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Abstract 

Reanalysis data is attractive for wind-power studies because it can offer wind speed data for large 
areas and long time periods and in locations where historical data are not available. However, 
reanalysis-predicted wind speeds can have significant uncertainties and biases relative to measure 
wind speeds. In this work we develop a model of the bias and uncertainty of CFS reanalysis wind 
speed than can be used to correct the data and identify sources of error. We find the CFS reanalysis 
data underestimates wind speeds at high elevations, at high measurement heights, and in unstable 
atmospheric conditions. For example, at a site with an elevation of 500 m and hub height of 80 m, 
the CFS reanalysis underestimates wind speed by 1.6 – 2.2 m/s. We also find a seasonal bias that 
correlates with surface roughness length used by the reanalysis model during the spring season. The 
corrections we propose reduce the average bias of reanalysis wind speed extrapolated to hub height 
to nearly zero, an improvement of 0.3 – 0.9 m/s. These corrections also reduce the RMS error by 
0.1 – 0.4 m/s, a small improvement compared to the uncorrected RMS errors of 1.5 – 2.4 m/s. 
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1 Introduction 
Reanalysis models interpolate in time and space between historical meteorological measurements 

and estimate the values of unmeasured quantities. Reanalysis data is attractive for wind-power 
studies because it can offer wind speed data for large areas (sometimes the entire world) and long 
time periods and in locations where historical data are not available. The current generation of 
reanalysis models, the Modern-Era Retrospective Analysis for Research and Applications (MERRA), 
Climate Forecast System (CFS), and the ECMWF Reanalysis (ERA-Interim) estimate meteorological 
variables with spatial resolutions of 0.313º at the equator (0.7º for ERA). [1-3] They estimate wind 
speeds at various heights: all offer 10 meters above ground level and pressure levels; MERRA offers 
50 meters above ground as well. These models also estimate variables useful for modeling the 
atmospheric stability.  

Previous research has used reanalysis data for large-scale analyses of wind power, such as wind 
resource assessment [4,5], long-term trends in wind speed [6,7], daily to yearly variability [8-10], and, 
extreme wind events [11,12]. However, the spatial resolutions of current reanalysis models limit their 
accuracy in areas with complex terrain [13] and the temporal resolutions limit their accuracy for 
periods less than one day. Also, the reanalyses are likely to be less accurate in areas with few 
meteorological stations, such as high latitudes and parts of Africa and the Southern Hemisphere. 

Many studies have addressed some of the limitations of reanalysis data by dynamically 
downscaling it using physics-based models with better spatial and temporal resolution. For example, 
the U.S. National Renewable Energy Laboratory commissioned two large studies based on 
dynamically-downscaled wind [14,15]. However, dynamic downscaling requires significant 
computing time. Also, dynamically-downscaled models may be only slightly more accurate than 
reanalysis models for applications such as wind resource assessments and long-term (month to year) 
average wind speeds. Sharp et al. say “In some respects, raw CFS reanalysis data is also very close to 
the results obtained when using downscaled data, although accuracy appears to vary dependent on 
location.” [16] 

In this paper, we characterize differences between CFS reanalysis wind speeds and historical data 
at heights of 10 – 100 m from sites in the U.S. Great Plains to improve the accuracy and precision of 
reanalysis data without dynamic downscaling. We develop a model of the bias and uncertainty of 
CFS reanalysis wind speed than can be used to correct the data. The model we propose also 
quantifies the contributions of various sources of error, which may suggest improvements to the 
reanalysis model. These results are specific to the CFS reanalysis and the U.S. Great Plains, but we 
expect the underlying methods will be applicable to other reanalyses.  

2 Method 
We use data from the CFS reanalysis [2] to calculate horizontal wind speeds at typical wind 

turbine heights using three different extrapolation methods. We then fit linear mixed-effects (LME) 
models to the data. Those LME models both allow us to correct reanalysis wind speeds for 
systematic biases and uncertainties, and to quantify the sources of both. Linear mixed-effects models, 
which are also called hierarchical, multilevel, or random-effects models estimate a model that allows 
for both between-site and within-site variation. [17] We fit the LMEs to the data described in 
Sections 2.1 and 2.2 using the “nlme” package, version 3.1-120 for R, release 3.1.3. [18,19] 
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2.1 Empirical Data 
We validate the extrapolated reanalysis wind speeds against historical measurements from the 

U.S. Great Plains. These historical data are 1-hour average horizontal wind speeds measured at 
heights between 10 m and 100 m above ground level (AGL). These measurements are taken at 162 
sites shown in Figure 1, with base elevations of 133 – 1463 m above mean sea level (AMSL). The 
data were collected by various government agencies in eleven U.S. states (MN, ND, OK, IA, WI, 
NE, MO, SD, CO, KS, IL) and compiled into a single database by the University of North Dakota 
Energy & Environmental Research Center, which performed quality control on the data. [20] Many 
of the measurements were collected by anemometers attached to existing telecommunications 
towers, others were collected by temporary 20-m towers from state and federal anemometer loan 
programs. We randomly divide the measurement sites into a “training” group of 109 sites and a 
“validation” group of 53 sites listed in the online Supporting Information. We exclude certain 
periods of bad data from some sites listed in the online Supporting Information. 

 

 
Figure 1: Locations of the measurement sites in the U.S. Great Plains. 

Some towers have two anemometers at the same measurement height; in those cases we select 
the maximum of the two measured wind speeds at each time step on the assumption that the lower 
measurement is partially shadowed by the tower. We exclude data from sites within approximately 3 
km of mountains or significant terrain features, sites with inhomogeneous fetch within 1 km (as 
judged from satellite photos), and sites within 1 km of trees or buildings.  
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Table 1: Summary statistics for measured data used in this analysis. Each sampling site may have multiple time series 
collected at different measurement heights. 

