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Abstract 

Demand response (DR) for spinning reserve may be appropriate for customers whose 

operational constraints preclude participation in energy and capacity DR programs. We 

investigate the private business case of an aggregator providing spinning reserve in California. 

Average costs to enable quick-response capability, obtained from California’s Automated 

Demand Response programs and the literature, were $230/kW of controlled load. Revenues are 

calculated using end use level hourly load profiles. With average annual revenue of ~$35/kW, 

steady end uses (e.g., lighting) are more than twice as profitable as seasonal end uses (e.g., 

cooling) because spinning reserve is needed year-round. Business segments with longer 

operating hours, such as groceries or lodging, have more revenue potential. However, average 

payback periods are longer than 5 years and thus do not present a compelling business case for 

an aggregator. Avoided carbon emission damages from using DR instead of fossil fuel 

generation for spinning reserve could justify incentives for DR resources. 
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Abbreviations: ARRA, America Recovery and Reinvestment Act; AutoDR, automated demand 
response; CAISO, California Independent System Operator; CEUS, California End Use Survey; 
DR, demand response; NGCC, natural gas combined cycle; NGCT, natural gas combustion 
turbine; PG&E, Pacific Gas and Electric Company; SCE, Southern California Edison. 
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1. Introduction 

Load that can respond to price or reliability signals, referred to as “demand response” (DR), 

reduce the need for relatively expensive and inefficient power from peaking plants (DOE 2006). 

Traditionally, DR reduces energy demand during periods of high prices or capacity during 

periods of high load, but grid operators are now exploring the use of DR for ancillary services 

(Kirby, 2003; Eto et al., 2007; Callaway, 2009; Cappers et al., 2013). 

One ancillary service is spinning reserve1. It provides rapid increases in power in response to 

an unexpected contingency event (e.g., loss of a transmission line or generating facility) (NERC, 

2011). The operational requirements vary across jurisdictions, but generally require the ability to 

increase generation in a short time, typically 10 minutes (CAISO, 2014), and be able to maintain 

that response for a minimum amount of time (typically 30 to 60 minutes) (Ellison et al., 2012). 

The intrinsic characteristics of DR are a natural match to the requirements of spinning 

reserve resources. Load resources can provide higher ramp rates (Callaway and Hiskens, 2011; 

Eto et al., 2007) at lower costs (Watson et al., 2012) than traditional generation. Furthermore, a 

large number of loads that are individually less reliable than a generator may provide aggregate 

reliability in excess of that provided by a few large generators (Kirby, 2003; Eto et al., 2007). 

The timescale on which spinning reserve operates is well served by DR because the average 

event lasts only 10-20 minutes2 (Eto et al., 2007). Moreover, this short period is attractive to DR 

participants because it avoids customer fatigue and business operations changes required by the 1 

to 8 hour interruptions (SCE, 2014) seen in energy or capacity events. 

Wholesale markets in the Mid-Atlantic, New York, Texas, and the Mid-West all allow DR to 

participate in spinning reserve markets. However, current Western Electricity Coordinating 

Council’s (WECC) rules implicitly prevent the California Independent System Operator 

(CAISO) from allowing DR in the spinning reserve market3, but this is a purely regulatory 

barrier. For our analysis we assume this barrier is removed and regulators permit DR in the 

wholesale environment. 

                                                 
1 This type of reserve is also referred to as “synchronous reserve.” It is often considered under the umbrella of 

“contingency reserves,” which include spinning and non-spinning reserve. 
2 While the events are typically short, grid operators specify more robust response capabilities in the range of 

30-60 minutes (as noted previously) in case of a longer contingency. 
3 WECC rules require immediate and automatic response to system frequency to participate in spinning reserve 

(FERC 2013). DR typically requires a signal from an outside operator to initiate response. 
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The open question is whether market prices are sufficient to attract participation given time-

varying resource availability and the size of implementation costs. Previous studies have 

examined the use of DR for ancillary services and the economics of participation. Kirby (2003) 

and Mathieu et al. (2012) consider residential air-conditioning loads in New York and California, 

respectively. They characterized resource size and calculated potential revenue assuming time-

invariant resource availability. Macdonald et al. (2012) reviewed market clearing prices and 

participation requirements across the U.S., though they do not discuss potential resource revenue 

and assume the demand resource is time-invariant. Macdonald et al. (2014) examined 

commercial building HVAC and lighting loads but did not discuss implementation costs or 

match time-varying resource availability with market clearing prices. 

