

2.3 A supplemental statistical test for failure correlation 
We also test for positive correlation for every possible pair of units in each region using a t-test 
as described in [3]. For each pairwise comparison, we compare the test statistic to the critical 
value for a one-sided 5% test (1.645) and then record the percent of test statistics that are 
statistically significant in each region. For this test, each unit’s series has been normalized by its 
nameplate capacity.  
 
Because each unit’s series of arrivals is used for many pairwise comparisons, we establish the 
rejection rate under the null hypothesis for each region through simulation. We use the same 
simulated series of normalized unscheduled unavailable capacity generated for the binomial 
simulation analysis presented in the main text. Here, for each iteration of the simulation, we 
compute a t-test for all possible pairs of generating units in each region and record the percent of 
test statistics that are statistically significant. We repeat this process 1000 times and determine 
the 95th and 99th percentile of rejection rates for each region. These are the thresholds of 
significance we use to say whether each region demonstrates correlated failures under this 
method. We present results for the full study period in Table S-6 and when removing Hurricane 
Sandy and January 2014 in Table S-7.  
 
Table S-6: Pairwise binomial test results for empirical and simulated series by region for 
the full period. 

 FRCC MRO NPCC RFC SERC SPP TRE WECC 
Empirical 13.3% 20.5% 29.0% 30.7% 18.8% 25.0% 20.3% 17.7% 
99% simulation 12.1% 17.4% 23.9% 21.8% 15.5% 22.5% 19.1% 16.1% 
95% simulation 11.8% 17.2% 23.7% 21.7% 15.4% 22.2% 18.8% 15.9% 
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Table S-7: Pairwise binomial test results for empirical and simulated series by region when 
excluding Hurricane Sandy and January 2014. 

 FRCC MRO NPCC RFC SERC SPP TRE WECC 
Empirical 13.2% 19.7% 28.3% 27.0% 17.4% 24.7% 20.0% 17.6% 
99% simulation 12.0% 17.0% 23.5% 21.0% 15.1% 22.5% 18.9% 15.9% 
95% simulation 11.8% 16.8% 23.3% 20.8% 15.0% 22.2% 18.7% 15.8% 
 
Using this method we find evidence of correlated failures in all eight regions for the full study 
period and when removing the two months of data corresponding to Hurricane Sandy and 
January 2014, at both the 95% and 99% confidence levels. However we emphasize that as this 
test does not weight generating units by their size, statistical significance need not imply 
meaningful resource adequacy risk. Rather, we refer the reader to our conclusions in Section 4.2 
in the main text, where we found meaningful violations of the independence assumption only in 
four regions: NPCC, RFC, SERC, and TRE.  