 Sampling 
sites 

Time 
series  

Base elevation 
(AMSL) 

Measurement 
height (AGL) 

Mean wind 
speed 

Training 109 227 133 – 1463 m 10 – 100 m 3.4 – 9.9 m/s 

Validation 53 110 254 – 1390 m 10 – 80 m 4.4 – 8.8 m/s 

 

 
Figure 2: Temporal coverage of measured wind speed data, grouped by state. In this paper we are concerned with 

comparing these measured data with corresponding periods of reanalysis data. 

2.2 Reanalysis Data 
The reanalysis data we use in this work comes from the CFS reanalysis, which uses numerical 

weather prediction models to interpolate meteorological measurements to a grid of locations. [2] 
Specifically, we analyze 10-m horizontal wind speed with a temporal resolution of 1 hour (analysis 
and 1 – 5 hour forecasts) for the period 1995 – 2008 and a spatial resolution of ~35 km at the 
equator (T382 grid). These wind speeds are state variables, which represent instantaneous samples of 
wind speed.[21] We discuss the consequences of comparing instantaneous wind speeds to 1-hour 
averages of measured wind speed in Section 3.2. When the locations of historical measurement sites 
(the towers) do not coincide with the reanalysis data grid points we bilinearly interpolate the 
reanalysis variables to the historical site location using the 4 nearest grid points. 

The CFS reanalysis model we analyze is similar to the MERRA model, which is commonly used 
in wind power studies because one of its standard outputs is wind speed at 50-m height. However, 
we expect MERRA would yield results similar to those we find in this work because the two models 
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are closely-related; Sharp et al. say, “CFSR and MERRA are based on the same set of observations 
and use similar models to extrapolate these data over space and time, to the same temporal scope.” 
[16] 

2.3 Extrapolating Reanalysis Wind Speed to Hub Height 
We analyze reanalysis wind speed extrapolated from 10-m height using two commonly used 

methods: a logarithmic vertical wind speed profile with surface roughness length z0 taken directly 
from the reanalysis model [22] and a power-law vertical profile with an exponent inferred from 
reanalysis wind speeds above and below the desired height [12,23,24].  

2.3.1 Neutral Logarithmic Profile with Reanalysis Surface Roughness 

The neutral logarithmic vertical wind profile is a function of surface roughness z0 and wind 
speed u at some reference height zref, typically 10 m. [25] This vertical profile gives wind speed at an 
arbitrary height u(z) as: 

 
( 1 )

We use the location- and time-specific values of the surface roughness length z0 from the 
reanalysis data (see, for example, Figure 6), as used by Huang et al. [22].  

2.3.2 Power Law Profile 

The power-law vertical wind profile is a function of wind speed u at some reference height zref, 
typically 10 m., and a power-law exponent α. [25] This vertical profile gives wind speed at an 
arbitrary height u(z) as: 

 
( 2 )

Some previous work has estimated varying values of α from wind speeds at different heights 
[23,24]. We estimateαat each hour and each site similarly, using the closest reanalysis wind speeds 
above uhi and below ulo the desired height according to the following formula: 

 

( 3 )

In the cases that zlo is lower than 10 m above ground level, we substitute the reanalysis wind 
speed at 10m u10. As with the inferred surface roughness, we exclude extrapolated wind speeds less 
than 0 m/s and greater than 30 m/s because they are physically-unrealistic artifacts from the process 
of inferring the exponent α. 

3 Results 
We present two related results: First, we fit LME models to reanalysis wind speed extrapolated 

to hub height and use those models to correct for biases and uncertainties in the reanalysis data. 
Second, we fit similar models to raw reanalysis wind speed outputs in order to analyze the sources of  
bias and uncertainty in the reanalysis model.  
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3.1 Bias and Uncertainty Correction for Reanalysis Wind Speed at Hub Height 
We propose a LME model correct the biases and uncertainties in the reanalysis-predicted wind 

speed. The general model, given in ( 4 ), estimates measured horizontal wind speed at a given site as 
a function of reanalysis-predicted wind speed, month of year, altitude of the site, and measurement 
height. We fit this model to data from the “training” data set described in Section 2.1 and then test 
the fitted model by using it to correct data from the “validation” data set.  

 
( 4 )

with the following fixed effects:  
 yij measured wind speed at site j and time i [m/s] 
 xij reanalysis-predicted wind speed at site j and time i [m/s] 

Separate groups for months Mar., Apr., May, June, and one group for July - Feb. 
 hj altitude of site j [m above sea level]  
 zj measurement height of site j [m above ground level] 

and the following random effects: 
 αj between-site error, drawn from normal dist. with mean 0 and std. dev. σα 
 εij Residual error, drawn from normal dist. with mean 0 and std. dev. σε 

 

Previous studies have used several methods for extrapolating reanalysis wind speed to hub 
height and have investigated wind speeds averaged over different periods, so we fit families of 
models to data with different extrapolation methods and averaging periods. We fit models to wind 
speeds averaged over 1, 3, 6, 9, 12, 18, and 24 hours and reanalysis wind speeds extrapolated 
vertically (described in Section 2.3), for a total of 21 models. We fit these models to all 
measurements higher than 10 m above ground level. The un-extrapolated 10-m wind speeds are 
qualitatively different: the ratio of measured to reanalysis wind speed is consistently greater than 1 
for the 10-m data and consistently less than 1 for the extrapolated data. Fitted models for 10-m data 
are included in Section 3.2. We also exclude reanalysis-predicted wind speeds less than 2 m/s 
because the measured wind speeds must be normally distributed around the regression fit in order to 
have an unbiased fit. At low reanalysis wind speeds, this implies some measured wind speeds must 
be negative, which is physically impossible.  

