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Abstract

Energy projections, such as those contained in the U.S. Energy Information
Administration (EIA)’s Annual Energy Outlook (AEO), are important for in-
vestment and policy decisions. Retrospective analyses of past AEO projec-
tions have shown that observed values can differ from the projection by several
hundred percent, thus a thorough treatment of uncertainty is essential. We
evaluate the out-of-sample forecasting performance of several empirical density
forecasting methods using the continuous ranked probability score (CRPS).
The analysis confirms that a Gaussian density, estimated on the past forecast-
ing errors, gives good uncertainty estimates over a variety of energy quantities
in the AEO, in particular outperforming scenario projections provided in the
AEO. We report probabilistic uncertainties for 18 core quantities of the AEO
2016 projections. Our work frames how to produce, evaluate and rank prob-
abilistic forecasts in this setting. We propose a log-transformation of forecast
errors for price projections, and a modified non-parametric empirical density
forecasting method. Our findings give guidance on how to evaluate and com-
municate uncertainty in future energy outlooks and forecasts in other fields.
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Introduction
Forecasts of quantities such as electricity and fuel demands, commodity prices,
and specific energy consumption and production rates are often used to inform
private and public investment decisions and long-term strategies [1, 2, 3]. Here
we are concerned with national scale forecasts in the energy industry that span
a range from years to decades. Two of the most influential sets of energy fore-
casts are those of the U.S. Energy Information Administration (EIA) and the
International Energy Agency (IEA). These forecasts are complemented by those
made by private oil and gas companies, such as Shell, ExxonMobil and Statoil.
When assessed retrospectively, such energy projections have sometimes shown
very large deviations from the realized values [4, 5, 6]. Providing information
on the likely uncertainty associated with such forecasts would help individuals
and organizations use them in a more informed and realistic manner.

All of the energy outlooks mentioned above provide point forecasts without
a probabilistic treatment of uncertainty. Often, point forecasts are labeled as
a "reference scenario", and are accompanied by alternative scenarios1. While
scenarios may be used to bound a range of possible outcomes, they can easily
be misinterpreted [8] and are typically not intended to reflect any treatment of
probability. The fact that most projections in the energy space do not report
probability distributions around predicted values, or an expected variance, is
a problem that has been frequently noted in the literature [9, 8, 10, 11, 12].
Shlyakhter et al. criticize the EIA for not treating uncertainty in the Annual
Energy Outlook (AEO) [9]. Density forecasting is increasingly becoming the
standard [11, 13] in a variety of disciplines ranging from forecasts of inflation
rates [14, 15, 16], financial risk management and trading operations [17, 18], to
demographics [19], peak electricity demand [20] and wind power generation [21,
22]. There are a number of procedures for probabilistic forecasting [17]. Most
of these methods take an integrated approach to forecast the whole distribution
including the best estimate. The empirical methods we use here instead allow
for attaching an uncertainty distribution to a pre-existing point forecast.

The importance of density forecast evaluation has been discussed by several
authors [23, 24, 12, 25]. When methods are chosen to generate probabilistic
energy forecasts, such evaluation is often omitted. Our work is a step towards
making energy density forecasting more feasible and robust by framing how to
evaluate a probabilistic forecast in this setting.

1Energy outlooks are often referred to as projections because they refrain from incorporating
future policy changes into the reference scenario. In contrast, the term forecast denotes a best
estimate allowing for all changes of the state of the world [7]. While we are aware of this difference,
our analysis treats the reference scenario as the best estimate forecast. We use the terms forecast
and projection interchangeably.
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Choosing a density forecasting method
The goal of our analysis is to choose a method that estimates most accurately
the uncertainty that should be associated with a future forecast. We argue
that if a forecaster is choosing between different methods, this should be the
central criterion, even though others such as usability and ease of explanation
might also be relevant. Adopting a frequentist’s approach, we view a future
observation as a random event around the given forecast. A density prediction
is best if it equals the distribution from which this future observation is drawn.

Density forecasts are evaluated by their calibration and their sharpness
subject to calibration [24]. By sharpness we mean that narrower PDFs are
preferable. Calibration, as a core concept of forecast evaluation, refers to the
predictive density representing correctly the true PDF of the observation. Mea-
suring calibration requires the availability of unknown observations. This can
be simulated by using an early portion of the time series to train the density
prediction and using later actual values as the test observations. This proce-
dure is referred to as out-of-sample forecast evaluation. Dividing the data into
these two sets requires a long enough record of historical data and forecasts to
draw statistically significant conclusions. While the AEO sample size is small,
we see no viable alternative to this procedure, and find that even small sample
results can provide useful insights.