3 Seasonality 
3.1 When do correlated failures occur?  
To determine whether correlated failures are restricted to particular seasons, we generate 
exceedance curves for each NERC season and overlay 95% and 99% confidence bands generated 
via block subsampling (Figures S-15 through S-20). When removing Hurricane Sandy from fall 
and January 2014 from winter, there are six seasons in total. We find evidence of correlated 
failures in all seasons: four regions (NPCC, RFC, SERC, and SPP) in each winter definition, four 
regions (MRO, RFC, SERC, and TRE) in spring, three regions (NPCC, RFC, and TRE) in 
summer, five regions (MRO, NPCC, RFC, SPP, and TRE) in the full fall definition, and three 
regions (RFC, SPP, and TRE) in the shortened fall definition. We conclude that violations of the 
independent failures assumption can likely occur in any season in any region. 
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Figure S-15: 95% and 99% confidence bands from 1000 block subsampling runs for the 
full winter period (December, January, and February 2012-2015) in black, empirical 
distributions for only winter months in red. 
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Figure S-16: 95% and 99% confidence bands from 1000 block subsampling runs for the 
winter period except January 2014 in black, empirical distributions for corresponding 
winter months in red. 
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Figure S-17: 95% and 99% confidence bands from 1000 block subsampling runs for the 
spring period (March, April, and May 2012-2015) in black, empirical distributions for 
corresponding months in red. 
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Figure S-18: 95% and 99% confidence bands from 1000 block subsampling runs for the 
summer period (June, July, August, and September 2012-2015) in black, empirical 
distributions for corresponding months in red. 
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Figure S-19: 95% and 99% confidence bands from 1000 block subsampling runs for the 
fall period (October and November 2012-2015) in black, empirical distributions for 
corresponding months in red. 
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Figure S-20: 95% and 99% confidence bands from 1000 block subsampling runs for the 
fall period except Hurricane Sandy (October and November 2012-2015 except for October 
29-November 30, 2012) in black, empirical distributions for corresponding months in red. 
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3.2 Supplementary data for seasonality in average unavailable capacity 
To test for recurrent patterns in average unscheduled unavailable capacity, we compute monthly 
autocorrelation functions of unscheduled unavailable capacity by region (Figure S-21). We 
generate these by computing average unscheduled unavailable capacity in each month for each 
region. Significant seasonality would manifest as a lag-12 peak (corresponding to a one-year lag) 
that exceeds the 95% confidence bands. Except for FRCC, we see that each region’s lag-12 peak 
is not significant. As a sensitivity analysis, we repeat this analysis by season (Figure S-22). Here 
significant seasonality would manifest as a lag-4 peak (again corresponding to a one-year lag) 
that exceeds the 95% confidence bands. Except for FRCC, we see that each region’s lag-4 peak 
is not significant. 
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Figure S-21: Autocorrelation functions of monthly average unscheduled unavailable 
capacity by region with 95% confidence interval for assessing statistical significance of lags 
(dashed blue lines). 
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Figure S-22: Autocorrelation functions of seasonal average unscheduled unavailable 
capacity by region with 95% confidence interval for assessing statistical significance of lags 
(dashed blue lines). 
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We next plot each season’s distribution of unscheduled unavailable capacity as exceedance 
curves (Figure S-23). The seasonal exceedance curves generally overlap, again suggesting little 
evidence of consistent seasonality. 
 

 
Figure S-23: Seasonal distributions of unscheduled unavailable capacity. Winter is shown 
in blue, spring in green, summer in red, and fall in black for each of the four years 
analyzed. 
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3.3 Supplementary data for heteroskedasticity 
Given that we previously identified the one-month lag as being statistically significant, to test for 
heteroskedasticity at the monthly level we first fit AR(1) terms to each region’s monthly series of 
average unavailable capacity and then examine the residuals (Figure S-24). The residuals 
resemble white noise and appear to be homoskedastic. Autocorrelation functions of the residuals 
show no significant remaining structure (Figure S-25). We report AR(1) coefficients, standard 
errors, and t-statistics in Table S-8. From these results we conclude that we cannot generally 
support the hypothesis that certain times of the year systematically have more variability in 
unscheduled unavailable capacity than do others.  
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Figure S-24: AR(1) residuals for each NERC region. 
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Figure S-25: Autocorrelation functions of the AR(1) residuals for each NERC region with 
95% confidence interval for assessing statistical significance of lags (dashed blue lines). 
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Table S-8: AR(1) coefficients, standard errors, and t-statistics by region. 

 FRCC MRO NPCC RFC SERC SPP TRE WECC 
Coefficient 0.689 0.458 0.751 0.563 0.502 0.359 0.632 0.707 
Standard error 0.101 0.127 0.094 0.120 0.131 0.134 0.109 0.098 
t-statistic 6.82 3.61 7.99 4.69 3.83 2.68 5.80 7.21 

 
 