In Table 2 we present coefficients of the model fitted to 6 hour-average wind speeds. These 
models have a conditional R2 value of approximately 0.66, which means the model explains 66% of 
the variance of the data.[26] This value is similar to R2 values estimated in previous studies for 
regression models fit to hourly reanalysis data from individual sites. Liléo et al. calculate individual-
site R2 values of 0.40 – 0.80 for CFS reanalysis data and 0.56 – 0.78 for MERRA reanalysis data at 
0.995 sigma level (~42 m above ground). Carvalho et al. estimated an average R2 value of 0.61 for 
CFS reanalysis data 60-80 m height above ground. [13] The Crown Estate estimates individual-site 
R2 values of 0.69 – 0.93 for MERRA reanalysis data at 50-m height. [27] Our results compare well to 
these in spite of the fact that we estimate a more general model for many sites that explains some of 
the variation between sites. 

The fitted coefficients in Table 2 that relate reanalysis to measured wind speed (b1 – b5) are larger 
than the slope of 0.80 estimated previously by Rose, et al. for quarterly wind energy. [10] There are 
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two differences between the model in ( 4 ) and the model proposed by Rose et al. that explain the 
difference in estimated slopes. First, wind energy is proportional to wind speed squared for the 
typical range of wind speeds and the slopes coefficients b1 – b5 are less than 1, so we expect the 
previously-estimated slope for wind energy to be smaller than the slopes estimated for wind speed. 
Second, the model in ( 4 ) includes terms for site elevation and measurement height that explain 
more of the bias than the single sloe term in the previously-proposed model. 

In Figure 3 we plot the same model overlaid on the corresponding data for the months July - 
February: the left figure plots measured vs. reanalysis wind speed for all sites with overlaid with the 
model calculated for average values and the right figure plots data for a single site overlaid with 
models calculated for average and site-specific conditions. These results are representative of the 
results fitted to other averaging periods; the detailed results are given the online Supporting 
Information. 

Table 2: Coefficients for the model in ( 4 ), fitted to data averaged over 6 hours. All coefficients are statistically 
significant at a <1% level. 

  Log, model 
roughness (z0) 

Power-law, 
inferred alpha (α) 

S
lo

pe
 

July – Feb (b1) 0.92 0.89 

March (b2) 0.96 0.94 

April (b3) 0.97 0.97 

May (b4) 0.99 0.98 

June (b5) 0.95 0.93 

 Elevation (b6) 1.40e-3 (m/s)/m 1.61e-3 (m/s)/m 

 Meas. height (b7) 0.011 (m/s)/m 0.017 (m/s)/m 

 

 
Figure 3: Measured vs. reanalysis-predicted 6-hour average wind speeds from July - February, extrapolated with log 

profile and modeled roughness. Left: data from all sites at measurement heights greater than 10m. Right: data from site 158, 
with a 1463-m elevation and 50-m measurement height. Both are overlaid with a solid red line representing the best-fit 
model for average site characteristics and a dashed line showing a 1:1 relationship. The single-site data on the right is also 
overlaid with a solid black line representing the model that includes adjustments for the elevation and measurement height 
of that specific site. 
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The fitted model in Table 2 reveals that the reanalysis wind speeds generally under-predict 
measured wind speed. The under-prediction is less during the Spring (March - June) season, which 
we discuss in more detail in Section 3.2. The reanalysis under-prediction also decreases at higher 
elevations and higher measurement heights above ground. For example at a site typical for our data 
set with an elevation of 500 m and hub height of 80 m, the reanalysis wind speed under-predicts by 
1.6 – 2.2 m/s, depending on the vertical profile used. Finally, Figure 3 shows that the model fits the 
data better at moderate speeds (e.g. 3 – 8 m/s) where the data density is high than at high speeds (e.g. 
> 12 m/s) where the data density is low. However, a poor fit at wind speeds higher than 
approximately 12 m/s is not important for wind power applications because typical turbines reach 
their maximum rated power output in that speed range. 

The model given in equation ( 4 ) can be used to correct for the biases and reduce the 
uncertainties in reanalysis-predicted wind speed. For example, the correction for log-extrapolated 6-
hour average wind speed in April at 1000 m above sea level and 80 m above ground is 0.97x + (1000 
* 1.40x10-3) + (80 * 0.011), where x is the reanalysis wind speed extrapolated from 10-m to hub 
height. To quantify the effect of this correction, we use the model in ( 4 ) to calculate “corrected” 
wind speed from raw reanalysis data extrapolated to the desired measurement height and then 
calculate the bias (reanalysis minus measured speed) and root-mean squared error (RMSE) relative to 
actual measured wind speed at the same height. The models are fitted to the “training” data set but 
the bias and RMSE are calculated with the “validation” data set. Figure 4 and Figure 5 show the 
effects of this correction: it reduces the mean bias to nearly zero, but reduces the RMSE only 
modestly. 

 
Figure 4: Mean bias (defined as reanalysis minus measured) of reanalysis-predicted wind speed, with and without 

correction from the model we propose. Dashed lines plot bias without correction and solid lines plot bias after correction in 
equation ( 5 ) has been applied. 
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Figure 5: RMS error of reanalysis-predicted wind speed, with and without correction from the model we propose. 

Dashed lines plot bias without correction and solid lines plot bias after correction in equation ( 5 ) has been applied. 