Ma et al. (2013) and Hummon et al. (2013) examined the market dynamics of the western 

interconnection using unit commitment and economic dispatch models with increased flexible 

demand resources for energy and ancillary services. They did not consider the costs to enable DR 

for these services. 

To our knowledge, no previous study has compared the costs and potential revenues of using 

DR for ancillary services while capturing the time-varying nature of resource availability across 

many end uses and customers4. Here, we examine this dynamic across geographic regions, 

building segments, and end uses within California. California is used as an example because its 

varied load types and competitive market operations provide an ideal environment in which to 

examine the business case for DR and because the results may influence DR policy in WECC. 

We examine DR for commercial load which represents approximately 50% of California’s load 

(EIA, 2014c). 

We focus on the case where DR participates solely in spinning reserve (not in energy or 

capacity). Customers may want to participate only in spinning reserve because of the low 

frequency and short duration of events5. This work does not discuss frequency regulation 

                                                 
4 The 2009 PG&E Participating Load Pilot implemented DR for non-spinning reserve, and thus faced the true 

operational costs and potential revenues, but only included 3 participants in the study. We take a more 
comprehensive view using data from over 2,700 buildings in California. 

5 In fact, approximately 50% of the MW signed up through the California Automated Demand Response 
program participate in a voluntary energy reduction program (Ghatikar et al. 2014). This suggests that these 
customers do not like the mandatory energy curtailment required by capacity events. 
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(another ancillary service) because this application of commercial DR remains largely in its 

infancy (Callaway and Hiskens, 2011) and the installation costs are highly scenario specific. 

We find that steady end uses (e.g., lighting) are better able to make money than seasonal end 

uses (e.g., cooling) because, unlike a capacity resource, spinning reserve is needed throughout 

the year. Nevertheless, payback periods in excess of 5 years lead us to conclude that the stand-

alone business case for DR in spinning reserve is insufficient. Therefore, we investigate if the 

damages from carbon emissions avoided by procuring DR in spinning reserve are sufficient to 

justify monetary incentives to encourage greater DR participation.  

Section 2 describes our methods and data used to determine the implementation costs and 

potential revenue. Section 3 presents and discusses the results of our analysis. Section 4 

estimates avoided carbon emissions damages by using DR for spinning reserve and presents our 

conclusions.  

2. Methods and Data 

We consider a demand response aggregator who contracts with individual facilities to 

procure DR. These facilities receive compensation for agreeing to reduce load when called upon. 

In turn, the aggregator sells the cumulative DR capability to a utility or grid operator. We take 

the perspective of an aggregator, not an individual facility owner, because they are more likely to 

have the resources necessary for sophisticated forecasting models and the complex 

administrative requirements necessary to participate in these markets. 

Aggregators are most likely to target large commercial participants. Overhead costs are lower 

for these customers as administrative and marketing costs often scale per customer rather than 

per kW. Large customers are also more likely to participate in demand response programs (Itron, 

2014a) and have the internal building controls required for automated response. 

Aggregators incur costs to enable spinning reserve in participant facilities, and earn revenue 

based on the market clearing price and magnitude of load response. We obtain cost estimates 

from the literature and from a cost database for an automated demand response program in 

California. Revenue is calculated by matching hourly DR resource availability with market 

clearing prices across geographic zones, building segments, and end uses. 
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We do not model the effects of a call for spinning reserve on energy cost. This eliminates the 

uncertainty inherent in modelling events with probabilistic frequency and duration. A first-order 

analysis shows that we are ignoring less than $5/kW-yr in potential revenue gains from energy 

reductions,6 which would not affect the conclusions of our work. 

2.1 Costs 

We consider three cost categories for an aggregator participating in demand response markets 

– (1) event communication and automated response, (2) telemetry, and (3) incentives paid to 

individual facilities (Table 1). 

Table 1: Costs Faced by an Aggregator to Enable DR for Spinning Reserve. 
Cost Description 

Event 
Communication 
& Automated 
Response 

• Communication equipment allows facilities to receive event 
signals from the grid operator. 

• DR strategies are pre-programed into building energy 
management systems to initiate load response automatically 
upon receiving an event signal. 

Telemetry Equipment to measure and report power consumption to the 
grid operator at short timescales (~4 sec.). 

Customer 
Incentives 

Incentives paid by the aggregator to the individual facility to 
induce their participation. 

 

The system architecture diagram in Fig. 1 shows how the communications and telemetry 

equipment work together to provide two-way information sharing between the grid operator, 

aggregator, and loads. 

