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ABSTRACT: Annual installations of behind-the-meter (BTM) electric storage capacity are 

forecast to eclipse grid-side electrochemical storage by the end of the decade. Here we 

characterize the economic payoff and regional emission consequences of BTM storage under 

different tariff conditions, battery characteristics, and ownership scenarios, using metered load 

for several hundred commercial and industrial customers. Net emissions are calculated as 

increased system emissions from charging minus avoided emissions from discharging. Net CO2 

emissions range from 75 to 270 kg/MWh of delivered energy depending on location and 

ownership perspective, though in New York these emissions can be reduced with careful tariff 

design. Net NOx emissions range from -0.13 to 0.24 kg/MWh and net SO2 emissions range from 

-0.01 to 0.58 kg/MWh. Emission rates are driven primarily by energy losses, not by the 

difference between marginal emission rates during battery charging and discharging. Economics 

are favorable for many buildings in high cost regions like California and New York, even 

without subsidies. Future penetration into average cost regions like Pennsylvania will depend 

greatly on cost reductions and wholesale prices for ancillary services. 
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 INTRODUCTION 

Stationary electrochemical (battery) storage has seen significant improvements in cost in the last 

decade and is a promising way to perform many electric grid functions.1,2 Battery storage is 

being installed both on the utility side of the customer meter at the transmission/distribution level 

(“grid-scale”), and at individual building sites, or “behind-the-meter” (BTM). Grid-scale storage 

can be used to delay infrastructure upgrades, perform wholesale market transactions including 

energy price arbitrage and frequency regulation, and absorb over-generation by distributed 

generation resources, among other services. BTM batteries can be used to decrease a customer’s 

energy costs by shifting the timing of utility purchases (demand charge reduction) or aggregated 

with other batteries to provide wholesale services to the grid. BTM storage is being adopted in 

areas that have high retail electricity prices and generous battery subsidies. BTM storage 

capacity is expected to double each year through 2019 in the U.S., when it will represent almost 

half (~400MW) of annual storage installations by capacity.3 

Storage has been viewed as a solution for a more sustainable power system because it can 

smooth intermittent renewable generation.4 Policy makers are now implementing rules and 

subsidies that encourage large scale deployments of electric storage. California has set a storage 

procurement target of 1.3GW by 20205 and provided an incentive of $1,300/kW.6 New York 

City has an incentive of $2,100/kW.7 At the federal level, FERC Order 7558 instructed grid 

operators to compensate fast-responding resources like storage in frequency regulation markets 

for their speed and accuracy. 

A number of studies have shown that grid-scale storage will increase total power system 

emissions,9–13 even in the Texas system that contains a relatively high penetration of natural gas 

and renewables.14 Many of these studies focus on energy arbitrage where batteries shift power 
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from high cost periods (evening) to low cost periods (overnight). In most regions of the U.S., this 

use pattern will result in shifting generation from natural gas to coal9 and in all regions more 

power is used, since storage has a round-trip efficiency that is less than 100%. 

The emissions consequences of deploying a storage technology depends in part on how it is 

operated; in turn the operating policies depend on who owns the storage. Previous research has 

focused on grid-scale storage. Investor-owned grid-scale batteries will be operated to maximize 

profit from wholesale market transactions, resulting in homogenous battery behavior across a 

grid region. The operation of BTM batteries is more heterogeneous because profit maximizing 

behavior will depend on the interaction between the load profile of the building, rate structures 

(these vary widely among utility service territories), and possible wholesale market transactions. 

Very little work has been done to investigate the behavior and grid-level consequences of a 

large deployment of BTM batteries. Neubauer and Simpson15 used the National Renewable 

Energy Laboratory’s (NREL) BLAST16 model to study the behavior of a fleet of BTM batteries, 

but the work used load data from only 98 commercial buildings, used only one utility tariff 

scenario, did not consider ancillary services, and did not calculate emissions effects.  

Our analysis focuses on the operation of commercial and industrial (C&I) BTM storage under 

several market and tariff conditions and across ownership scenarios in order to characterize 

economics and net emissions. C&I is important because recent data suggest the storage capacity 

installed in this segment has outstripped residential installations by an order of magnitude.3 The 

goal of our work is to understand the economic conditions under which BTM storage will 

experience rapid adoption, the effects on system emissions, and alternative incentive structures 

that might mitigate those environmental effects. 
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 MATERIALS AND METHODS 

Battery Optimization Model. In this section we describe the model and its parameters, 

objective function and constraints in general terms. The mathematical formulation, a more 

detailed discussion of each equation, and the computational implementation can be found in the 

Supporting Information (SI). Each individual building in our dataset is given a simulated battery. 

We assume a lithium-ion phosphate chemistry currently used by SonnenBatterie.17 Other 

lithium-ion chemistries have similar operational performance but are more sensitive to 

degradation from large swings in battery state-of-charge. We formulate a linear programming 

problem to minimize energy costs and maximize revenue to the battery owner over the course of 

1 year. Depending on the ownership perspective, the battery is able to perform energy arbitrage, 

reduce demand charges, and/or provide frequency regulation and spinning reserve. The 

optimization is conducted at 15-minute intervals to reflect the typical structure of demand 

charges and the sampling rate of many meters. We assume that the storage system is too small to 

affect market prices or marginal system emissions. 

Battery characteristics, such as capacity (kW), duration of discharge (hours), cost ($/kWh and 

$/kW), and round-trip efficiency (%) were fixed at the following values for the base case results. 

A full sensitivity analysis is given in the SI. Battery capacity was sized to 20% of the building’s 

peak load (sensitivity: 15%-25%) in increments of 18kW, the smallest SonnenBatterie unit.18 For 

some buildings the coefficient of variation of load was low and sizing to peak load would 

drastically oversize the battery; these batteries were sized to be no greater than 50% of the total 

annual range of load, reducing the weighted average battery size across the sample to 17% of 

peak load. Visibility into current installation costs for power and energy subsystems is low; 

assumed capital costs of $600/kWh + $400/kW are taken from a 2011 Sandia National 
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Laboratory report19 (sensitivity: 33%-100% of base case). These values match well to recently 

reported total system costs of ~$750/kWh for a 2-hour duration Tesla’s Powerpack20 and are in 

line with ranges used in the battery literature.21,22 A 1 hour duration was chosen in our base case 

results because it exhibited a favorable tradeoff between cost and revenue, though we also show 

results for 0.5 – 4 hour durations. Round-trip efficiency was assumed to be 83%23 (sensitivity: 

83%-91%). 

The economic incentives facing the battery owner will affect battery operations. In addition to 

a wholesale-only market participant and individual customer facing retail rates, an “aggregator” 

can pool retail resources for participation in wholesale markets. We examine all three ownership 

perspectives (customer, aggregator and wholesale-only) by varying the components of the 

objective function (Table 1) and constraints. BTM batteries would not be used solely for 

wholesale services, but the perspective is useful in benchmarking the performance of aggregator-

owned batteries. All perspectives consider the economic tradeoff between battery use and 

degradation by multiplying the fraction of total lifetime energy used against the estimated 

replacement cost of the battery. We do not account for the physical effects of degradation on 

charge capacity, which California estimates at 1% per year.24 

Table 1. Components of Total Energy Cost Minimization 

Perspective Customer 
Energy 
Cost 

Customer 
Demand 
Charge 

Wholesale 
Energy 
Cost 

Frequency 
Regulation 
Revenue 

Spinning 
Reserve 
Revenue 

Battery 
Degradation 

Customer       

Aggregator       

Wholesale       
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We also vary the amount of information available to the battery owner. Accurate forecasting of 

future building load and market clearing prices is central to the battery’s ability to minimize 

energy costs. The optimization routines run by battery software are proprietary and sophisticated. 