Figure 4 shows that the LME model we propose is quite effective in reducing the average wind 
speed bias to nearly zero: the uncorrected biases are -0.9 to -0.4 m/s, but the biases after applying 
our model are -0.1 to 0.2 m/s. Figure 5 shows that the RMSE decreases with longer averaging 
periods, but applying the correction we propose decreases RMSE for all averaging periods. The 
RMSE is higher for higher ranges of wind speed, but this is not surprising because the RMSE units 
are absolute, rather than relative. Together, these results show that our proposed model significantly 
improves the accuracy of reanalysis-predicted wind speed. 

3.2 Sources of Bias and Uncertainty in 1-hr Reanalysis Data at 10-m Height 
The model we propose in ( 4 ) offers a way to correct for bias and uncertainties in the reanalysis 

wind speeds, but it also quantifies the sources of bias and uncertainty. Identifying those sources is 
may offer insights into the way the CFS reanalysis models wind speed in the boundary layer. In 
order to analyze the sources of bias and uncertainty independent of the vertical extrapolation 
method, we fit the slightly different LME model given in ( 5 ) to un-extrapolated 10-m wind speeds, 
which are the raw output of the reanalysis model.  

 
( 5 )

This model given in ( 5 ) removes the term for measurement height z because all measurements 
have the same height and because it is not statistically significant in the model. However, it adds an 
additional term Ψ related to atmospheric stability, to assess whether stability contributes significantly 
to wind speed error. This term Ψ, defined in ( 6 ), is a standard correction for atmospheric stability 
in the logarithmic vertical wind speed profile: 
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( 6 )

where a = (1 – 16z/L)1/4 . [28] It consists of three different sub-terms for unstable, stable, and very 
stable atmospheric conditions. There is no explicitly defined sub-term for neutral stability, where the 
correction is zero, because neutral stability corresponds to z/L = 0. The “stable” term yields a 
correction of 0 when z/L = 0. The online Supporting Information gives details of the calculation of 
the Obukhov length L from reanalysis data.  

We fit the model given in ( 5 ) to 1-hour average wind speeds measured at 10-m height and 
summarize the fitted coefficients in Table 3.  

Table 3: Coefficients for the model in ( 5 ), fitted to 1-hour average data measured at 10-m height. 

  Coefficient Std. err. DF t-value p-value 

S
lo

p
e

 

July – Feb (b1) 1.17 1.00e-3 1.22e6 1173 0 

March (b2) 1.26 1.31e-3 1.22e6 961 0 

April (b3) 1.30 1.40e-3 1.22e6 925 0 

May (b4) 1.35 1.48e-3 1.22e6 915 0 

June (b5) 1.30 1.65e-3 1.22e6 786 0 

 Elevation (b6) 2.53e-4 (m/s)/m 1.25e-4 56 2.03 0.047 

Ψ 
Unstable (b7) 0.666 8.98e-3 1.22e6 74.2 0 

Stable (b8) -0.0616 4.10e-3 1.22e6 -15.0 0 

Very stable (b9) -2.08e-3 3.94e-3 1.22e6 -0.53 0.60 

The most important terms in the model in ( 5 ) are the “slope” parameters b1 – b5, which 
represent the ratio of measured wind speed to reanalysis wind speed. The fitted values in Table 3 
show that the reanalysis model consistently underestimates measured 1-hour average wind speeds at 
10-m height and that the underestimate is larger in Spring months (March – June). The slopes range 
from 1.17 for non-Spring months (b1) to 1.35 for the month of May (b4). Although no previous 
studies we are aware of have explicitly reported the slope of fitted regression models, several studies 
have shown results consistent with the positive slope like we find for 10-m data. Carvalho et al. write, 
“There seems to be a somewhat linear variation of the bias [where bias is reanalysis minus measured 
speed] with the measured wind speed: for low wind speeds the bias tends to be positive and high, 
gradually diminishing with increasing measured wind speed and for strong wind speeds the biases 
are now negative and again high in value.” [13] Cannon et al. plots a linear least square fit that shows 
the same trend we find, but does not report the fitted model parameters. [12]  

We test several hypotheses to explain why 10-m reanalysis wind speeds underestimate measured 
wind speeds. First, the measured wind speeds are averaged over one hour, but the reanalysis wind 
speeds to which we compare them are “state variables” (i.e. instantaneous samples). [21] If this were 
a source of error, it should decrease as both data sets are averaged over longer periods, but we fit 
similar models to data averaged over much longer periods (days – months) and found consistent 
underestimation. Second, Carvalho et al. suggest that the simplified terrain used in reanalysis models 
can cause underestimation of wind speed. To test this hypothesis, we added two predictor variables 
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to the model in ( 5 ): one for site elevation relative to the average elevation within a 3-km radius and 
one for standard deviation of terrain elevations within 3 km, but the coefficients for those variables 
were not statistically significant. Third, the underestimation of measured wind speeds has a seasonal 
pattern that may be caused by the surface roughness length models used in the reanalysis data. 
Figure 6 shows that the increase in ratio of measured to reanalysis wind speed coincides with the 
springtime increase in surface roughness length used in the reanalysis model. We estimated surface 
roughness lengths from measured wind shear (speeds at various measurement heights) assuming a 
logarithmic vertical profile, but the values we estimated were too noisy to meaningfully compare to 
the roughness lengths from the reanalysis model.  

 
Figure 6: The ratio of measured to reanalysis-predicted wind speeds at 10-m height as a function of day of year (top) 

and typical surface roughness length profile used in the reanalysis model (bottom). The vertical dashed lines show the start 
and end dates of the month-specific coefficients b2 – b5. 