                                                 
6 Consider the case of an end use with no energy rebound after a spinning reserve event (e.g. lighting). End uses 

with energy rebound (e.g. cooling) will have less change in their total energy consumption. Assuming a fairly large 
number of events (30), long-duration events (1 hour), large energy reductions during all events (normalized value of 
1 kW), and an average energy cost of $0.15/kWh, we can calculate that in this “worst-case” scenario we would be 
ignoring $4.50/kW-year of decreased energy costs. 
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Fig. 1. System communication architecture for loads participating in spinning reserve. Communication from the grid operator to 
the aggregator, and to and from the aggregator and the facility can take place over secure internet connections. Telemetry 
reporting from the aggregator to the grid operator must take place via a more demanding Supervisory Control and Data 
Acquisition (SCADA) protocol. Communication architecture design based on the OpenADR 2.0 standard (OpenADR Alliance 
2014). Telemetry architecture from Kiliccote et al. (2014). 

We ignore some costs that an aggregator would incur in setting up an actual spinning reserve 

portfolio7, including equipment maintenance, program administration, forecasting, and CAISO 

administrative fees. 

2.1.1 Event Communication and Automated Response 

In order for DR to provide spinning reserve within the required 10 minutes, automated 

response is necessary. Personal notifications (email or phone) and manual changes to equipment 

operating parameters cannot guarantee 10-minute response. Automated response can be enabled 

by pre-programming DR strategies into control equipment so the response is implemented 

without human intervention.  

California investor-owned utilities provide incentives for the installation and programming of 

such equipment through the Automated Demand Response (AutoDR) program. This program is 

intended to increase participation in energy and capacity programs, but we use these incentive 

data to determine the cost an aggregator would face in installing this equipment. Salient features 

of the California AutoDR program are: 

1. Designed for commercial/industrial customers with peak load >200 kW. 

2. Requires participation in utility energy or capacity DR programs. 

                                                 
7 This is in part due to the fact that good cost information for this type of program does not exist. The only 

publicly available information for this type of program is PG&E’s Participating Load Pilot (PG&E, 2009). It had 
only 3 participants and much of the cost for the program was spent on one-time startup costs. 
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3. Incentives are capped at the minimum of 100% of total project cost or $300/kW of load 

response. These are one-time payments (not annual). 

4. The amount of load response must be proven through a test event or actual performance 

history from energy or capacity events. 

Incentive data were collected from Pacific Gas & Electric (PG&E) and Southern California 

Edison (SCE)8. See Appendix B for more information on the treatment of incentive data. Fig. 2 

displays the combined SCE and PG&E incentive information. Nearly all representative projects 

had costs under the $300/kW incentive cap. Therefore, it is reasonable to assume that the 

incentive information represents the actual costs to install and set up AutoDR equipment in 

California. The mean cost is approximately $180/kW. 

 

Fig. 2. Incentives provided to install communications equipment, program and commission DR strategies. Note: incentive data 
includes commercial and industrial customers. Industrial customers could not be removed because the project database lacked 
identifying information. We do not believe that removing industrial customers would significantly affect the cost distribution as 
large projects were evenly spread across higher and lower $/kW values. 

We assume participating commercial buildings have a building energy management system 

(BEMS) that can communicate with end use level equipment. The market share of BEMS in 

California commercial buildings is approximately 60% for buildings with an average demand of 

200kW (Itron, 2014a). 

                                                 
8 Project-level incentive information from San Diego Gas & Electric and Sacramento Municipal Utility District 

was not available. 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-15-04             www.cmu.edu/electricity 
 

DO NOT CITE OR QUOTE WITHOUT THE PERMISSION OF THE AUTHORS                                     8 
 

2.1.2 Telemetry 

Due to the short timescales on which ancillary services operate, resources participating in 

these markets are required to have telemetry. Telemetry allows the grid operator to obtain real-

time information on load characteristics, such as real and reactive power. Energy and capacity 

DR programs do not rely on telemetry for measurement and verification of load reductions – 

they use interval meter data that are already captured for billing purposes. 

For small distributed resources like DR, the cost of telemetry is a significant obstacle to 

participation in ancillary service markets. Estimates of the cost of telemetry for a large 

commercial building are approximately $50,000-$80,000 (Kiliccote et al., 2014). Given the 

average load response in the AutoDR program, this cost would translate to over $200/kW. 