We bound this real world scenario by assuming two different forecast scenarios: a perfect 

forecast and a persistence forecast that makes a rolling-horizon prediction using the average of 

historical data. An experienced trader is likely to perform better than the persistence forecast, but 

not as well as the perfect forecast. The persistence forecast scenarios were run on the Bridges 

Supercomputer at the Pittsburgh Supercomputing Center.25 The perfect information scenarios 

were run on a 12-core Intel Xeon E5-2680 desktop machine. 

The simulated battery faces three main types of physical and market constraints. 

1. Battery state of charge (SOC) – Expressed as a fraction of total charge carrying capacity, 

SOC is restricted to a range between 20% and 100%, with a penalty function above 90%, to 

prevent increased degradation from high/low voltages. These restrictions are also found on 

electric vehicle batteries.26 

2. Total capacity – the capacity used to charge/discharge the battery and held for ancillary 

services cannot be greater than the capacity of the battery. 

3. Frequency regulation capacity – we assume that the frequency regulation signal is energy 

neutral (no net charging or discharging), similar to the dynamic regulation signal 

implemented in the PJM Interconnection (PJM).27 But during any given time period, the 

battery will gain and lose charge as it follows the regulation signal. Therefore, we place a 

constraint on capacity used for frequency regulation ensuring SOC limits are not violated 

while providing this service. We use one year of regulation signal from PJM to estimate the 

amount of charging/discharging possible during a single period. 
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Data. Load Data. Individually metered whole-building data are necessary to understand 

BTM battery storage behavior because brief load peaks can set monthly demand charges – these 

peaks would be smoothed out in averaged data. A utility in the Carolinas provided energy usage 

(kWh) data from 994 individual C&I meters at a 15-minute sample rate for 1 calendar year 

(2013). According to the utility, none of the customers had behind-the-meter generation. Data 

filters were applied to screen unsuitable meters from our analysis, leaving us with 665 meters. 

The same data are used across all analyses. Ideally, we would have load data from different areas 

of the country that would reflect local customer usage and weather patterns. However, there are 

well-known challenges associated with accessing individual customer utility data. 

Unfortunately, the data do not represent a true random sample. Our dataset was readily 

available to the utility because these customers had a long history of interval meter data. 

Nonetheless, meaningful conclusions can still be drawn from this study due to the size of the 

sample. More detailed information on the characteristics of the dataset and the filters applied can 

be found in the SI. 

Emissions Data. Marginal emissions factors (MEFs) from Siler-Evans, et al.28,29 are used to 

calculate the net effects of battery behavior on system CO2, SO2, and NOx emissions (see Figure 

S.7). MEFs capture the emissions rate (kg/MWh) of the marginal generator in a grid region that 

would be used to respond to changes in load from battery use. Siler-Evans, et al. used hourly 

emissions and operation data from 1,400 power plants in the U.S. to calculate factors by hour-of-

day and season. Estimates of MEF by North American Electric Reliability Corporation (NERC) 

region are used for each utility tariff in our analysis (California – Western Electricity 

Coordinating Council (WECC); New York – Northeast Power Coordinating Council (NPCC); 

Pennsylvania – ReliabilityFirst Corporation (RFC)). The results use MEFs generated from 2014 
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emissions data. The SI contains an analysis using MEFs generated from average 2006-2014 

emissions data which shows slightly higher net emissions. This reflects the ongoing shift from 

coal to natural gas in the U.S. power mix. We believe this shift will be long-lasting, and therefore 

chose to use emissions data from 2014. 

Tariff and Market Data. C&I customers face two separate charges: one for energy and one 

for peak demand. Peak demand is typically defined as the highest 15-minutes of power 

consumption in the billing time period. Some utilities charge different rates based on the time of 

day, week, or year. We use tariffs from 4 different utilities; Duquesne Light in Pennsylvania, 

Consolidated Edison (ConEd) in New York, and two California utilities – Pacific Gas & Electric 

(PG&E) and Southern California Edison (SCE). Table 2 shows the rate structure used for each 

utility. 

Table 2. Utility Tariffs. Demand and energy charges include the published rate plus all 

applicable adjustments. Data from OpenEI Utility Rate Database.30 

Utility Demand Charges ($/kW) 

Summer / Winter 

Energy Charges ($/kWh) 

Summer / Winter 

ConEd – NY 

SC-9 – General Large Low 
Tension Service (NYC) 

$31.66 / 27.06 $0.035385 / 0.035385 

Pacific Gas & Electric 
(PG&E) – CA 

E-19 – Medium General 
Demand TOU (Secondary) 

$15.07 – all periods 

+ $19.04 / 0.24 – peak 

+ $4.42 / 0 – mid-peak 

$0.16233 / 0.10185 – peak 

$0.10893 / 0.10185 – mid-peak 

$0.07397 / 0.07797 – off-peak 

Southern California Edison 
(SCE) – CA 

General Service – Large; 
TOU-8, Option B (under 
2kV) 

$15.57 – all periods 

+ $22.95 / 0 – peak 

+ $6.49 / 0 – mid-peak 

$0.14202 / 0.08899 – peak 

$0.08749 / 0.08899 – mid-peak 

$0.06288 / 0.0681 – off-peak 
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Duquesne Light – PA 

General Service Medium 

$7.09 / 7.09 $0.090308 / 0.090308 

While ConEd, PG&E and SCE were chosen because customers can receive incentives for 

installing batteries, they have very high electricity costs relative to the rest of the country. 

Duquesne Light in western Pennsylvania was chosen as a more nationally representative tariff; 

demand charges are 90% of a rough estimate of the national average and energy charges are 86% 

of the average. National averages were calculated from the OpenEI Utility Rate Database.  

Hourly clearing prices for real-time energy and ancillary services markets were downloaded 

from grid operators corresponding to the utility tariff being used (California – CAISO; New 

York – NYISO; Pennsylvania - PJM). Market data for calendar year 2013 are used to match the 

timing of load data. 

Revenue and Emissions Calculations. Outputs from the optimization model include 

battery charging, discharging and capacity participation in ancillary services for each building at 

15-minute intervals. Charging/discharging values are averaged over each hour of the year and 

matched against the hourly/seasonal MEFs described previously. Battery charging requires 

increased output, and therefore increased emissions, from the marginal generator, while 

discharging decreases output from the marginal generator. Net emissions are calculated as the 

sum of the increased and decreased emissions over the entire year and across all buildings in the 

dataset. Emissions are normalized to the delivered energy from the battery (e.g., kgCO2/MWh) 

for ease of comparison to emissions values from other generation sources and studies. 