The “elevation” parameter b6 is marginally statistically significant (p = 0.047) and the magnitude 
is small, which suggests that bias in reanalysis wind speed is not strongly influenced by effects 
correlated with elevation. For example, the fitted coefficient of 2.53 x 10-4 (m/s)/m means that the 
reanalysis data underestimate wind speed by an average of 0.38 m/s at the highest-elevation site we 
analyze (1494 m). However, the coefficient for the elevation parameter estimated from vertically-
extrapolated wind speeds in Section 3.1 is statistically significant (p ≈ 0) and the magnitude is almost 
an order of magnitude larger (1.42x10-3) To understand why, we re-fit the model in ( 5 ) to 10-m data 
without the terms for stability (b7 – b9) in order to make the estimated coefficients more comparable 
to the model in ( 4 ). Fitting this reduced model to the 10-m data gives an estimate of 6.0 x 10-4 
(m/s)/m for the elevation coefficient b6, which is closer to the estimates for extrapolated data in 
Table 2. Sharp et al. find that reanalysis errors are larger for sites above 600 m because average wind 
speed increases with altitude. [16] We also find that reanalysis errors are larger for sites with higher 
average measured wind speeds, but we do not find a clear relationship between average reanalysis 
wind speed and error. 

We fit separate coefficients for each of the three sub-terms of Ψ: b7 for unstable conditions, b8 
for stable conditions, and b9 for very stable conditions. The coefficients for the unstable (b7) sub-
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term is statistically significant and the magnitude if relatively large. For example, the fitted value of b7 
(0.666) means that the reanalysis wind speed underestimates measured wind speed by approximately 
1.6 m/s in very unstable (z/L = -10) conditions. This suggests that the reanalysis model does not 
model wind speeds accurately in unstable atmospheric conditions. This is consistent with our finding 
that that the solar zenith angle [29] lagged 3 hours behind local time is a statistically-significant 
predictor variable. The coefficient for the stable (b8) sub-term is statistically significant (see Table 3), 
but the magnitude is small so we do not think the reanalysis model is significantly inaccurate in 
stable (and neutral) conditions. 

4 Conclusions 
This paper characterizes the differences between CFS reanalysis and measured wind speeds to 

correct for biases and uncertainties in the reanalysis data. Previous studies calculate measures of 
error (e.g. RMSE) and correlation between reanalysis and measured wind speed, but do not offer a 
way to correct the errors. Previous research by Rose et al. proposes a simple linear model to correct 
biases in quarterly wind power and a novel correction for errors introduced by vertically 
extrapolating wind speeds in unstable and stable atmospheric conditions. In the current paper we 
propose more sophisticated linear models that take into account altitude, measurement height, and 
seasonal variations in the relationship between reanalysis and measured wind speeds. 

The corrections we propose reduce the average bias of reanalysis wind speed extrapolated to 
hub height by 0.3 – 0.9 m/s, a large improvement that makes the average bias of the corrected wind 
speeds near zero. The corrections we propose also reduce the RMS error by 0.1 – 0.4 m/s, which is 
a small improvement. Averaging reanalysis wind speeds over several hours further reduces the RMS 
error, but the errors are still large. For example, the RMS error for 24-hour average wind speeds 
after our corrections have been applied is still 1 – 1.5 m/s, a significant fraction of the mean wind 
speed. 

The fitted coefficients of the our model show that the reanalysis model under-predicts wind 
speeds more at higher elevations (e.g. 1.4 – 1.6 m/s at 1000 m above sea level) and more at higher 
measurement heights (e.g. 1.1 – 1.7 m/s at 100m above ground level). For example, the correction 
for log-extrapolated 6-hour average wind speed in April at 1000 m above sea level and 80 m above 
ground is 0.97x + (1000 * 1.40x10-3) + (80 * 0.011), where x is the reanalysis wind speed 
extrapolated from 10-m to hub height. These results are relatively consistent for two different 
methods of extrapolating reanalysis wind speeds 10 m to higher heights above ground level, though 
we estimate a smaller magnitude of under-prediction using the raw 10-m wind speeds output by the 
reanalysis. 

The coefficients of our fitted models show that the ratio of measured to reanalysis wind speeds 
is higher during the Spring season than the rest of the year. For the reanalysis data extrapolated to 
hub height, where the ratio of measured to reanalysis wind speeds is less than 1, the ratio becomes 
nearer to 1 during the Spring. For the un-extrapolated reanalysis data where the ratio is greater than 
1, the ratio grows farther from 1 in the Spring. We show this seasonal pattern is correlated with the 
springtime increase in surface roughness lengths used by the reanalysis model. However, surface 
roughness lengths we inferred from the measured wind speed data were too noisy to fit a function 
relating them to the modeled roughness lengths. 

Finally, the coefficients of our fitted models also show that the reanalysis wind speeds under-
predict measured wind speeds in unstable atmospheric conditions. The magnitude of this under-
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prediction as a function of the z/L stability criterion is consistent with the stability correction for 
unstable conditions proposed by Paulson. [30] In cases where z/L cannot be estimated, we find that 
the solar zenith angle, lagged 3 hours behind local time, can be substituted as a predictor variable in 
the model.  

4.1 Extensions of this work 
This work compares wind speeds measured over relatively flat, homogeneous terrain in the U.S. 