3.4 Supplemental data on the potential benefits of seasonal availability statistics 
Current resource adequacy modeling practice in North America calculates an availability statistic 
using five full years of data. This implicitly assumes that generator availability is constant 
throughout the year. If instead generator availability was consistently seasonal, calculating 
availability statistics separately for each season could improve the accuracy of the probability 
distribution of different contingencies by season. To assess these potential benefits we combine 
the seasonal block subsampling results from Section 4.3.1 in the main text and plot the results as 
exceedance curves for both the full study period (Figure S-26) and when excluding Hurricane 
Sandy and the Polar Vortex (Figure S-27). We find minimal benefits from using seasonal 
availability statistics for resource adequacy modeling.  
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Figure S-26: 1000 seasonal block subsampling runs for the full period 2012-2015. 
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Figure S-27: 1000 seasonal block subsampling runs for the period 2012-2015 excluding 
Hurricane Sandy and January 2014. 
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4 Reliability applications 
4.1 Parametric fits to distributions of unscheduled unavailable capacity 
We fit Weibull and lognormal distributions to each region’s distribution of unscheduled 
unavailable capacity, both for the full study period (Figure S-28) and with January 2014 and 
Hurricane Sandy removed (Figure S-29). We report the parameters of each fit in Table S-9. 
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Figure S-28: Overlay of Weibull (red) and lognormal (blue) fits to observed exceedance 
curves (black) for the 2012-2015 period. Weibull and lognormal parameters are given in 
Table S-9. 
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Figure S-29: Overlay of Weibull (red) and lognormal (blue) fits to observed exceedance 
curves (black), removing Hurricane Sandy and January 2014. Weibull and lognormal 
parameters are given in Table S-9. 
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Table S-9: Parameters for Weibull and lognormal distributions for distributions of 
unscheduled unavailable capacity by region for the full study period (left) and when 
excluding Hurricane Sandy and January 2014 (right). Standard errors in parentheses. 

 Full period Removing Hurricane Sandy and Jan 2014 
Weibull Lognormal Weibull Lognormal 

shape scale meanlog sdlog shape scale meanlog sdlog 
FRCC 2.47 

(0.010) 
1,910 
(4.35) 

7.32 
(0.0028) 

0.526 
(0.0020) 

2.54 
(0.011) 

1,940 
(4.39) 

7.34 
(0.0027) 

0.500 
(0.0019) 

MRO 3.20 
(0.013) 

3,100 
(5.47) 

7.87 
(0.0019) 

0.348 
(0.0013) 

3.22 
(0.013) 

3,070 
(5.51) 

7.86 
(0.0019) 

0.347 
(0.0013) 

NPCC 2.65 
(0.010) 

4,940 
(10.53) 

8.31 
(0.0021) 

0.396 
(0.0015) 

2.84 
(0.011) 

4,790 
(9.74) 

8.29 
(0.0021) 

0.382 
(0.0015) 

RFC 3.00 
(0.011) 

14,130 
(26.77) 

9.40 
(0.0017) 

0.313 
(0.0012) 

3.48 
(0.014) 

13,690 
(22.77) 

9.38 
(0.0016) 

0.297 
(0.0011) 

SERC 4.78 
(0.015) 

14,370 
(16.95) 

9.48 
(0.0010) 

0.187 
(0.00071) 

5.81 
(0.023) 

14,270 
(14.20) 

9.48 
(0.0010) 

0.184 
(0.00071) 

SPP 3.27 
(0.013) 

4,070 
(7.044) 

8.15 
(0.0018) 

0.339 
(0.0013) 

3.34 
(0.013) 

4,100 
(7.11) 

8.16 
(0.0018) 

0.326 
(0.0013) 

TRE 2.52 
(0.010) 

4,360 
(9.77) 

8.17 
(0.0023) 

0.435 
(0.0016) 

2.50 
(0.010) 

4,360 
(10.09) 

8.17 
(0.0024) 

0.439 
(0.0017) 

WECC 5.22 
(0.021) 

8,940 
(9.65) 

8.99 
(0.0012) 

0.216 
(0.00081) 

5.15 
(0.021) 

8,920 
(10.01) 

8.99 
(0.0012) 

0.218 
(0.00084) 

Combined 1.41 
(0.0020) 

6,989 
(9.91) 

8.46 
(0.0015) 

0.798 
(0.0011) 

1.24 
(0.0018) 

5,880 
(9.74) 

8.25 
(0.0016) 

0.850 
(0.0012) 

 

4.2 Parametric fits to distributions of normalized derating magnitudes 
We fit Weibull distributions to each unit type’s normalized derating magnitudes (Figure S-30). 
We report the parameters of each fit in Table S-10. This information can be used in conjunction 
with the other results presented in Section 4.4 of the main text in Markov modeling of power 
systems.  
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Figure S-30: Distribution of derating magnitudes as a percentage of nameplate capacity, 
with fitted Weibull distributions. 
 
Table S-10: Parameters for Weibull fits to derating magnitudes by unit type. Standard 
errors in parentheses. 