Total annual revenue from retail and wholesale services is assumed to be constant over the 

lifetime of the battery (10 years31,32). The present value of the revenue stream from each building 

is calculated with a discount rate of 15%, and divided by the capital cost to determine the net 
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present value. A ratio equal to or greater than one indicates a building with favorable economics. 

We do not include regional subsidies for any scenario. We ignore operational costs in 

maintaining a battery, assuming that each component (battery cells, inverter, etc.) lasts for the 

assumed lifetime. The sensitivity of results to lifetime and discount rate are analyzed in the SI. 

 RESULTS 

Storage Economics. Figure 1 shows averaged hourly battery charging/discharging behavior 

for each utility region under perfect forecasts. Capacity utilization is low because the load peaks 

that drive battery use are infrequent; the batteries are often idle for days at a time. For the 

customer-owned and aggregator scenarios, discharging tends to coincide with peak building load 

because batteries mitigate demand charges. However, charging occurs at different times. 

Aggregators are exposed to wholesale energy prices, and wait until they reach a minimum 

overnight before charging the battery. Customer owners face only retail pricing. Under flat-rate 

energy prices, as with Duquesne Light, customers will recharge as soon as their load profiles 

decrease in case an unexpected load spike occurs. This coincides with the late afternoon system 

peak in many U.S. locations. Wholesale-only participation leads to a charging profile similar to 

the aggregator scenario, but shifts the discharge profile later in the evening when energy prices 

peak. Tariff design under TOU rates must consider the distribution level impacts of many 

batteries suddenly charging at the same time when the lowest price block is reached; a similar 

concept to “smart-charging” schemes proposed for electric vehicle charging.33 
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Figure 1. Average daily discharging (a) and charging (b) profile of battery fleet under perfect 

forecasts (note: different scales). Light solid lines are individual profiles for each ownership 

perspective and utility region. Heavy dotted lines represent an hourly moving average of all 

utility regions for a particular ownership perspective. Average capacity utilization is low because 

the load peaks that drive battery use are infrequent. Customer and aggregator-owned batteries 

discharge during early afternoon hours when C&I building load peaks, in order to reduce 

demand charges. Wholesale-only batteries discharge later in the evening when wholesale energy 

prices peak. Aggregator and wholesale-only batteries charge in the early morning hours when 

wholesale energy prices are lowest. The charging profile of customer-owned batteries depends 

on the type of tariff; flat-rate tariffs provide no economic incentive to shift energy, and thus 

batteries charge as soon as building load begins to decrease in the afternoon while time-of-use 

tariffs encourage charging as soon as the lowest price block is reached. 
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Persistence forecasts do a poor job of predicting highly variable market prices and building 

load, and the batteries fail to meaningfully mitigate demand charges. In reality, forecasting 

models are more sophisticated but more computationally expensive – a competent trader will fall 

somewhere in between the perfect and persistence results. The economic results for the 

persistence forecasts are uninteresting because all buildings are uneconomic, and we therefore 

choose to discuss only the perfect information cases below. We note that the emissions results 

from the persistence and perfect forecast cases are very similar. 

In the perfect information scenario, a significant number of buildings have favorable 

economics under ConEd, SCE, and PG&E tariffs without subsidies. This is due to high energy 

costs and demand charges. The economics for Duquesne Light’s tariff are mixed. Energy and 

demand costs are low, which makes peak shaving less profitable, but ancillary service market 

prices are high in PJM, which helps aggregator-owned batteries. For the base case 60-minute 

duration battery, annual revenue ranged from $25-$112/kWh (installed energy capacity) for 

customer-owners and $108-$181/kWh for aggregators across utility tariffs. The majority of 

aggregator revenue was generated from demand charge mitigation in all regions except 

Duquesne Light, where frequency regulation dominated. 

Aggregators were able to successfully mitigate demand charges for the customer while 

simultaneously extracting high value from ancillary service markets. Across all tariffs, the 

demand charges mitigated under aggregators were nearly identical to those mitigated under the 

customer-owners for the same size battery, while ancillary service market revenue for 

aggregators was 89-99% of the revenue in the wholesale-only scenario. 

Figure 2 shows battery economics are more favorable at lower durations. While total revenue 

is higher at longer durations, lower energy capacity utilization means there are decreasing 
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marginal returns to installing more energy capacity. Moving from a 30-minute to 240-minute 

duration battery increases capital costs by 300% but revenue by only 57-100% and 64-84% for 

customer-owners and aggregators, respectively. Demand charge management is typically the 

largest proportion of revenue, though the revenue share by service can be significantly different 

across tariffs (Figure S.13). 

 
Figure 2. Project economics vs battery duration for customer owners (a) and aggregators (b). 

Solid lines represent the percent of total buildings that have a net present value greater than 1 in 

each utility territory. A discount rate of 15% and unsubsidized costs are used in net present value 

calculations. Bars show the average revenue by service across all tariffs normalized to the 

installed energy capacity of the battery. Revenue is largely driven by demand charge mitigation 

where longer duration batteries allow for deeper absolute reductions. However, there are greatly 

diminishing returns to increases in duration because the extra energy capacity faces a much 

lower utilization rate. Normalized revenue decreases by nearly 5x as you move from a 30-minute 

to 240-minute battery. Absolute revenue increases by approximately 75% across the same scale, 

but cost increases by 300%. 
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Revenue for batteries in Duquesne Light’s territory was driven largely by high prices for 

ancillary services in PJM, although this was still not enough to make up for low demand charges 

in creating positive project economics. This region is highly sensitive to installation costs and 

ancillary service market prices. If system installation costs decrease by 30%, the percent of 

buildings with positive project economics increases from 0% to 86% for aggregators. However, 

if ancillary service market prices concurrently decrease by 50%, we again find that no projects 

have favorable economics (Figure S.16). The sensitivity to ancillary service prices in all regions 

is noteworthy (Figure S.14). 

Battery economics improve significantly for all regions as you decrease installation costs by 

30% (~$750/kWh to ~$500/kWh). The economics do not change as quickly when varying 

battery sizing as a percent of the building’s peak load or the round-trip efficiency (Figure S.14). 

Net Emissions. Figure 3 shows average net emission rates across all storage devices for 

CO2, NOx, and SO2 for each utility region. Net rates are calculated as increased emissions from 

charging minus avoided emissions from discharging. Emission rates are relatively insensitive to 

the chosen battery characteristics (Figure S.10). If the set of buildings is restricted to only those 

that have favorable economics, the emissions results do not change significantly. 
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Figure 3. Net CO2 (a), NOx (b) and SO2 (c) emission rates from battery operation across utility 

tariffs and ownership perspectives. Net rates are calculated as increased emissions from charging 

minus avoided emissions from discharging. Emission rates are primarily driven by energy losses 

from inefficiency. Duquesne Light has the highest rates because MEFs are high in RFC and 

energy losses from frequency regulation are significant. Persistence forecast results are 

extremely similar to that of perfect forecasts despite their poor accuracy. Persistence forecast 

emission rates are not shown for the wholesale-only perspective in PG&E and SCE because the 

values are biased by capacity factors that were essentially zero. In other words, the battery was 

almost never used and provided very little delivered energy. Net emissions were -370 and -145 

kg/MWh in those cases, respectively. Uncertainty bars represent uncertainty in the regression 

parameter estimates used to calculate marginal emissions factors. 