However, new designs could provide telemetry at much lower cost. Early tests show large 

commercial buildings could be outfitted with telemetry at an approximate cost of $50/kW of 

controlled load (Kiliccote et al., 2014). We use the $50/kW estimate for our analysis. 

2.1.3 Customer Incentives 

In order for an aggregator to attract DR resources, it must compensate facilities for the 

possibility of interrupting their load. There are no regulated utility-based spinning reserve 

programs in the United States that allow us to understand necessary customer incentives, but the 

incentives provided to energy and capacity program participants can act as a guide. They may 

indicate an upper bound on the incentives required for spinning reserve because reserve events 

are called less often and for shorter periods of time. In SCE’s energy DR program customers 

receive approximately $25/kW per year, assuming 50 hours of events. In our analysis we use an 

incentive of $20/kW but consider incentives from $10/kW to $30/kW. We assume businesses 

installing automated DR equipment would be willing to participate for the incentive but 

acknowledge that the use of a flat customer incentive masks the differences in willingness to 

participate across business and load types. 

2.2 Potential Revenue Across End Uses, Business Segments, and Geographic Location 

To calculate potential revenue, we gathered hourly commercial load that had been 

standardized to typical weather conditions and disaggregated by geographic zone, business 

segment, and end use. Using models of these profiles, we created new profiles specifically for 
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the period 2011-2013. Normalized hourly profiles were then matched with hourly market 

clearing prices to calculate potential revenue. 

By using normalized load profiles to represent DR resource availability, we assume that DR 

resource availability for reserves is proportional to the load of that particular end use at that 

particular time. For energy or capacity events, which can last from 1 to 8 hours in California 

(SCE, 2014), this may not be an appropriate assumption. Commercial customers may not want a 

portion of their electrical service interrupted for that period of time due to operational 

constraints. However, spinning reserve events typically last for only 10-20 minutes, and thus 

customers can shed larger percentages of their load without suffering major interruptions to 

business operations. Data from PJM, the only region to publish hourly market clearing resource 

amounts for DR in spinning reserve, support this assumption (see Appendix A for discussion of 

this topic). 

2.2.1 Load Disaggregation 

One of the only large scale studies to quantify end use level demand across a broad 

geographic area is the 2006 California Commercial End Use Survey (CEUS) (Itron, 2006). The 

CEUS collected metered data from a stratified sample of approximately 2,700 buildings in order 

to create hourly end use level load profiles. The sample was stratified across 12 geographic zones 

(Fig. 3) and 12 building segments (Table 2). For each building in the survey, a simulation model 

that disaggregates whole-facility load into 13 end uses (Table 2) was built in a DOE-2.2 energy 

simulation environment. Simulation results were calibrated to actual consumption and weather 

data to ensure the model was accurate. Once calibrated, the building model was run on a new 

standardized weather set meant to represent a typical weather year in California. Buildings 

within each sample strata were aggregated to produce weighted average hourly profiles. 1,872 

unique hourly profiles were created across all geographic zones, building segments, and end 

uses. 
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Fig. 3. Forecasting Zones in California. LADWP and Other zones were not included in the CEUS study. Source: Itron (2014b) 

Table 2: Building Segments and End Uses in CEUS 
Building Segments 

College School 
Grocery Restaurant 
Health Small Office 

Lodging Large Office 
Miscellaneous Refrigerated Warehouse 

Retail Un-refrigerated Warehouse 
End-Uses 

Heating Interior Lighting 
Cooling Exterior Lighting 

Ventilation Miscellaneous 
Refrigeration Office Equipment 

Hot Water Motors 
Cooking Process 

 Air Compressor 

Certain end uses from CEUS were removed from our consideration because they are not 

appropriate for spinning reserve. For example, exterior lighting is not a good candidate for 

spinning reserve because reducing exterior lighting at night may violate building codes. This left 

981 profiles. The list of removed end uses and business segments (along with a reason for 

removal) is contained in Table 3. 
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Table 3: End Uses / Segments Removed in this Study 
End-Uses Removed Reason for Removal 

Exterior Lighting Code issues 
Process Business process constraints 
Cooking Business process constraints 
Office Equipment Business process constraints 
Miscellaneous Unknown resource type 

Segments Removed Reason for Removal 
Small Office Does not match cost data 

2.2.2 Load Modelling 

To convert the standardized profiles from CEUS to 2011-2013 profiles, we first separated 

end uses into weather and non-weather dependent categories. Non weather-dependent end uses 

were converted using a day-matching method. Consumption values for each hour of the day in 

each month were averaged, treating weekdays and weekends separately. While heating would 

normally be considered a weather-dependent end use, regression modelling was not successful in 

capturing the variation of heating profiles. Therefore, the day-matching method was used for all 

heating profiles. 