As it is a measure of both calibration and sharpness, we use the continuous
ranked probability score (CRPS) [25, 26, 27] to compare density forecasts. For
point forecast evaluation we work with the average prediction error, here the
mean absolute percentage error (MAPE), and the transformed mean absolute
logarithmic error (MALE) for prices (Materials and Methods).

Empirical density prediction methods
We compare four different data-driven parametric and non-parametric esti-
mates of forecast uncertainty in the form of probability density functions (PDFs)
(see Table 1 and Materials and Methods). A simple method of empirical pre-
diction intervals (EPI), first published by Williams and Goodman [28], uses
the distribution of past forecast errors to create a probability density fore-
cast around an existing point forecast. It relies on the assumption that past
errors are a good estimator of the forecaster’s current ability to predict the
future. EPIs are an established approach and have been employed in a number
of fields such as meteorology [29], including the creation of the classic "cone
of uncertainty" now routinely produced for likely hurricane tracks [30], future
commodity prices [31], and the values of macroeconomic variables such as in-
flation [15]. There is a continuing interest in the method from researchers in
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applied mathematics and statistics [13, 32, 33]. We introduce a second non-
parametric EPI, which is a modification of Williams and Goodman’s EPI, with
a centered error distribution. For a third, parametric, prediction method we
use the forecasting errors to estimate a Gaussian density forecast. A paramet-
ric PDF has the advantage of greater ease of use. We use the volatility of the
time series of historical values to inform a fourth probabilistic forecast, which
is valuable in cases where the forecasting record is short.

We apply the four different methods to 18 quantities in EIA’s AEO [34],
which are chosen based on EIA’s Retrospective Review [35] (Materials and
Methods). The AEO forecasting record spans more than thirty years. Un-
fortunately, in the context of forecast evaluation a sample size of ∼ 30 data
points is very small. In addition, because of modifications that EIA makes
to its models, and changes in technology, market conditions, and regulations,
errors are not likely to be stationary. Because stationarity of past forecasting
errors is an essential requirement for good performance of EPIs [33], we test
the extent to which PDFs estimated using this procedure provide robust proba-
bilistic forecasts. Previous work has analyzed the forecast errors of EIA’s AEO
[4, 36, 1, 3, 37] and the projections by the IEA [5]. Generally, authors have fo-
cused on a mean percent error and directional consistency of errors, also termed
bias. Shlyakhter et al. [9] constructed a parametric density forecast with the
retrospective errors of AEOs, similar to what we test in this paper. However,
they did not assess the calibration of their prediction intervals.

We begin by evaluating the point forecast performance of the AEO reference
case over our test range of AEO 2003-2014. Using the same out-of-sample AEOs
and historical observations, we then compare the calibration and sharpness of
the four different density forecast. The prediction intervals are also compared to
the scenarios published in the AEO. We find that over the test range a normal
distribution based on past forecasting errors clearly outperformed uncertainties
based on the scenarios in the AEO. This conclusion is for the diverse set of all
quantities, but depending upon the quantity, in some cases other methods
showed better results. We conclude the paper with a comparative discussion
of the methods and their applicability to energy forecasting.

Results
We evaluate the predictive performance of four uncertainty estimation methods
(Table 1) over the test range of AEO 2003-2014 and observations of 2002-
2015, using 1985-2002 as the training range. The test range excludes AEO
2009, which did not provide scenarios for the updated reference case. We
determine the number of quantities for which a method performed best. We
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Table 1: Empirical density forecasting methods compared

Method Parametric Based on Median centered in ε = 0
NP1 no forecast errors no
NP2 no forecast errors yes
G1 yes forecast errors yes
G2 yes historical deviations yes

find that Gaussian densities informed by retrospective errors (G1) or based
on the variability of the historical values (G2) performed best for the most
quantities. The original non-parametric method as in [28] (NP1), performed
best in very few cases. The centered non-parametric distribution (NP2), which
gives the largest weight to the AEO reference case projection instead of the
bias, performed better over the test range than NP1. The respective best
empirical uncertainty estimation methods had significantly better calibration
than methods based on the AEO scenarios with 95% confidence. In fact, G1

significantly outperformed the scenarios for all quantities and provided a valid
general approach to estimate the uncertainty in the AEO.