Combined cycle Simple cycle Fossil steam Hydroelectric Nuclear 
Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale 
1.77 
(0.010) 

0.44 
(0.0018) 

1.72 
(0.022) 

0.44 
(0.0040) 

1.12 
(0.0022) 

0.23 
(0.00053) 

1.69 
(0.0042) 

0.51 
(0.00095) 

0.72 
(0.011) 

0.17 
(0.0047) 
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4.3 Mean time between failure and mean time to recovery 

4.3.1 Supplementary MTBF results 
The parameters for Weibull and gamma distributions fit to each unit type’s capacity-weighted 
MTBF values excluding reserve shutdown (RS) hours are given in Tables S-11 and S-12. We do 
not report parameters at the region-by-unit-type level due to small sample sizes in several 
instances. 
 
Table S-11: Parameters for Weibull fits to capacity-weighted MTBF values excluding 
reserve shutdown hours, by unit type. Standard errors in parentheses.  

Combined cycle Simple cycle Fossil steam Hydroelectric Nuclear 
Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale 

1.12 
(0.0016) 

1,060 
(2.12) 

0.78 
(0.0015) 

440 
(1.71) 

1.08 
(0.0012) 

420 
(0.65) 

1.13 
(0.0029) 

3,120 
(10.35) 

1.34 
(0.0029) 

2,880 
(7.03) 

 
 
Table S-12: Parameters for gamma fits to capacity-weighted MTBF values excluding 
reserve shutdown hours, by unit type. Standard errors in parentheses.  

Combined cycle Simple cycle Fossil steam Hydroelectric Nuclear 
Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale 

1.48 
(0.004) 

680 
(2.19) 

0.75 
(0.0026) 

710 
(3.41) 

1.30 
(0.0026) 

310 
(0.76) 

1.34 
(0.006) 

2,220 
(12.04) 

1.94 
(0.0079) 

1,350 
(6.20) 

 
Histograms of the number of between-failure periods used to calculate each unit’s MTBF are 
shown in Figure S-31 through Figure S-35. We note that some units’ MTBFs are calculated 
based upon only a single between-failure period. With a longer time series, the proportion of 
units with MTBFs based on very few between-failure periods would decrease, increasing 
confidence in the robustness of these results. 
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Figure S-31: Count of between-failure periods used to calculate mean time between failure 
for combined cycle units. Units with significant reserve shutdown reporting discrepancies 
are excluded. 
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Figure S-32: Count of between-failure periods used to calculate mean time between failure 
for simple cycle units. Units with significant reserve shutdown reporting discrepancies are 
excluded. 
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Figure S-33: Count of between-failure periods used to calculate mean time between failure 
for fossil steam and fluidized bed units. Units with significant reserve shutdown reporting 
discrepancies are excluded. 
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Figure S-34: Count of between-failure periods used to calculate mean time between failure 
for hydroelectric units. FRCC has no such units. Units with significant reserve shutdown 
reporting discrepancies are excluded. 
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Figure S-35: Count of between-failure periods used to calculate mean time between failure 
for nuclear units. Units with significant reserve shutdown reporting discrepancies are 
excluded. 
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4.3.2 MTBF calculation information 
Not every unit has a calculated MTBF value because calculation of the MTBF requires at least 
two non-overlapping failures (i.e. at least one fully contained non-failure period). We disregard 
the hours occurring before the first failure and after the last failure, as applicable, because we 
cannot say how long these non-failure periods would extend. An alternative approach would be 
to average the durations of all non-failure periods. This would not exclude any units, but would 
be guaranteed to underestimate the MTBF for those units excluded by our method. With either 
approach, one could also apply a Bayesian prior on the MTBF to perhaps make the results more 
robust for units that have few unscheduled events. However, selection of an informative prior 
would be difficult.  
 
Some units’ MTBF values are based on very few non-failure periods. These units may be very 
reliable or may have just performed well during our study period. We recommend that system 
planners repeat this analysis with longer time series to increase confidence in the result. One 
could also look at the MTBF and MTTR for different primary cause codes. 
 