Great Plains to data from the CFS reanalysis. The Great Plains region we analyze is an important 
one, because it contains the majority of wind power development in the United States. However, a 
similar analysis of other important wind-power regions, such as the plains of northern Europe, 
would help validate the model. A similar analysis comparing wind speeds predicted by a different 
reanalysis model, such as MERRA, would be useful to determine whether different reanalyses use 
better sub-models of the phenomena that we find affect the bias and uncertainty. 
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Calculation of Obukhov Length L from Reanalysis Data 
We calculate the Obukhov length L as a function of virtual heat flux at ground level Hv0 according 
to the following formula: 
 

 

( 1 ) 

from equation 12.11 in the textbook by Arya [1], where Tv0 is the virtual temperature at ground level 
calculated as , q is the specific humidity, T is the temperature, g is the 
gravitational acceleration, ρ is the density of air, and Cp is the specific heat at constant pressure for 
moist air. The virtual heat flux Hv0 is calculated from the sensible heat flux H0 and the latent heat 
flux HL according to the following formula:  

  ( 2 ) 
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where  with mean potential temperature  and latent heat of evaporation Le. [1] 
We calculate the potential temperature  as  where T is temperature, p is pressure, p0 
is standard pressure (1000 hPa), andκis the Poisson constant equal to 2/7 for dry air (note this is 
not the von Kármán constant). 
 
    Description [units] Source 
𝑢∗    friction velocity [m/s]  from reanalysis data 
Tv = (1+0.61q)T virtual temperature eq. 2.95 in [2] 
 q    specific humidity [kg/kg] from reanalaysis data 
 T    temperature 2m above ground [K]  from reanalysis data 
κ = 0.4   von Kármán constant 
g = 9.8   gravity [m/s2] 
Hv = H + aθ HL  virtual heat flux [W/m2]  eq. 12.10 in [1] 
 H    sensible heat flux [W/m2] from reanalysis data 
 aθ = 0.61Cp Θ/Le dimensionless coefficient 
  Cp = Cpd (1+0.84*q) specific heat of moist air at const. press. [J/kg*K] 
   Cpd = 1004.67  specific heat of dry air at const. press. [J/kg*K] 

  𝛩 = 𝑇 �𝑝0
𝑝
�
𝜅𝑝

 potential temperature [K] 

   p0 = 105 standard pressure [Pa] 
   p atmospheric pressure at ground level [Pa] from reanalysis data 
   κp = 2/7 Poisson constant  
  Le = 2.257 x 106  latent heat of evaporation [J/kg]  
 HL   latent heat flux [W/m2] from reanalysis data 
ρ = ρd((1 + q) /(1 + q(Rw/Ra))) Density of moist air [kg/m3] 
 ρd = p/(Ra T) Density of dry air [kg/m^3] 
  Ra = 287.058 Specific gas constant for dry air [J/kg*K] 
 Rw = 461.5 Specific gas constant for water vapor [J/kg*K] 
   
  

CFS Reanalysis Variables Used in This Analysis 
 
Variable Description Units CFS Reanalysis variable 

u10 Horizontal wind speed 
@ 10-m above ground 
level 

m/s U-component_of_wind_height_above_ground 

V-component_of_wind_height_above_ground 

u* Friction velocity m/s Frictional_velocity 

z0 Surface roughness 
length 

m Surface_roughness 

H0 Sensible heat flux W/m2 Sensible_net_heat_flux 
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HL Latent heat flux W/m2 Latent_net_heat_flux 

P Atmospheric pressure at 
ground level 

Pa Pressure (ground or water surface) 

q Specific humidity @ 2m 
above ground level 

kg/kg Specific_humidity 

T Air temperature @ 2m 
above ground level 

K Temperature_height_above_ground 

u1000, u975, 
…, u800 

Horizontal wind speed 
at pressure heights: 
1000hPa, 975hPa, …, 
800hPa 

m/s U-component_of_wind 

V-component_of_wind 

 Geopotential height at 
pressure heights 

gpm Geopotential_height 

 
 

Fitted Linear Mixed-Effects Model Coefficients for Wind Speeds 
Extrapolated to Heights Above 10 m 
This section gives the details of the model described in Section 3.1 

1-hour Average Wind Speed 
Linear mixed-effects model fit by REML 
 Data: my.data.frame  
       AIC      BIC    logLik 
  23418369 23418491 -11709176 
 
Random effects: 
 Formula: ~1 | data.SiteID 
        (Intercept) Residual 
StdDev:    0.746208 2.028277 
 
Fixed effects: data.empSpeed ~ data.RASpeed:factor(springNum) + data.baseElev +      
data.z - 1  
                                    Value    Std.Error      DF   t-value p-value 
data.baseElev                   0.0016054 0.0000967500     108   16.5929       0 
data.z                          0.0116883 0.0000678273 5506937  172.3242       0 
data.RASpeed:factor(springNum)1 0.8873855 0.0003271073 5506937 2712.8267       0 
data.RASpeed:factor(springNum)3 0.9337818 0.0004953991 5506937 1884.9081       0 
data.RASpeed:factor(springNum)4 0.9422155 0.0005089339 5506937 1851.3513       0 
data.RASpeed:factor(springNum)5 0.9493009 0.0005189062 5506937 1829.4267       0 
data.RASpeed:factor(springNum)6 0.9054482 0.0005802909 5506937 1560.3350       0 
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-10.66785373  -0.61164370  -0.01460861   0.59446532  16.40239712  
 
Number of Observations: 5507051 
Number of Groups: 109  
 
                               numDF   denDF     F-value p-value 
data.baseElev                      1     108    7536.856       0 
data.z                             1 5506937  326918.230       0 
data.RASpeed:factor(springNum)     5 5506937 1676424.496       0 
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3-hour Average Wind Speed 
Linear mixed-effects model fit by REML 
 Data: my.data.frame  
      AIC     BIC   logLik 
  7838561 7838674 -3919272 
 
Random effects: 
 Formula: ~1 | data.SiteID 
        (Intercept) Residual 
StdDev:   0.7246509 1.828718 
 