While we have performed analysis for 18 quantities forecasted in the AEO,
we use two of the quantities, natural gas wellhead price in nominal dollars per
1000 cubic ft. (hereafter natural gas price) and total electricity sales in billion
kWhrs (hereafter electricity sales) for illustration purposes. Results for all 18
quantities can be found in the SI.

Error metric and transformation for price quantities
All forecast evaluation scores are computed on the basis of the deviations of the
forecasts ŷ with historical values y, referred to as error. We found it useful to
work with the percent error, or relative error, εrel = ŷ−y

y = ŷ
y−1. Percent errors

allow us to compare different quantities and they are independent of changes in
the currency value. We can conduct the analysis in a similar way with absolute
errors. Since the error distributions of price quantities are asymmetric, as prices
are typically log-normally distributed [38], we modify the error for the price
quantities. Drawing an analogy to logarithmic returns, a concept from financial
theory, we modify εrel to yield the logarithmic error εlog = ln (1 + εrel) =

ln
(
ŷ
y

)
= ln ŷ − ln y. For prices we compute the comparative statistics and

additional transformations such as centering of the PDF in εlog (SI).
The structure of the relative errors as a function of forecast year and forecast
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Figure 1: Forecast errors by AEO release year. Differently colored lines correspond
to forecast horizons ranging from H = 0 in black to H = 21 in purple. All forecast
errors are untransformed. Note the different scale. No AEO was released for 1988.

horizon is shown in Fig. 1. The horizon H refers to the number of time steps,
or years, into the future that the forecast is made. The AEO projections reflect
uncertainty in past values, which is why e.g. for AEO 2016 we refer to 2015 as
H = 0, to 2016 as H = 1, and so on.

Retrospective analysis can inform density forecasts
We illustrate examples of the four probabilistic forecasting methods listed in
Table 1. Fig. 2 and Fig. 3 compare the non-parametric methods to the methods
that performed better for the two example quantities, that is, the two Gaussian
predictions.

A non-parametric distribution of the errors (NP1) results in the EPI shown
in Fig. 2. We see that the median of the errors is not exactly zero, which is
often referred to as bias. This results in a second point forecast, or a best
estimate forecast that is not equal to the reference case scenario. If we can
assume that the forecasting errors are stationary, then past and future errors
follow the same PDF, and this bias should yield a better point forecast than
the reference case. However, we found this is not the case for most quantities.

Modifying the non-parametric distribution in such way that it places the
greatest weight on the AEO reference case projection is one approach to combat
this problem (NP2). This centered EPI for electricity sales is shown in Fig. 3.
In the percent error space, centering is done by subtracting the median error
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Figure 2: Density forecasts for natural gas prices in nominal $. (A) Non-parametric
EPI based on forecast errors (NP1). (B) Gaussian density forecast based on the
variability of historical values (G2), which tested to be the better estimate. Historical
values are indicated by black dots, the AEO 2016 reference case by green diamonds
and the density forecast in blue shaded areas. The different shades correspond to
the percentiles 2, 10, 20, 30, ..., 80, 90, 98. The outermost dashed lines report the
minimum and maximum value of the error samples. AEO 2016 envelope scenarios
are in green. Note that in (A) the median of the predictive distribution (in dashed
khaki) does not coincide with the reference case.

DO NOT CITE OR QUOTE WITHOUT PERMISSION OF THE AUTHORS.



8

1990 2000 2010 2020 2030 2040

25
00

30
00

35
00

40
00

45
00

50
00

Median−centered np. error distr.

year

El
ec

tri
ci

ty
 S

al
es

 (b
illi

on
 k

W
hs

)

A

1990 2000 2010 2020 2030 2040

25
00

30
00

35
00

40
00

45
00

50
00

Gaussian based on errors

year

El
ec

tri
ci

ty
 S

al
es

 (b
illi

on
 k

W
hs

)

B

Figure 3: Density forecasts for electricity sales based on AEO 2016. (A) Median-
centered non-parametric EPI (NP2). The median or bias now coincides with the AEO
reference case. (B) The Gaussian density forecast based on the SD of the errors (G1),
which was the best forecast over the test range. The envelope scenarios are narrower
in both cases.

mrel from all errors in the distribution εrel,ctr = εrel − mrel. For the price
quantities, we transform the distribution in log-error space. We define the log
median mlog = median(εlog) = ln(1 +mrel). The centered log errors are then
εlog,ctr = εlog −mlog = ln

(
1+εrel
1+mrel

)
(SI).