We note that our MTBF results depend to some degree on our definition of a failure. While we 
have defined a failure as any reduction from full availability, any desired threshold could be 
used. We include a sensitivity analysis over a range of failure definitions (Figure S-36). We 
conclude that the calculation of MTBF is not very sensitive to the selection of the minimum 
percent of unit’s nameplate capacity that must be unavailable to constitute a “failure”. 
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Figure S-36: Sensitivity of MTBF to the minimum percent of unit’s nameplate capacity 
that must be unavailable to constitute a “failure”. The legend has been split between the 
top two panels for readability. The rug along the y-axis indicates each region’s MTBF 
values when a failure is defined as any reduction in availability. Values have been 
calculated with all reserve shutdown hours removed. Units with significant reserve 
shutdown reporting discrepancies are excluded (see Table S-14). 
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4.3.3 Supplementary MTTR results 
We define the mean time to recovery (MTTR) as the average number of hours that elapse while a 
unit experiences some reduction in availability—i.e., the average duration of failure periods. In 
contrast to MTBF, we do not need to remove RS hours prior to calculating MTTR. We present 
capacity-weighted histograms of the MTTR results (Figures S-37 through S-41). In each of these 
plots we construct histograms with 50 bins. The heading of each plot reports the number of units 
for which an MTTR value can be calculated (numerator) and the number of units reporting at 
least a single unscheduled event during our study period (denominator), which again serves as a 
proxy for the sample size. Smaller MTTR values indicate shorter average repair durations.  
 
Histograms of the number of failure periods used to calculate each unit’s MTTR are shown in 
Figure S-42 through Figure S-46. We note that some units’ MTTRs are calculated based upon 
only a single failure period. With a longer time series, the proportion of units with MTTRs based 
on very few failure periods would decrease, increasing confidence in the robustness of these 
results. 
 
We present the parameters for Weibull and gamma distributions fit to each unit type’s 
distribution of MTTR values in Tables S-15 and S-16. We do not report parameters at the region-
by-unit-type level due to small sample sizes in several instances. 
 
Table S-13: Parameters for Weibull fits to capacity-weighted MTTR distributions by unit 
type. Standard errors in parentheses. 

Combined cycle Simple cycle Fossil steam Hydroelectric Nuclear 
Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale 

0.69 
(0.00085) 

45 
(0.14) 

0.53 
(0.00090) 

95 
(0.48) 

0.60 
(0.00056) 

106 
(0.28) 

0.47 
(0.00092) 

77 
(0.50) 

0.66 
(0.0013) 

386 
(1.90) 

 
 
Table S-14: Parameters for gamma fits to capacity-weighted MTTR distributions by unit 
type. Standard errors in parentheses. 

Combined cycle Simple cycle Fossil steam Hydroelectric Nuclear 
Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale 

0.58 
(0.0014) 

125 
(0.45) 

0.37 
(0.0010) 

644 
(3.21) 

0.44 
(0.00076) 

528 
(1.51) 

0.30 
(0.00098) 

914 
(5.62) 

0.55 
(0.0020) 

1,071 
(5.84) 

 