Fixed effects: data.empSpeed ~ data.RASpeed:factor(springNum) + data.baseElev +      
data.z - 1  
                                    Value    Std.Error      DF  t-value p-value 
data.baseElev                   0.0015833 0.0000940686     108   16.831       0 
data.z                          0.0115820 0.0001023912 1937450  113.115       0 
data.RASpeed:factor(springNum)1 0.8970563 0.0004884786 1937450 1836.429       0 
data.RASpeed:factor(springNum)3 0.9420414 0.0007611384 1937450 1237.674       0 
data.RASpeed:factor(springNum)4 0.9518201 0.0007832427 1937450 1215.230       0 
data.RASpeed:factor(springNum)5 0.9602063 0.0007974182 1937450 1204.144       0 
data.RASpeed:factor(springNum)6 0.9179297 0.0008926440 1937450 1028.327       0 
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-10.27861103  -0.61620500  -0.02048653   0.59490157   9.48286911  
 
Number of Observations: 1937564 
Number of Groups: 109  
 
                               numDF   denDF    F-value p-value 
data.baseElev                      1     108   7649.475       0 
data.z                             1 1937450 113014.335       0 
data.RASpeed:factor(springNum)     5 1937450 773799.494       0 

 

6-hour Average Wind Speed 
Linear mixed-effects model fit by REML 
 Data: my.data.frame  
      AIC     BIC   logLik 
  3663662 3663768 -1831822 
 
Random effects: 
 Formula: ~1 | data.SiteID 
        (Intercept) Residual 
StdDev:   0.7159264 1.618829 
 
Fixed effects: data.empSpeed ~ data.RASpeed:factor(springNum) + data.baseElev +      
data.z - 1  
                                    Value    Std.Error     DF   t-value p-value 
data.baseElev                   0.0014735 0.0000930570    108   15.8339       0 
data.z                          0.0110739 0.0001285108 963458   86.1713       0 
data.RASpeed:factor(springNum)1 0.9177431 0.0006312975 963458 1453.7411       0 
data.RASpeed:factor(springNum)3 0.9605979 0.0009683528 963458  991.9916       0 
data.RASpeed:factor(springNum)4 0.9710007 0.0009974133 963458  973.5189       0 
data.RASpeed:factor(springNum)5 0.9810304 0.0010156001 963458  965.9613       0 
data.RASpeed:factor(springNum)6 0.9421477 0.0011372113 963458  828.4719       0 
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
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-11.68991866  -0.61036907  -0.02246925   0.59058976   9.80375978  
 
Number of Observations: 963572 
Number of Groups: 109  
 
                               numDF  denDF    F-value p-value 
data.baseElev                      1    108   7858.281       0 
data.z                             1 963458  72145.776       0 
data.RASpeed:factor(springNum)     5 963458 482079.073       0 

 

9-hour Average Wind Speed 
Linear mixed-effects model fit by REML 
 Data: my.data.frame  
      AIC     BIC   logLik 
  2307447 2307549 -1153715 
 
Random effects: 
 Formula: ~1 | data.SiteID 
        (Intercept) Residual 
StdDev:   0.7119919 1.470321 
 
Fixed effects: data.empSpeed ~ data.RASpeed:factor(springNum) + data.baseElev +      
data.z - 1  
                                    Value    Std.Error     DF   t-value p-value 
data.baseElev                   0.0013823 0.0000926317    108   14.9228       0 
data.z                          0.0106902 0.0001433565 639045   74.5704       0 
data.RASpeed:factor(springNum)1 0.9339708 0.0007302689 639045 1278.9409       0 
data.RASpeed:factor(springNum)3 0.9757345 0.0011002409 639045  886.8371       0 
data.RASpeed:factor(springNum)4 0.9876645 0.0011328359 639045  871.8514       0 
data.RASpeed:factor(springNum)5 0.9992124 0.0011535043 639045  866.2407       0 
data.RASpeed:factor(springNum)6 0.9621667 0.0012919467 639045  744.7418       0    
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-12.48349837  -0.60460563  -0.02314805   0.58588921  10.62522367  
 
Number of Observations: 639159 
Number of Groups: 109  
 
                               numDF  denDF    F-value p-value 
data.baseElev                      1    108   7957.938       0 
data.z                             1 639045  58381.061       0 
data.RASpeed:factor(springNum)     5 639045 371123.407       0 

 

12-hour Average Wind Speed 
Linear mixed-effects model fit by REML 
 Data: my.data.frame  
      AIC     BIC  logLik 
  1646060 1646160 -823021 
 
Random effects: 
 Formula: ~1 | data.SiteID 
        (Intercept) Residual 
StdDev:   0.7129774 1.356594 
 
Fixed effects: data.empSpeed ~ data.RASpeed:factor(springNum) + data.baseElev +      
data.z - 1  
                                    Value    Std.Error     DF   t-value p-value 
data.baseElev                   0.0013901 0.0000928197    108   14.9763       0 
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data.z                          0.0106640 0.0001530854 477070   69.6603       0 
data.RASpeed:factor(springNum)1 0.9339860 0.0007988588 477070 1169.1503       0 
data.RASpeed:factor(springNum)3 0.9732884 0.0011878337 477070  819.3810       0 
data.RASpeed:factor(springNum)4 0.9863069 0.0012226385 477070  806.7036       0 
data.RASpeed:factor(springNum)5 0.9971689 0.0012446065 477070  801.1921       0 
data.RASpeed:factor(springNum)6 0.9618347 0.0013939010 477070  690.0309       0 
   
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-11.79969627  -0.60406807  -0.02156191   0.58722346  11.46319569  
 