Regression models with ARMA errors were used for weather-dependent end uses (cooling 

and ventilation). Via k-fold cross-validation, we explored over 20 model specifications. The final 

model (Equation 1) showed the lowest average out-of-sample error across all cooling and 

ventilation profiles9. All models exhibited significant autocorrelation in the residuals. To 

facilitate more accurate prediction, we chose to model the error using time-series (ARMA) 

parameters. A necessary condition for parameter estimation using time-series models is 

homoscedasticity. However, a plot of the residuals for most load profiles revealed two distinct 

periods during the year for which residual variance was uneven (summer vs. winter). We thus 

split the annual standardized models into three periods: the first winter period (Jan-Apr), summer 

(May-October), and last winter period (Nov-Dec). The selection of periods for boundary months 

(e.g. April) was performed by examining how closely the residual variance of the month 

compares to other months when it was included in the winter or summer model. 

                                                 
9 We also investigated using lagged weather variables. Due to thermal mass, buildings often show a lagged 

response to outdoor temperature and humidity conditions. However, current weather conditions showed better out-
of-sample prediction error than lagged weather conditions for the standardized CEUS load profiles. The authors 
believe this is an artifact of the modeling process used in the CEUS project and does not reflect what we would find 
if we were using raw metered data from each end use. 
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The same ARMA model specification for the error term was used across all load profiles 

because it was successful in removing most of the autocorrelation in residuals across load 

profiles. We attempted to include parameters at other lags but often found that they did not 

reduce the Bayesian Information Criteria (BIC) and/or the coefficient estimates were not 

statistically significant. 

ln(𝑘𝑘𝑡) = 𝛼 + � ��

𝛽𝑇𝑇𝑇𝑇
𝑑,ℎ I𝑑Iℎ𝑇𝑇𝑇𝑇𝑡

+𝛽𝑇𝑇𝑇𝑇2
𝑑,ℎ I𝑑Iℎ𝑇𝑇𝑇𝑇𝑡2

+𝛽𝑇.𝑅𝑅
𝑑,ℎ I𝑑Iℎ𝑇𝑇𝑇𝑇𝑡𝑅𝑇𝑅𝑅𝑡

�
24

ℎ=1

+ 𝜂𝑡                              Equation 1
𝑊𝑊𝑊𝑑

𝑑=𝑊𝑊𝑑𝑊

 

where: 

(1 − 𝜙1B1 − 𝜙24B24)𝜂𝑡 = (1 + 𝜃1B1)𝜖𝑡 

Table 4: Equation 1 Variable Descriptions 
Variable Description 
kWt Average kilowatt consumption in hour of the year t 

Id,Ih Indicator variables for day type d (weekday/weekend) and 
hour of day h 

Tempt Temperature (°F) in hour t 
RelHt Relative humidity in hour t 

𝜷𝒙
𝒅,𝒉 

Regression coefficient for day type d and hour of day h for 
weather variable x (Temp, Temp2, or Temp*RelH) 

ηt Error in hour t unexplained by exogenous weather variables 
B Backshift operator 
θi Coefficient for moving average term of lag i 
𝝓i Coefficient for autoregressive term of lag i 
εt Unexplained error in time t 

Once the model coefficients were estimated for each load profile, predicting the 2011-2013 

hypothetical load profiles was a 2-step process. Coefficients for exogenous weather variables 

were multiplied against actual hourly 2011-2013 weather data to form the base of the prediction. 

Next, 5,000 separate ARMA simulations were conducted using the time-series coefficients from 

each of the three period models (the length of the simulations was tailored for the period of the 

year). The simulated error at each time-step was i.i.d. and randomly drawn from a normal 

distribution with variance equal to the residual variance of the model. All simulations used a 

burn-in period of 50,000 iterations. The average path of the 5,000 simulations was added to the 

predictions from the exogenous variables to form the overall predicted load profile. 
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In using load data captured in 2002 to infer load profiles for 2011-2013, we assume the shape 

of the end use load profiles has not changed over time. Load shapes could change due to shifts in 

equipment stock (e.g. higher saturations of more efficient equipment) and equipment use 

patterns. However, commercial load has not grown in California since 2005 (EIA, 2014c). Load 

growth is not a perfect measure of changes in end use load profiles, but the authors believe it is 

reflective of a load environment that is in steady-state. 