4.3.4 MTTR calculation information 
Similar to the considerations mentioned for the MTBF calculations above, we require that units 
have at least one completed failure period in order for us to calculate an MTTR. While this is a 
less restrictive requirement than that needed to calculate an MTBF, it still excludes 10 units from 
the analysis.  
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Figure S-37: Capacity-weighted mean time to recovery (MTTR) values for combined cycle 
gas units. Note the log scale for MTTR. In the parenthetical notation after the region name, 
the numerator indicates the count of units for which an MTTR could be calculated. The 
denominator indicates the count of units experiencing at least one unscheduled event 
during the study period (as a proxy for total count of active units during the study period). 
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Figure S-38: Capacity-weighted mean time to recovery (MTTR) values for simple cycle gas 
units. Note the log scale for MTTR. In the parenthetical notation after the region name, the 
numerator indicates the count of units for which an MTTR could be calculated. The 
denominator indicates the count of units experiencing at least one unscheduled event 
during the study period (as a proxy for total count of active units during the study period). 
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Figure S-39: Capacity-weighted mean time to recovery (MTTR) values for fossil steam and 
fluidized bed units. Note the log scale for MTTR. In the parenthetical notation after the 
region name, the numerator indicates the count of units for which an MTTR could be 
calculated. The denominator indicates the count of units experiencing at least one 
unscheduled event during the study period (as a proxy for total count of active units during 
the study period). 
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Figure S-40: Capacity weighted mean time to recovery (MTTR) values for hydroelectric 
units. FRCC has no such units. Note the log scale for MTTR. In the parenthetical notation 
after the region name, the numerator indicates the count of units for which an MTTR 
could be calculated. The denominator indicates the count of units experiencing at least one 
unscheduled event during the study period (as a proxy for total count of active units during 
the study period). 
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Figure S-41: Capacity-weighted mean time to recovery (MTTR) values for nuclear units. 
Note the log scale for MTTR. In the parenthetical notation after the region name, the 
numerator indicates the count of units for which an MTTR could be calculated. The 
denominator indicates the count of units experiencing at least one unscheduled event 
during the study period (as a proxy for total count of active units during the study period). 
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Figure S-42: Count of failure periods used to calculate mean time to recovery for combined 
cycle units. 
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Figure S-43: Count of failure periods used to calculate mean time to recovery for simple 
cycle units. 
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Figure S-44: Count of failure periods used to calculate mean time to recovery for fossil 
steam and fluidized bed units. 
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Figure S-45: Count of failure periods used to calculate mean time to recovery for 
hydroelectric units. FRCC has no such units.  
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Figure S-46: Count of failure periods used to calculate mean time to recovery for nuclear 
units. 
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4.3.5 Do the MTBFs of small and large units differ? 
In section 4.4.6 of the main text, we sought to determine whether the MTBF of large and small 
units differed using the Mann-Whitney U test and the two-sample Kolmogorov-Smirnov test. For 
each of the five unit types considered, we defined “large” units as those with nameplate 
capacities greater than or equal to the median value for that unit type, and “small” otherwise. We 
exclude units with significant discrepancies in RS reporting between the GADS Events and 
GADS Performance tables, which can lead to median nameplate values that differ slightly from 
those shown in Table 6 in the main text. Here we present the two-sample Kolmogorov-Smirnov 
test results (Table S-13). Results are highly consistent with the Mann-Whitney U test results 
(Table 5 in the main text). Note the test does not report directionality, unlike the Mann-Whitney 
U test; we presume directionality is consistent with those results.  
 
Table S-15: Two-sample Kolmogorov-Smirnov test for statistically significant differences 
in MTBF between small and large units by region and unit type. Abbreviations: CC 
combined cycle units, CT simple cycle gas units, FSFB fossil steam and fluidized bed units, 
HY hydroelectric, NU nuclear. 

 CC CT FSFB HY NU 
FRCC **** -- *** N/A1 N/A2 
MRO -- **** *** -- N/A2 
NPCC -- **** -- **** -- 
RFC * **** **** *** ** 
SERC *** **** *** *** -- 
SPP -- *** *** **** N/A2 
TRE **** *** **** N/A3 N/A2 
WECC -- -- *** **** N/A2 
Combined -- **** **** **** -- 
Significance levels: ‘--’ ≥ 0.1; ‘*’ < 0.1; ‘**’ < 0.05; ‘***’ < 0.01; ‘****’ < 0.001 
1. FRCC has no hydroelectric units, so no test could be conducted. 
2. Five regions do not have any nuclear units in one size category, so no test could be 
conducted. 
3. There are not enough hydroelectric units in TRE to conduct this test. 
 