Number of Observations: 477184 
Number of Groups: 109  
 
                               numDF  denDF    F-value p-value 
data.baseElev                      1    108   7947.788       0 
data.z                             1 477070  51198.589       0 
data.RASpeed:factor(springNum)     5 477070 309180.709       0 

 

18-hour Average Wind Speed 
Linear mixed-effects model fit by REML 
 Data: my.data.frame  
       AIC      BIC    logLik 
  989213.2 989309.2 -494597.6 
 
Random effects: 
 Formula: ~1 | data.SiteID 
        (Intercept) Residual 
StdDev:    0.711016 1.162322 
 
Fixed effects: data.empSpeed ~ data.RASpeed:factor(springNum) + data.baseElev +      
data.z - 1  
                                    Value    Std.Error     DF   t-value p-value 
data.baseElev                   0.0012237 0.0000926402    108   13.2090       0 
data.z                          0.0099578 0.0001616361 314797   61.6063       0 
data.RASpeed:factor(springNum)1 0.9636749 0.0009127507 314797 1055.7920       0 
data.RASpeed:factor(springNum)3 1.0015559 0.0013056813 314797  767.0753       0 
data.RASpeed:factor(springNum)4 1.0160675 0.0013451536 314797  755.3543       0 
data.RASpeed:factor(springNum)5 1.0287616 0.0013731997 314797  749.1711       0 
data.RASpeed:factor(springNum)6 0.9978344 0.0015275177 314797  653.2392       0 
 
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-10.82465232  -0.58214258  -0.01008199   0.57782398  12.75011370  
 
Number of Observations: 314911 
Number of Groups: 109  
 
                               numDF  denDF    F-value p-value 
data.baseElev                      1    108   8015.082       0 
data.z                             1 314797  46338.289       0 
data.RASpeed:factor(springNum)     5 314797 249350.777       0 

 

24-hour Average Wind Speed 
Linear mixed-effects model fit by REML 
 Data: my.data.frame  
       AIC      BIC    logLik 
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  688919.5 689012.8 -344450.8 
 
Random effects: 
 Formula: ~1 | data.SiteID 
        (Intercept) Residual 
StdDev:   0.7127478 1.050072 
 
Fixed effects: data.empSpeed ~ data.RASpeed:factor(springNum) + data.baseElev +      
data.z - 1  
                                    Value    Std.Error     DF  t-value p-value 
data.baseElev                   0.0012312 0.0000929319    108  13.2484       0 
data.z                          0.0100190 0.0001693840 234296  59.1499       0 
data.RASpeed:factor(springNum)1 0.9630035 0.0010067730 234296 956.5250       0 
data.RASpeed:factor(springNum)3 0.9986105 0.0014066701 234296 709.9109       0 
data.RASpeed:factor(springNum)4 1.0154535 0.0014489071 234296 700.8410       0 
data.RASpeed:factor(springNum)5 1.0269611 0.0014692200 234296 698.9839       0 
data.RASpeed:factor(springNum)6 0.9962163 0.0016433467 234296 606.2119       0 
 
Standardized Within-Group Residuals: 
          Min            Q1           Med            Q3           Max  
-11.825599337  -0.573620414  -0.002585261   0.576776452  14.395447747  
 
Number of Observations: 234410 
Number of Groups: 109  
 
                               numDF  denDF    F-value p-value 
data.baseElev                      1    108   7988.219       0 
data.z                             1 234296  42409.003       0 
data.RASpeed:factor(springNum)     5 234296 203644.654       0 

Fitted Linear Mixed-Effects Model Coefficients for Raw Reanalysis 
Wind Speeds at 10-m Height 
Linear mixed-effects model fit by REML 
 Data: my.data.frame  
       AIC      BIC    logLik 
  23176897 23177060 -11588437 
 
Random effects: 
 Formula: ~1 | data.SiteID 
        (Intercept) Residual 
StdDev:   0.7295828 1.984286 
 
Fixed effects: data.empSpeed ~ data.RASpeed:factor(springNum) + data.baseElev +      
data.Psi + data.Psi:data.bUnstable + data.Psi:data.bVeryStable +      data.z - 1  
                                     Value   Std.Error      DF   t-value p-value 
data.baseElev                    0.0013245 0.000094633     108   13.9956       0 
data.Psi                        -0.3757938 0.001810624 5506934 -207.5494       0 
data.z                           0.0098220 0.000068976 5506934  142.3978       0 
data.RASpeed:factor(springNum)1  0.9132584 0.000413622 5506934 2207.9548       0 
data.RASpeed:factor(springNum)3  0.9608880 0.000549670 5506934 1748.1178       0 
data.RASpeed:factor(springNum)4  0.9745644 0.000559704 5506934 1741.2154       0 
data.RASpeed:factor(springNum)5  0.9843322 0.000573501 5506934 1716.3571       0 
data.RASpeed:factor(springNum)6  0.9429680 0.000629947 5506934 1496.9012       0 
data.Psi:data.bUnstable          0.1137439 0.003245629 5506934   35.0453       0 
data.Psi:data.bVeryStable        0.2721238 0.001651293 5506934  164.7944       0 
 
Standardized Within-Group Residuals: 
          Min            Q1           Med            Q3           Max  
-11.020477150  -0.596728457  -0.009520732   0.586225028  16.642874233  
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Number of Observations: 5507051 
Number of Groups: 109  
 
                               numDF   denDF     F-value p-value 
data.baseElev                      1     108    7884.252       0 
data.Psi                           1 5506934  270674.009       0 
data.z                             1 5506934  378987.751       0 
data.RASpeed:factor(springNum)     5 5506934 1728561.075       0 
data.Psi:data.bUnstable            1 5506934   26740.069       0 
data.Psi:data.bVeryStable          1 5506934   27157.183       0 
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