Net CO2 emission rates with perfect forecasts range from 85 – 130 kg/MWh, 75 – 260 

kg/MWh, and 75 – 270 kg/MWh for the customer, aggregator, and wholesale-only perspectives, 

respectively. Persistence forecast emissions rates are very similar despite low forecast accuracy 

(gray bars in Figure 3). Net NOx emissions with perfect forecasts range from 0.02 – 0.14 
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kg/MWh, -0.11 – 0.23 kg/MWh, and -0.13 – 0.24 kg/MWh for the customer, aggregator, and 

wholesale-only perspectives, respectively. Net SO2 emissions range from -0.01 – 0.30 kg/MWh, 

-0.01 – 0.58 kg/MWh, and 0.00 – 0.58 kg/MWh for the customer, aggregator, and wholesale-

only perspectives, respectively. Emissions rates are higher for Duquesne Light for two reasons; 

first, MEFs are higher in RFC and second, battery capacity factors are higher from performing 

significant amounts of frequency regulation. Higher capacity factors lead to higher round-trip 

efficiency losses. While Duquesne Light, PG&E, and SCE have higher emission rates in the 

aggregator and wholesale-only perspectives than the customer perspective, ConEd’s emission 

rates are lower. This is a result of differing marginal emission rates in each region during typical 

battery charging periods. MEFs in NPCC are lower in the early morning hours when aggregators 

and other wholesale market participants will charge than in evening hours when customer-

owners will charge. RFC and WECC have higher MEFs during early morning hours. This hints 

at the benefits of a time-of-use (TOU) rate in ConEd that we discuss later. 

Positive net emission rates can be attributed to two factors; (1) net positive energy 

consumption by the battery due to internal battery energy losses, and (2) differences in MEFs 

between charging and discharging periods. We can isolate the effect of differences in MEFs by 

calculating the average MEF during battery charge minus the average during discharge, weighted 

by energy (normalizing the MEF to the energy input/output). The balance of the total emission 

rate can be attributed to internal energy losses from inefficiency. Across all tariffs, the difference 

in the average charging-discharging CO2 MEF is -22, 71, and 25 kg/MWh for customer-owners, 

aggregators, and wholesale participants, respectively. This represents only -5%, 12%, and 4% of 

total net emissions rates, respectively. Similar patterns were identified for SO2 and NOx. This 

means that most of the positive net emissions from battery operation can be attributed to internal 
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energy losses. Figure S.10 confirms that increases in round-trip efficiency dramatically reduce 

net emission rates. 

Tariff design can reduce the environmental impact of BTM batteries, but only with a close 

examination of a region’s generation fuel mix. MEFs reach high and low points at different times 

during the day depending on your location. MEFs in western states peak in the early morning 

hours, while at the same time in the northeast they are reaching a minimum. The average daily 

MEF profile (Figure S.7) shows that TOU rates in California that end in the early evening, and 

flat rates in Pennsylvania that encourage charging in the late afternoon are optimal for 

minimizing emissions for customer battery owners. ConEd, however, has a flat-rate tariff which 

encourages charging during late afternoon hours, while MEFs in NPCC reach a minimum in the 

early morning hours. We designed a revenue-neutral TOU rate to investigate the impact of tariff 

design on net emissions. From 8am to midnight, we increase energy rates to 4.27 cents/kWh and 

decrease rates to 2 cents/kWh from midnight to 8am when MEFs are lowest. Relative to the flat-

rate tariff, this lowered net CO2 emissions by 18% (to 77 kg/MWh), SO2 by 65% (to 0.02 

kg/MWh), and switched batteries from net positive NOx emissions to net negative (-0.07 

kg/MWh). We note that such tariffs must be periodically reexamined as the generation mix and 

MEFs in a region change. 

 DISCUSSION 

As previous studies have found for grid-scale batteries, BTM batteries increase system emissions 

in most cases by consuming more energy than they deliver and shifting load between generators. 

An important finding from our model is that most of the positive net emissions can be attributed 

to internal energy losses, not to the timing of charging/discharging. Net emission rates from 

BTM batteries are somewhat lower than rates from natural gas combined-cycle generators, but 
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have the same order of magnitude. The net emission rates found here are similar in magnitude to 

those from Hittinger and Azevedo,9 who calculated net emission rates across NERC regions from 

grid-scale batteries performing energy arbitrage only. 

Tariff design can reduce the environmental effect of BTM batteries in certain regions, as we 

have shown with a TOU rate in New York. As the fuel composition of the generation fleet 

changes in response to regulatory or market forces, policy makers should periodically reassess 

tariffs for battery owners to encourage charging from low-emission sources. Encouraging 

aggregators and other wholesale market participants to shift energy purchases to lower emission 

hours, however, is not as easily accomplished since battery charging follows wholesale market 

prices. State regulators cannot change wholesale pricing with the stroke of a pen. Instead, this 

would require broad policy instruments like carbon prices. 

The emissions consequences of adding BTM batteries is of significant concern to policy 

makers where batteries are currently being installed, and they should take care to differentiate 

between grid-scale and BTM batteries in their analyses. For example, California’s Self-

Generation Incentive Program (SGIP) mandates that incentivized technologies, such as energy 

storage, must have a net emission rate lower than that of the grid as a whole. To calculate the 

emissions for battery storage, they assume all storage devices displace a natural gas combustion 

turbine by discharging during peak hours and charge during off-peak hours from the output of a 

combined-cycle gas turbine. Future work to determine a more accurate emissions rate may 

include production cost modelling.24 These methods apply only to a grid-connected battery by 

failing to account for retail tariffs and the individual building load profiles which drive BTM 

battery behavior. 
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These policy makers are also incentivizing relatively long-duration storage (2-hours for SGIP). 

Our economic results suggest that greater market penetration may be achieved by allowing 

shorter duration batteries, which more fully utilize their installed capacity. Regulators can then 

create a distributed long-duration resource by sequentially calling short-duration assets. 

Battery economics improve significantly for all regions as installation costs decrease by 30% 

(~$750/kWh to ~$500/kWh). Tesla forecasts at least a 30% reduction in battery pack cost by the 

end of the decade,34 which is in-line with academic reviews;35 if the market were to see a 

corresponding improvement in inverter and soft costs this could significantly increase BTM 

installations. The degree to which BTM batteries will penetrate locations with average energy 

costs in this scenario will depend significantly on the price of ancillary services and other 

location-dependent revenue sources (e.g., demand response programs and/or capacity payments). 

Battery owners exposed only to retail tariffs may contribute to, rather than reduce system peak 

load. The C&I load in our sample peaks earlier than the typical daily system peak, which is 

consistent with data from national building modeling efforts.36 Under flat-rate retail tariffs, these 

batteries begin to charge in the early evening as building load drops off. Unfortunately, this 

increased load coincides with the average system peak and could exacerbate problems and 

inefficiencies experienced during high load, such as losses and capacity shortfalls. 