 
As a complement to those results, we present histograms of the MTBF for small versus large 
units as Figure S-47 through Figure S-51. We again exclude units with significant discrepancies 
in RS reporting between the GADS Events and GADS Performance tables. 
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Figure S-47: Mean time between failure values for small (orange) versus large (black) 
combined cycle gas units; threshold is 185 MW. Note the log scale for MTBF. Numerator 
indicates count of units for which an MTBF could be calculated. Denominator indicates 
count of units experiencing at least one unscheduled event during the study period (proxy 
for total count of active units during the study period). Units with significant reserve 
shutdown reporting discrepancies are excluded (see Table S-14).  
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Figure S-48: Mean time between failure values for small (purple) versus large (black) 
simple cycle gas units; threshold is 57 MW. Note the log scale for MTBF. Numerator 
indicates count of units for which an MTBF could be calculated. Denominator indicates 
count of units experiencing at least one unscheduled event during the study period (proxy 
for total count of active units during the study period). Units with significant reserve 
shutdown reporting discrepancies are excluded (see Table S-14). 
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Figure S-49: Mean time between failure values for small (blue) versus large (black) fossil 
steam and fluidized bed units; threshold is 212 MW. Note the log scale for MTBF. 
Numerator indicates count of units for which an MTBF could be calculated. Denominator 
indicates count of units experiencing at least one unscheduled event during the study 
period (proxy for total count of active units during the study period). Units with significant 
reserve shutdown reporting discrepancies are excluded (see Table S-14). 
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Figure S-50: Mean time between failure values for small (tan) versus large (black) 
hydroelectric units; threshold is 23 MW. FRCC has no such units. Note the log scale for 
MTBF. Numerator indicates count of units for which an MTBF could be calculated. 
Denominator indicates count of units experiencing at least one unscheduled event during 
the study period (proxy for total count of active units during the study period). Units with 
significant reserve shutdown reporting discrepancies are excluded (see Table S-14). 
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Figure S-51: Mean time between failure values for small (green) versus large (black) 
nuclear units; threshold is 1022 MW. Note the log scale for MTBF. Numerator indicates 
count of units for which an MTBF could be calculated. Denominator indicates count of 
units experiencing at least one unscheduled event during the study period (proxy for total 
count of active units during the study period). No nuclear units had significant reserve 
shutdown reporting discrepancies (see Table S-14). 
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4.3.6 Removing reserve shutdown hours from MTBF calculations 
Some generator types are most typically employed as shoulder or peaking units, while others are 
most typically employed as baseload units. Non-baseload units will not always be required by a 
power system even when physically able to generate power, and these service requirements may 
vary by region due to market structure. Thus, when comparing the MTBF, both across and within 
unit types, it is important to consider only service hours. To do this, we remove RS hours from 
each unit’s time series prior to calculating the MTBF. 
 
The validity of our MTBF analysis therefore hinges upon robust reporting of RS events. While 
RS reporting is mandatory for all units except those hydroelectric units without automatic data 
recording equipment, we sought to verify reporting prior to attempting the analysis [1]. We 
tabulate the total RS hours reported under the Events and Performance tables for each unit that 
reported an unscheduled event during our study period. Based on these results, we divide units 
into three categories: those that do not report RS events at all, those for whom total RS hours 
differ by 100 hours or less between the two tables, and those for whom total RS hours differ by 
more than 100 hours between the two tables. Unit counts are converted to installed capacity 
values and summarized by unit type in Table S-14. 
 
Table S-16: Summary of capacity (MW) falling into each of three reserve shutdown 
reporting categories, by unit type. All capacity represented in column 2 and column 4 is 
included in the MTBF analysis. 

 MW not 
reporting RS 
events 

MW with RS 
events/performance 
discrepancy >100 
hours 

MW with RS 
events/performance 
discrepancy ≤100 
hours 

Percent of MW 
included in 
MTBF analysis 

Combined cycle 11,660 16,060 215,690 93.4% 
Simple cycle 4,840 29,970 129,480 81.8% 
Fossil steam 64,670 30,080 348,530 93.2% 
Hydroelectric 32,740 36,790 51,440 69.6% 
Nuclear 103,710 0 3,630 100% 
Total 217,620 112,900 748,770 89.5% 
 
The majority of capacity (70%) reports RS events with high fidelity, 10% of capacity has lower 
fidelity reporting, and 20% does not report RS events at all. In some cases the complete lack of 
RS reporting is not surprising. Large fossil steam units, nuclear units, geothermal units, and 
hydroelectric units could all have very low operating costs and never be “out of the money”. 
(And, as mentioned previously, hydroelectric units without automatic data recording equipment 
are not required to report RS events to GADS.) In other cases—particularly for simple cycle gas 
turbines, diesel units, and most combined cycle units—this seems much more likely to be the 
result of incomplete data reporting. However for the purposes of this analysis we only exclude 
those units that fall into the lower fidelity RS reporting category. Sensitivity analysis on the 
threshold used to delineate higher and lower fidelity RS reporting could also be done.  
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