These two non-parametric estimations are compared to two parametric dis-
tributions, a Gaussian with a mean of zero and the variance of the errors (G1)
(Fig. 3) and with the variance of historical values (G2) (Fig. 2). When model-
ing normality, we implicitly make assumptions about the nature of the errors.
Extreme errors, which can have large consequences for decision-making, occur
frequently in energy forecasting [9]. A Gaussian PDF may not do an adequate
job of representing heavier tails and might underestimate the probability of
extreme events. However, a parametric distribution will generate longer tails
than a non-parametric error PDF. In addition, a Gaussian is much simpler to
use as a model input. A discussion of normality and correlation in the errors
is provided in the SI.

Past bias in the AEO does not predict future bias
Recently, electricity sales have been flat. Can a forecast be better than a
constant prediction using the last observation, i.e. persistence? We can assess
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Figure 4: The mean absolute percentage or log-error (MAPE/MALE) for the test
range 2003-2014. We see that for natural gas prices (in nominal $), the median of NP1

performs similarly to the AEO reference case. For electricity sales, the reference case
outperforms the median for nearly every horizon. For the test range, a persistence
forecasts has clearly been the best forecast for electricity sales, which have recently
experienced near zero growth.

the point forecasting skill of the AEO reference case projections by comparing
them with benchmark forecasts such as persistence or simple linear regression.
To compare different point forecasts, we evaluate the mean absolute percentage
error (MAPE) and the mean absolute log error (MALE) for prices. MAPE and
MALE are defined as the sum over the absolute value of all observed errors
for a given horizon (Materials and Methods). A larger MAPE/MALE indicates
that the forecast has performed worse over the test range 2003-14 (Fig. 4).

We find that persistence performed surprisingly well over the test range of
the last decade, outperforming the AEO for 10 of the 18 quantities. This is due
to the fact that the recent decade has seen trend changes that are conducive to
persistence forecasts. If the length of the fitted window is optimized for the test
range, a simple linear regression has significantly outperformed the reference
case for eight quantities. Point forecast comparison of the AEO reference case
with the median of the errors reveals that correcting for the bias is not a good
strategy in most cases. The AEO reference case has been a better point forecast
than the bias for most of the quantities over the test range, except for coal
production and residential energy consumption. We therefore anticipate that
centering the non-parametric uncertainty (NP2) is advised for most quantities
except those.
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Figure 5: The continuous ranked probability score (CRPS) for the test range 2003-
2014. A lower CRPS corresponds to a better density or ensemble forecast.

Gaussian density forecasts often perform well
Scoring rules, or scores, provide a mean for comparing the performance of
different probabilistic forecasts. We use the continuous ranked probability score
(CRPS), which is a strictly proper score in this case [26]. It assigns value not
only to the predicted probability of an observation but also to the distance
of a predicted probability mass from an observation. It is therefore relatively
robust to specific functional forms of the density forecasts [25], and allows for
comparison with point and ensemble forecasts [26, 27] (Materials and Methods).

The results of the average CRPS over the test range for each horizon in
units of relative or log error are illustrated in Fig. 5. A standalone value of the
CRPS is not meaningful; it serves to provide a comparison between different
methods. As the CRPS reduces to the MAPE/MALE for a point forecast, it is
informative to compare the results to the MAPE/MALE of the AEO reference
case. Comparing Fig. 4 and 5, we find that the scenarios (S) only marginally
improve the prediction with respect to the point forecast. In addition we see
that for the natural gas price, NP1 is larger than the MALE due to poor point
forecast performance of the EPI’s median.

To find the best density prediction method, we normalize the CRPS of each
method by the CRPS of the scenario ensemble (S) for every horizon (Fig. 6).
For every quantity, we then average over a core range of horizons H = 2 to
H = 9, and rank these aggregated scores. The method with the lowest average
rank is considered the best density over the test range for a given quantity. We
find that the results barely change if more horizons, modifications to the test
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range or an alternative ranking method are considered (SI).
The ranking of all quantities shows that the two Gaussian methods perform

well for most quantities (Fig. 7). G1 counts as the best method for nine out
of the eighteen quantities and G2 for three quantities. The performance of
G2 is however often similar to G1 and it is second best for eight quantities.
The fact that these parametric methods performed well over the test range is
convenient, because there are standard ways to use a normal distribution as
a model input. Besides these parametric methods, also NP2 performed well.
As expected, in the two cases of coal production and residential energy con-
sumption, including the bias with NP1 seemed the best approach over the test
range. In the following section, we analyze if the empirical methods performed
significantly better than uncertainty estimates based on the scenarios.