In some areas of the country, a battery can gain additional revenue from participation in utility 

demand response (DR) programs or capacity markets. We chose not to include utility DR or 

capacity market events in our model due to the diversity of program rules in different 

jurisdictions (e.g., event duration and total number of events) that would make it difficult to 

compare our model’s results across regions. The revenue from participation in such programs 

could materially improve the economics of BTM batteries. To investigate if the revenue from 
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DR events would be roughly additive to the revenue in our model, we examined the coincidence 

of DR events with the provision of other services from the battery. We found that in the case of 

SCE in summer 2013, the average capacity utilization of the batteries in our model was 4% 

during the hours of DR events (204 hours). This suggests that the batteries in the model are not 

typically providing other services during these hours, and that DR revenue should be roughly 

additive after subtracting increased energy costs from round-trip efficiency losses. 

Large-scale mitigation of demand charges will decrease revenue to the utility. This revenue 

loss will be offset by a decreased need for infrastructure capacity upgrades, but could jeopardize 

profitability. In this regard we see parallels to the growth of rooftop solar and the associated 

“value of solar” debate. It will be important for policy makers to consider the lessons learned 

from the growth of rooftop solar when designing incentives and tariffs for BTM battery owners. 

Our findings related to net emission increases hold for the present-day fuel composition of the 

generation fleet. Should the grid become significantly cleaner, even if it is for only certain 

portions of the day, then it is possible that the addition of energy storage will decrease overall 

emissions through load shifting. Lin et al. showed how emissions changes can be related to fuel 

mix on a small test system.13 However, the long lifetime of physical assets for power systems 

combined with regulatory uncertainty regarding emission reductions from existing generation 

sources leads us to conclude that significant de-carbonization is many years away, while BTM 

battery systems are being installed today. Policy makers should be aware of how battery 

characteristics and tariff design can alter use patterns, and that, short of emissions prices, an 

adaptive process of tariff redesign may be necessary to link use patterns with emission goals. 
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S1. Data Cleaning and Validation 

The utility provided data from a subset of their entire commercial and industrial population. The 

subset were those customers who had interval meters and a sufficiently long history for this 

study. This may introduce selection bias. The subset of customers with interval meters would 

suggest a skew toward higher usage customers relative to the general commercial/industrial 

population. Our results could also be biased because the data come from one geographic area of 

the country. Commercial/industrial customers in other parts of the country could have different 

load shapes that would affect battery behavior. 

Meters covering loads unsuitable for this study were removed according to usage 

characteristics. This included any meters with maximum power draw less than 25kW, average 

power draw less than 13kW, or any meter missing a total of more than 2 days of data within 

2013. Data gaps for meters with less than 2 days of missing data were filled with an average 

profile from two surrounding days of the same type (weekday/weekend). 270 meters were 

removed during this step. A subsequent visual inspection of each meter’s load profile identified 

meters that were attached to specific pieces of equipment (e.g., switching between 2 discrete load 

values throughout the year). 59 meters were removed during this step. 

It is very difficult to validate the results of our model by comparing to real-world battery 

behavior. BTM batteries are currently installed at a small fraction of customer sites even in 

California. Metered output data from these batteries is confidential to the customer, and 

proprietary to the third-party aggregators who may have installed the battery. There is some 

capacity factor data from PG&E impact evaluation reports for the Self-Generation Incentive 

Program (SGIP),1 though it is quite course and calculated from only 4 projects. The impact 

report states 80% of monthly capacity factors for installed batteries were below 10%, with nearly 
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60% below 2.5%. For the batteries modeled in this study under a PG&E tariff, 100% of monthly 

capacity factors were below 10%, and 95% below 2.5%. For SCE’s tariff, 100% of monthly 

capacity factors were below 10%, and 76% below 2.5%. The lower capacity factors found in this 

study could be the result of our decision not to model demand response (DR) events or behind-

the-meter (BTM) solar photovoltaic generation. DR event participation is a requirement of 

receiving an incentive under SGIP. 

S2. Load and Market Data 

Our dataset included energy usage (kWh) data from 994 individual commercial and industrial 

meters at a 15-minute sample rate for 1 calendar year (2013). According to the utility, none of 

the customers had behind-the-meter generation. As described in the previous section, data filters 

were applied to screen unsuitable meters from our analysis, leaving us with 665 meters. 

 

Figure S.1. Distribution of annual average (a) and maximum (b) power consumption across 665 

buildings in dataset.  
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Figure S.1 shows the distribution of annual average and maximum power consumption for the 

665 buildings in the sample. The median annual average power consumption is 600 kW, and the 

median peak power consumption is 1,094 kW. These distributions expose a long tail in power 

consumption. Removing all buildings with maximum annual power consumption greater than 10 

MW (37 buildings) changes the emission rates for all pollutants by less than 2% when compared 

with the results of the full sample. 

 

Figure S.2. Distribution of standard deviation of load across buildings in our sample. 

 

Figure S.3. Resulting distribution of battery capacity when sized to 20% of peak load. 
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Figure S.4. The hour-of-day when the monthly peak building load occurs, given as a distribution 

across all buildings. Monthly peaks tend to concentrate in the early afternoon hours during the 

summer, while in the winter they spread out over a wider portion of the day. This is likely due to 

the effect of air conditioning load driven by the southern climate where the data originate. 
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Figure S.5. Hourly average load across all buildings in the sample vs. outdoor temperature. Air 

conditioning load is likely responsible for the temperature dependence of load above 

approximately 60 degrees Fahrenheit. 

Calendar year 2013 hourly clearing prices for real-time energy and ancillary services markets 

were downloaded from grid operators in the United States corresponding to the utility tariff 

being used (California – CAISO; New York – NYISO; Pennsylvania - PJM). Table S.1 shows 

the grid node location where data were selected. Some California ancillary services only have a 

day-ahead market. 

Table S.1. Grid Node Locations for Market Data 

Grid Region Node ID 

PJM (Duquesne Light) Western Hub (51288) 

NYISO (ConEd) N.Y.C. (61761) 

CAISO (PGE) TH_NP15_GEN_APND 

CAISO (SCE) TH_SP15_GEN_APND 
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Figure S.6. Price-duration curves for real-time energy prices from 2013-2015. Ancillary service 

prices show similar trends because the largest component of ancillary service prices is typically 

the lost opportunity cost of producing energy (valued at the real-time price). 

Figure S.6 shows that 2013 market prices are not significantly different from 2015 prices, with 

2014 prices in NYISO and PJM affected by extreme cold temperatures (“polar vortex” event). It 
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would be inappropriate to compare 2013 data to earlier periods due to changes in market 

structure, such as the implementation of FERC Order 755.2 

S3. Optimization Formulation and Computational Methods 

S3.1 Problem Formulation 

Constants 

𝑆𝑆𝑆𝑆𝑆𝑆�����  Max state of charge of battery (kWh) 

SoC(0)  Initial state of charge of battery (kWh) 

𝑃𝑃�  Rated power of battery (kW) 

η  round-trip efficiency of battery (%) 

BL(t)  building load at time t (kW) 

EC(t)  Energy cost at time t ($/kWh) 

DCk  Demand charge for demand period k ($/kW) 

BRC  Battery Replacement Cost ($) 

LMP(t) Wholesale energy cost at time t ($/kWh) 

REGP(t) Wholesale regulation market price at time t ($/kWh) 

SPINP(t)  Wholesale spinning reserve market price at time t ($/kWh) 

RDNE Regulation Down Net Energy (kWh/kW) – maximum amount of net energy 

charge during a typical hour of frequency regulation. Expressed as a fraction of 

the regulation capacity offered. 

RUNE Regulation Up Net Energy (kWh/kW) – maximum amount of net energy 

discharge during a typical hour of frequency regulation. Expressed as a fraction of 

the regulation capacity offered. 
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ABSE Absolute Energy (kWh/kW) – total energy processed by a battery during 

frequency regulation. Expressed as a fraction of the regulation capacity offered. 

Variables 

c(t)  battery charging at time t (kW) 

d(t)  battery discharge at time t (kW) 

reg(t)  frequency regulation capacity participation at time t (kW) 

spin(t)  spinning reserve participation at time t (kW) 

pdk  peak demand during demand period k (kW) 

soc(t)  state of charge of battery at time t (kWh) 

nl(t)  net load at time t (kW) 

deg(t)  battery degradation cost at time t ($) 

pen(t)  penalty function to prefer 90% idle state of charge ($) 

Sets 

T  Set of 15-minute time periods 

K Set of demand periods (e.g. peak, mid-peak and off-peak - depends on tariff), 

each of which is a subset of T 

 

Objective Functions 

min�[𝐸𝐸𝑆𝑆(𝑡𝑡) ∗ 𝑛𝑛𝑛𝑛(𝑡𝑡) + 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) + 𝑝𝑝𝑑𝑑𝑛𝑛(𝑡𝑡)]/4
𝑡𝑡∈𝑇𝑇

+ �𝐷𝐷𝑆𝑆𝑘𝑘 ∗ 𝑝𝑝𝑑𝑑𝑘𝑘
𝑘𝑘∈𝐾𝐾

 ( 1 ) 

min�[(𝐿𝐿𝐿𝐿𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑆𝑆(𝑡𝑡)) ∗ 𝑛𝑛𝑛𝑛(𝑡𝑡) − 𝑅𝑅𝐸𝐸𝑅𝑅𝑃𝑃(𝑡𝑡) ∗ 𝑟𝑟𝑑𝑑𝑑𝑑(𝑡𝑡) − 𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃(𝑡𝑡) ∗ 𝑠𝑠𝑝𝑝𝑠𝑠𝑛𝑛(𝑡𝑡)]/4
𝑡𝑡∈𝑇𝑇

+ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) + 𝑝𝑝𝑑𝑑𝑛𝑛(𝑡𝑡) + �𝐷𝐷𝑆𝑆𝑘𝑘 ∗ 𝑝𝑝𝑑𝑑𝑘𝑘
𝑘𝑘∈𝐾𝐾

 
( 2 ) 
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min�[𝐿𝐿𝐿𝐿𝑃𝑃(𝑡𝑡) ∗ 𝑛𝑛𝑛𝑛(𝑡𝑡) − 𝑅𝑅𝐸𝐸𝑅𝑅𝑃𝑃(𝑡𝑡) ∗ 𝑟𝑟𝑑𝑑𝑑𝑑(𝑡𝑡) − 𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃(𝑡𝑡) ∗ 𝑠𝑠𝑝𝑝𝑠𝑠𝑛𝑛(𝑡𝑡)]/4 + 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑡𝑡∈𝑇𝑇

+ 𝑝𝑝𝑑𝑑𝑛𝑛(𝑡𝑡) 
( 3 ) 

Equation 1 is the objective function for the customer ownership perspective. Equation 2 is for 

aggregators and equation 2 is for the wholesale-only perspective. We divide the energy cost and 

ancillary service revenue by 4 to convert kW to kWh for a 15-minute time-step. This correctly 

matches the units of market clearing prices ($/kWh). This portion of the objective function 

represent real costs/revenues to the battery owner. Degradation is an amortization of the assumed 

replacement cost into the use phase of the battery; it prevents the unnecessary use of the battery 

to perform services when market prices are low. The penalty function is used to restrict battery 

SOC as discussed below. 

The last term in the customer and aggregator objective functions sums demand charges over 

each demand period k; the form of this portion of the equation will change depending on the 

structure of demand charges in each utility tariffs. For example, Duquesne Light’s demand 

charge is a flat-rate charge covering all hours of a month and does not depend on time-of-day or 

month – therefore there is only one demand period k. Southern California Edison (SCE), on the 

other hand, has a more nuanced demand charge that has a flat-rate charge for all hours of a 

month, as well as time-of-day adders that depend on the month. In this case, there are 4 different 

demand periods to track in any given month. The code implementation of tracking peak demand 

in each demand period in the GAMS software, while maintaining a linear programming problem, 

warrants some discussion. The use of a maximum function (MAX) common to many software 

packages is not a linear function, and therefore would necessitate the use of a non-linear solver in 

the optimization calculations. This would drastically slow the solution time. Fortunately, there is 

an equivalent method to a MAX function that maintains a linear programming problem. We 
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create a number of extra variables equal to the number of demand periods we need to track (for 

SCE, this was 4). The variables will track the peak demand in each of these periods. We then add 

an equivalent number of constraints at each time step to our problem (again, 4 for SCE at each 

time step) that force the variable to assume the maximum load experienced during that period. 

These take the form nl(t) ≤ pdk ∀t∈ k where nl(t) is the net load at time t where t falls in demand 

period k and pdk is the variable that holds the max load for demand period k. A similar method is 

used in the imperfect information scenarios to provide “memory” of the previous demand peak 

across each rolling-horizon optimization in a given month. 

Where: 

𝑛𝑛𝑛𝑛(𝑡𝑡) = 𝐵𝐵𝐿𝐿(𝑡𝑡) + 𝑐𝑐(𝑡𝑡) − 𝑑𝑑(𝑡𝑡) ( 4 ) 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) =
�𝜂𝜂 ∗ 𝑐𝑐(𝑡𝑡) + 𝑑𝑑(𝑡𝑡)

�𝜂𝜂
+ 𝑟𝑟𝑑𝑑𝑑𝑑(𝑡𝑡) ∗ 𝐴𝐴𝐵𝐵𝑆𝑆𝐸𝐸

4 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆����� ∗ 4598
∗ 𝐵𝐵𝑅𝑅𝑆𝑆 

( 5 ) 

 

Equation 4 calculates the net load of the building at time t (the load seen by the meter) from 

the underlying building load and the charging or discharging of the battery. 

Equation 5 calculates degradation cost at time t as the product of the replacement capital cost 

and the fraction of total lifetime energy processed by the battery at time t. As determined by 

experimental results in Peterson, et al.,3 we account only for amp-hours processed by the battery, 

not depth of discharge, when calculating battery degradation for lithium-ion phosphate batteries. 