AEO scenario ranges are narrower than observed un-
certainties
A varying number of scenarios, intended to give users insight about how the
future might differ from the reference case under varied assumptions, are pub-
lished in every AEO. No value is assigned to the probability that a future
outcome will fall within or outside the scenario range. We are therefore not
discussing a density forecast here but rather an ensemble forecast. The CRPS
allows for comparison of a density forecast with an ensemble forecasts. It
assigns every discrete scenario an equal point probability mass (method S).
Because of the varying number of scenarios in the AEO, we make a simpli-
fication and only consider the reference case and the high and low envelope
scenarios, which do not correspond to a specific scenario in the AEO. In addi-
tion, we compare to a Gaussian distribution (SP1) and a uniform distribution
(SP2) based on the envelope scenarios.

The CRPS scores normalized by the score of S are shown in Fig. 6. This
figure also includes the scores for SP1 and SP2. A normalized CRPS of an em-
pirical method that is smaller than 1.0 indicates an improvement over uncer-
tainties based on the scenarios (S). We can find at least one density forecasting
method for every quantity, which in average over the core horizons performed
better than the scenarios. In addition, we conduct a hypothesis test if we can
reject that either S or SP1 were the better probabilistic forecasts over the test
range. We find that the best ranked empirical method for a respective quan-
tity was significantly better than both S and SP1 with 95% confidence. In fact,
NP2, G1 and G2 all show significant improvements (Fig. 7). These results are
likely due to the fact that over the test range on average the scenario range
of all AEO quantities covered only 14% of the actual values (SI). The width
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Figure 6: Relative improvement of the methods with respect to the envelope sce-
narios for the test range 2003-2014. Values are plotted as fraction of the CPRS of the
scenario ensemble (S). A normalized CRPS lower than 1.0 corresponds to a better
density forecast. SP1 corresponds to a normal distribution with the scenario range as
1 SD, and SP2 is a uniform PDF between the envelope scenarios.

between highest and lowest scenario, however, changes greatly from one AEO
to another and is somewhat correlated to the number of scenarios published.

Discussion and Conclusion
There are empirical methods available for estimating the uncertainty around
the AEO reference case, which have proven to be significantly more accurate
over the past decade than the scenarios of the AEO. We find that a Gaus-
sian distribution based on past errors (G1) offers a method with convincing
ease of use and good performance over the different quantities (Fig. 7). We
therefore recommend that the EIA and others producing energy forecasts in-
clude the standard deviation of forecast errors in their retrospective reports.
We supply the values for the AEO 2016 in the SI. A non-parametric distri-
bution of the observed forecast errors was the better density forecast only in
a few cases, confirming that focusing on representing the exact error distribu-
tion does not need to provide the better out-of-sample forecast. Point forecast
evaluation illuminated that EIA’s forecast bias is in most cases not consistent
and that using a bias-corrected reference case does typically not lead to the
better forecast. As both the forecasting process and the energy system can be
non-stationary, there is no way to be sure that our results will be applicable to
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future data. However, the way we evaluated and chose a method is a robust
procedure. Hence, in the absence of other insights we recommend using one of
the Gaussian distributions.

Despite the advantages of probabilistic forecasts, scenarios convey impor-
tant information about the workings of energy predictions and allow users to
better understand and compare the assumptions. We want to emphasize that
the combined use of a density forecast and scenarios would be a fruitful ap-
proach to describe the uncertainty of a forecast. Empirical density forecasts
are easily reproducible, but other probabilistic methods such as a quantile fore-
casting could also advance AEO projections.

1 Materials and Methods
See SI for a detailed description of the materials and methods used.

Data
The data set consists of AEOs 1982-2016 and historical values from 1985 to
2015. Historical data were taken from the EIA Retrospective Review [35] and
the AEOs [34], and conversions were applied where necessary. All data are
publicly available on the EIA website. Refer to SI: Data Description for more
detail. The data analysis was performed in R [39].

List of methods
Point forecasting methods:

• AEO reference case: We treat the AEO reference case as a point forecast.
The reference case is published as a projection of the current state of laws
and regulations and does not represent a best estimate forecast. However,
the reference case is the most consistent way to choose a best estimate.