Based on data in Peterson, et al., we assume that the energy consumed to reach the end of battery 

lifetime (80% of initial battery capacity) is 4,598 times the maximum SOC. We derive this 

number from an average of the model coefficients reported in the paper. To express the energy 

processed by the battery at time t in fractions of lifetime energy, we divide the energy processed 
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(sum of charging, discharging, and regulation energy) by the lifetime energy capacity of the 

battery (4,598 times maximum SOC). We divide by 4 to convert charge, discharge, and 

regulation kW to kWh. Battery replacement cost is assumed to be 70% of the current system 

cost. Battery behavior is relatively insensitive to the replacement cost assumption. 

Absolute Energy (ABSE), used in Equation 5, is the total amount of energy processed by the 

battery during participation in frequency regulation, both by charging and discharging, expressed 

as a fraction of the regulation capacity offer (kWh/kW). We derive the value for ABSE (0.26 

kWh/kW) from 1 year of PJM regulation D signal4 (2 second sample rate). This parameter is 

calculated as the mean value in the distribution of absolute energy processed by the battery in 

one hour of frequency regulation. 

𝑝𝑝𝑑𝑑𝑛𝑛(𝑡𝑡) ≥ �𝑆𝑆𝑆𝑆𝑆𝑆����� ∗ 0.9 − 𝑠𝑠𝑆𝑆𝑐𝑐(𝑡𝑡)� ∗ 10−7 ( 6 ) 

𝑝𝑝𝑑𝑑𝑛𝑛(𝑡𝑡) ≥ (𝑠𝑠𝑆𝑆𝑐𝑐(𝑡𝑡) −  𝑆𝑆𝑆𝑆𝑆𝑆����� ∗ 0.9) ∗ 10−1 ( 7 ) 

 

Equations 6 and 7 implement a penalty function for deviations from 90% state of charge. This 

forces the battery to prefer a 90% SOC when idle, balancing a desire for higher states of charge 

to be ready for unexpected spikes in energy use while recognizing that operation above 90% 

SOC may be harmful to the battery (due to high voltage).5 Different scaling factors are used to 

accomplish different objectives. A small scaling factor of 10E-7 is used in Equation 6, which 

creates a penalty for SOC lower than 90%, to reflect the preference for higher SOC, but not at 

the expense of revenue generating activities that require discharging. A larger scaling factor of 

10E-1 is used for Equation 7, which creates a penalty for SOC higher than 90%, to reflect higher 

degradation rates at high voltages. The combination of these two formulas are mathematically 
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equivalent to an absolute value calculation, but this formulation preserves the overall problem as 

a linear program and allows different penalties for SOC above and below 90%. 

The problem is initialized with a 90% SOC at t = 0. 

Constraints 

𝑠𝑠𝑆𝑆𝑐𝑐(𝑡𝑡 + 1) = 𝑠𝑠𝑆𝑆𝑐𝑐(𝑡𝑡) +
�𝜂𝜂 ∗ 𝑐𝑐(𝑡𝑡) − 𝑑𝑑(𝑡𝑡)

�𝜂𝜂
− 𝑟𝑟𝑑𝑑𝑑𝑑(𝑡𝑡) ∗ 𝐴𝐴𝐵𝐵𝑆𝑆𝐸𝐸 ∗ (1 − 𝜂𝜂)

4
 

( 8 ) 

Equation 8 is an intertemporal constraint to track changes in SOC. We divide by 4 to convert 

charge, discharge, and regulation kW to kWh. Charging/discharging results in internal energy 

loss, which is characterized by the round-trip efficiency (η). While net energy neutral, frequency 

regulation causes charging/discharging and therefore losses. As described previously, ABSE is 

used to calculate the amount of energy processed while providing frequency regulation. As a 

simplification, we assume that the battery is never called to provide spinning reserve, and thus 

does not suffer any energy losses for this service. We ignore standby losses as they are small 

(~1-2% per month),6 which causes us to slightly underestimate emissions rates and slightly 

overestimate revenues to the owner. 

0 ≤ 𝑐𝑐(𝑡𝑡) ≤ 𝑃𝑃� ( 9 ) 

0 ≤ 𝑑𝑑(𝑡𝑡) ≤ 𝑃𝑃� ( 10 ) 

Equations 9 and 10 restrict the charging and discharging power to the rated power of the 

battery. 

0.2 ≤ 𝑠𝑠𝑆𝑆𝑐𝑐(𝑡𝑡) ≤ 𝑆𝑆𝑆𝑆𝑆𝑆����� ( 11 ) 

The state of charge (SOC), expressed as a fraction of total charge carrying capacity, is 

restricted to values between 20% and 100% in Equation 11. The lower limit of 20% is imposed 
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to prevent degradation at low voltages. Lithium-ion batteries in electric vehicles have similar 

constraints imposed by car manufacturers.7 

𝑟𝑟𝑑𝑑𝑑𝑑(𝑡𝑡) ≤ 𝑃𝑃� − 𝑐𝑐(𝑡𝑡) − 𝑑𝑑(𝑡𝑡) − 𝑠𝑠𝑝𝑝𝑠𝑠𝑛𝑛(𝑡𝑡) ( 12 ) 

Equation 12 limits the amount of regulation capacity the battery can offer to the rated power of 

the battery minus any net charging or discharging of the battery and the capacity held for 

spinning reserve. In the customer ownership case where participation in ancillary service markets 

is not allowed, this equation is still valid and simply limits the charging and discharging of the 

battery. We assume that the regulation signal is designed to be energy neutral, as with PJM’s 

dynamic signal for fast-responding resources.8 

𝑆𝑆𝑆𝑆𝑆𝑆����� ≥ 𝑠𝑠𝑆𝑆𝑐𝑐(𝑡𝑡) + 𝑅𝑅𝐷𝐷𝑆𝑆𝐸𝐸 ∗ 𝑟𝑟𝑑𝑑𝑑𝑑(𝑡𝑡) ( 13 ) 

𝑆𝑆𝑆𝑆𝑆𝑆����� ≤ 5 ∗ (𝑠𝑠𝑆𝑆𝑐𝑐(𝑡𝑡) − 𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 ∗ 𝑟𝑟𝑑𝑑𝑑𝑑(𝑡𝑡)) ( 14 ) 

Equations 13 and 14 constrain the amount of regulation capacity the battery can offer based on 

the state of the charge of the battery. Equation 13 prevents the SOC from exceeding the 

maximum SOC while Equation 14 ensures a minimum 20% SOC. The frequency regulation 

signal will cause the battery to temporarily charge and/or discharge. We do not want the battery 

to violate the state of charge constraints at any time during regulation participation so we must 

adjust the regulation capacity offer to account for the maximum amount of net energy 

charge/discharge typically experienced while providing frequency regulation. We derive the 

values for RDNE (0.1 kWh/kW) and RUNE (0.2 kWh/kW) from 1 year of PJM regulation D 

signal4 and express the value as a fraction of the regulation capacity offer. These parameters are 

set at the 97.5% percentile of the distribution of net energy charge/discharge during each hour of 

regulation signal, as opposed to the 100% percentile, to not overly constrict frequency regulation 

participation due to a few hours of atypical regulation signal patterns. The resulting values for 
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RDNE and RUNE are very similar to the values of corresponding parameters used in EPRI’s 

battery storage modelling for California (0.13 and 0.11, respectively).9 

S3.2 Computational Methods 

We have six optimization runs to perform for every choice of tariff scheme or battery 

configuration – three ownership perspectives mixed with two forecasting scenarios. In the 

perfect information scenarios, we feed an entire calendar month of data to the optimization 

model to minimize energy costs for that billing period. Some information, such as the battery 

state of charge and building net load are stored to initialize the next month’s optimization run. 

We conduct 12 separate monthly optimizations for each building, totaling approximately 8,000 

optimizations across all buildings. With a 12-core Intel Xeon E5-2680 v3 CPU at 2.5GHz and 

64GB of memory this took approximately 10 minutes. 

In reality, battery operation software would need to make operational decisions about the 

current time period using imperfect forecasts and update those forecasts as time progressed. Our 

persistence forecast scenarios therefore require much more computational effort. We conduct a 

rolling horizon optimization for each 15-minute window in which we save only the operational 

decision about the current period. We then step forward 15 minutes, make a new forecast, and re-

optimize over the selected time horizon. We selected a horizon of 14 hours based on a set of 

trials to determine the best performance across horizon lengths. In this way, we conduct 

approximately 35,000 optimizations (1 year of 15-minute periods) for each building, totaling 23 

million separate optimizations across all buildings. These optimizations were performed on the 

Bridges Supercomputer at the Pittsburgh Supercomputing Center through an allocation by the 

National Science Foundation’s Extreme Science and Engineering Discovery Environment 

(XSEDE) Program.10 A single computing node with two 14-core Intel Xeon E5-2695 v3 CPU at 
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2.3GHz and 128GB of memory took approximately 3 hours to run all buildings for a single set of 

parameters. Sensitivity analysis was performed by feeding multiple parameter scenarios to 

different computing nodes at the same time. 

S3.3 Software Used 

The battery configuration, data and optimization parameters are initially set in MATLAB. 

MATLAB selects the appropriate window of data for each building and performs the persistence 

forecasts. These data are written to a .GDX file that can be read by the optimization software. 

MATLAB creates a set of parallel workers on all but one available core (to allow for a 

“scheduling” core) and the parallel code is executed via a parallel loop. When the optimization 

software finishes its routine, the results are again written to a .GDX file which MATLAB can 

read and store. The battery optimization is performed in the General Algebraic Modeling System 

(GAMS) using the CPLEX solver. 

S4. Calculating Delivered Energy While Performing Frequency 

Regulation 

Emissions results presented in this paper are normalized to the amount of energy delivered by the 

battery for ease of comparison to emissions values from other generation sources and emissions 

studies. The amount of energy delivered while performing frequency regulation is not a 

straightforward calculation – it depends on what other services the battery is providing at the 

same time. 

1. Frequency Regulation Only – if the battery is only performing frequency regulation, we 

estimate the delivered energy by multiplying the capacity offered for frequency 

regulation by half the value of the ABSE metric discussed in section S3.1 (“Absolute 
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Energy” processed during frequency regulation). Since we assume the frequency 

regulation signal is energy neutral over a given timeframe, the amount of energy 

delivered during that timeframe must be half the total energy processed. 

2. Frequency Regulation while Charging – if the battery is charging and providing 

frequency regulation, we estimate that it will deliver zero energy if the charge energy is 

higher than half the ABSE times the regulation capacity offered. In other words, if the 

battery is charging at a sufficiently fast rate we assume that dips in the frequency 

regulation signal will not cause the battery to discharge at any point while providing 

this service. If the charge energy is lower than half the ABSE times the regulation 

capacity offered, we subtract the former from the latter to calculate the delivered 

energy. 

3. Frequency Regulation while Discharging – similarly, if the battery is discharging and 

providing frequency regulation, we make no adjustments to the delivered energy from 

discharging as long as the discharge energy is more than half the ABSE times the 

regulation capacity offered. If not, we adjust the delivered energy from discharging by 

half the ABSE times the regulation capacity offered. 
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S5. Additional Results 

S5.1 Emissions – Perfect Forecast 

 

Figure S.7. 2014 annual average marginal CO2 (a), SO2 (b), and NOx (c) emission rates by time-

of-day and NERC region. Data from Siler-Evans, et al.11,12 Shaded areas represent one standard 

error in the regression coefficients used to estimate the emission rates. 
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Figure S.8. CO2 emission rates using 2014 MEFs vs 2006-2014 average MEFs. Colored bars 

show results using 2014 MEFs, which were presented in the main article (Figure 3). Red 

asterisks show results using 2006-2014 average MEFs. 
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Figure S.9. NOx (a) and SO2 (b) emission rates using 2014 MEFs vs 2006-2014 average MEFs. 

Colored bars show results using 2014 MEFs, which were presented in the main article. Red 

asterisks show results using 2006-2014 average MEFs. 
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Figure S.10. Sensitivity of CO2 emission rate to battery traits and market conditions. In our 

model, lower capital costs lead to higher capacity factors and thus larger emission rates. Lower 

battery cost can actually boost revenue by decreasing perceived degradation costs. A drop in 

degradation costs depresses the threshold for profitable participation in peak shaving or ancillary 

services, allowing the battery to generate more revenue through higher utilization. 
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Figure S.11. Sensitivity of SO2 emission rate to battery traits and market conditions. 
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Figure S.12. Sensitivity of NOx emission rate to battery traits and market conditions. 
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S5.2 Economics – Perfect Forecast 

 

 

Figure S.13. Breakdown of capacity normalized (a) and energy normalized (b) revenue by 

service for each utility across different battery durations. 
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Figure S.14. Sensitivity of economic results to battery characteristics and market conditions. 

 

Figure S.15. Sensitivity of economic results to financial assumptions. 
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Figure S.16. Sensitivity of economic results to ancillary service prices when battery cost 

declines to $400/kWh + $267/kW (~$500/kWh). Duquesne Light is extremely sensitive to 

ancillary service prices because a large proportion of battery revenue is derived from frequency 

regulation. 

 

Figure S.17. Effect of sales tax on project economics. Sales taxes are assessed on customer 

energy bills. The consideration of sales tax improves project economics because batteries lower 
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total energy bills, and therefore taxes. The main article does not consider sales taxes for ease of 

comparison across utility tariffs. 

 

Figure S.18. Demand charge reduction under aggregator ownership across different battery 

durations. Aggregators are able to mitigate 6% of demand charges with a 60-minute battery sized 

to 20% of peak load while increasing customer energy costs by only 0.1%. 
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S5.3 Persistence Forecast Results 

 

Figure S.19. Average daily discharging (a) and charging (b) profile of battery fleet under perfect 

forecasts. Light solid lines are individual profiles for each ownership perspective and utility 

region. Heavy dotted lines represent an hourly moving average of all utility regions for a 

particular ownership perspective. Average capacity utilization is lower than in perfect forecast 

scenarios because the persistence algorithm does not forecast peak loads accurately, leading to 

missed load shifting opportunities and thus fewer profitable opportunities to use the battery. 
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Figure S.20. Sensitivity of economic results to system cost under persistence forecasts. 

In all other parameter scenarios, there are no buildings that have NPV > 1. 
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