• Median errors (NP1): The median of the EPI with a non-parametric
distribution of the errors (NP1), computed as the reference case adjusted
by the median of the past forecasting errors.

• Persistence: Persistence refers to a constant forecast equal to the last
observation. Here, we use the forecasted value at H = 0 as the last ob-
servation, since on the AEO release date this is the closest approximation
to the actual value.

• Simple linear model: This benchmark is a simple linear regression with
time as the predictor. The quantity is regressed over a moving window
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of the last 7 historical observations. This size of window is the optimum
for the test range.

Density forecasting methods:

• NP1: EPI with a non-parametric distribution of the forecasting errors
and a median different to the reference case. This method was originally
published by [28].

• NP2: EPI with a non-parametric error distribution, which is centered
such that the median and ε = 0 align. This results in the AEO reference
case being the best estimate forecast.

• G1: A Gaussian distribution with the standard deviation of the past
errors and a mean and median of ε = 0.

• G2: Gaussian distribution with a standard deviation based on a sample
of all relative deviations between two historical data points which are H
steps apart. Mean and median are ε = 0.

• S: This ensemble forecast consists of the reference case and the highest
and lowest scenario projection in every year. These corresponds to the
envelope of all scenarios by using only the highest and lowest projected
values.

• SP: Two parametric density prediction based on the envelope scenarios
in the AEO. We chose a Gaussian distribution with the distance to the
farther scenario as 1 SD (SP1) and a uniform distribution between the
envelope scenarios (SP2).

MAPE
The mean absolute percentage error (MAPE) is a measure for point forecast
performance. This becomes the mean absolute log error (MALE) in the case
of price forecasts with log-errors. They are defined as

MAPEH =
1

nH

nH∑
t=1

|ξrel,H,t| =
1

nH

nH∑
t=1

∣∣∣∣ ŷH,t − yH,tyH,t

∣∣∣∣ , (1)

and MALEH = 1
nH

∑nH
t=1 |ln ŷH,t − ln yH,t|, where there are nH errors in a

sample for a particular horizon H. ŷ refers to the forecast, while y is the actual
observation.

CRPS
The continuous ranked probability score (CPRS) for every horizon, as we use
it in this paper, is defined as
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CRPSH(F, ε) =
1

nH

nH∑
t=1

∫ ∞
−∞

(Ft(εt)− I(εt ≥ ξt))2 dεt (2)

similar to [26]. εt is a point of the predictive error distribution, while ξt is
the forecast error of the observation. The CRPS compares the CDF of the
density forecast with the CDF of an observation, a step function I(εt ≥ ξt).
We compute the score in the respective error metric. The CRPS for a non-
parametric CDF is computed like the CRPS for an ensemble forecast of dis-
crete scenarios [27]. For ensemble forecasts, the CRPS can also be written as
CRPSH(F, ε) = 1

nH

∑nH
t=1

[
EF |εt − ξt| − 1

2EF |εt − ε
′
t|
]
[26]. In our case, the

CRPSH reduces to the MAPEH for a point forecast. In this case we have a
single εt = 0, resulting in EF |εt − ξt| = |ξt| and EF |εt − ε′t| = 0. The CRPS is
a strictly proper score here [26], which means that the expected score is max-
imized if the observation is drawn from the predictive distribution and this
maximum is unique. The CRPS has different scales for different quantities or
error measures, which is why we normalize the CRPSH by the CRPSS,H of the
scenario ensemble.

Improvement testing
We perform a bootstrap on the single CRPS results in a horizon sample, which
then are used to compute the CRPSH , and the aggregated CRPS average
for the ranking. For every of the four methods, we determine the portion of
resampled results that indicates that S or SP1 is the better forecast. If this
portion is smaller than 0.05, we speak of the method as being a significant
improvement over the scenarios.

Sensitivity analysis on the ranking results
For exploring the sensitivity of the ranking, we vary the default assumptions.
Instead of first averaging the normalized CRPS and then rank that result, we
alternatively first rank the CRPSH and then averaged over the horizons. We
also average over the full range of horizons H = 1 to H = 12 instead of the core
range, that includes large H with small sample sizes. In addition, we included
AEO 2009 in the test range. The respective best methods did not change with
these variations. For some quantities, the performance of the best and second
best methods were very similar to each other. This resulted in a sensitivity
regarding a change in the test range for three quantities.
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