2.2.3 Normalization and Revenue Potential 

Normalization of the load profiles was necessary to express our results in a standardized 

measure of size (per kW). Profiles were normalized to the average load during the top 50 hours 

in each year by temperature, which closely mirrors the method used to calculate peak kW for 

incentive payments in California’s AutoDR program. Equation 2 displays the normalization 

calculation for each hour t in the profile. 

𝑘𝑘𝑊𝑛𝑛𝑇,𝑡 =
𝑘𝑘𝑡

𝑎𝑎𝑇𝑎𝑎𝑎𝑇�∑𝑘𝑘50 ℎ𝑛𝑟,2011 ,∑𝑘𝑘50 ℎ𝑛𝑟,2012 ,∑𝑘𝑘50 ℎ𝑛𝑟,2013�
               Equation 2 

The calculation of revenue was completed by matching the hourly normalized resource 

availability with the day-ahead market clearing price in that hour. Market clearing prices for 

spinning reserve are not the same across the entire CAISO region. CAISO has established 

separate procurement requirements for operating reserves in areas “north of path 26” (NP26) and 

“south of path 26” (SP26) to ensure that contingencies can be mitigated even in the case of 

congestion on the Path 26 transmission line10. Variations in generation mix and transmission 

network topology among the two regions lead to price differences. Prices for NP26 and SP26 

were matched with the different forecasting zones from the CEUS. Table 5 details how the load 

forecasting zones (FCZ) were mapped to ancillary service zones (ACZ). 

                                                 
10 The Path 26 transmission line in central California roughly delineates the boundary between SCE and PG&E. 

This area is a bottleneck for power trying to flow between northern and southern California. 
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Table 5: Forecasting Zone Mapping to Ancillary Service Zone Partitions 
FCZ in 

Service Zone “CAISO” 
FCZ in 

Service Zone “SP26” 
FCZ 1 FCZ 7 

2 8 
3 9 
4 10 
5 13 
6  

In making this calculation we assume perfect forecasting of resource availability, which 

would tend to increase our revenue numbers. However, this did not affect the final conclusions 

of the study. We also assume that load resources are price-takers that do not affect the market 

clearing price. While ancillary service participants are worried that markets will saturate quickly 

and prices will collapse (DOE, 2011a), as long as some traditional generation remains in the 

spinning reserve market prices may not decrease significantly due to the payment of lost 

opportunity costs of energy production (Cappers et al., 2013). 

3. Results and Discussion 

We find end uses that are relatively constant throughout the year, such as lighting or 

refrigeration, are better suited for spinning reserve than seasonal end uses like cooling and 

heating. This is counter to the intuition behind traditional capacity-based demand response 

programs that focus on seasonal end uses because they are highly correlated with the system 

peak demand. Spinning reserve, however, is needed at all times and is therefore best served by 

resources which are available at all times. Fig. 4 shows the results by end use and building 

segment combinations across all of the forecasting zones. 
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Fig. 4. Average annual revenue for end use / building segment combinations. The area of the dot represents the total peak load 
for that combination across all forecasting zones. The color of the dot corresponds to the average annual revenue potential. 
Average annual revenue is calculated as a weighted average across all zones, weighted by peak load. 

While cooling is the largest end use by peak load in California, it nevertheless has very low 

revenue potential because of its seasonal nature. Interior lighting is a large end use and is well 

suited for spinning reserve, especially in building segments that operate on continuous schedules 

such as lodging. The school and college segments which have lower seasonal loads during 

capacity strained periods do especially poorly. 

To determine the payback periods experienced by an aggregator participating in this market, 

we compare annual revenue to costs. In Fig. 5 we fix costs at $230/kW, which includes the mean 

cost of installation and the cost of telemetry but does not include customer incentives (customer 

incentives are introduced in Fig. 6). We find that median payback periods are in the range of 5-

10 years and hence represent a limited profit opportunity for an aggregator. 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-15-04             www.cmu.edu/electricity 
 

DO NOT CITE OR QUOTE WITHOUT THE PERMISSION OF THE AUTHORS                                     16 
 

 

Fig. 5. Average annual revenue and years until payback at a fixed cost of $230/kW (excludes customer incentives). Each zone-
segment combination represents a single point within each end use distribution. The heavy horizontal line in the middle of each 
box marks the median. The range of the box represents the interquartile range. The whiskers extend to the extremes of the 
distribution. 

We do not find important differences in revenue potential across geographic zones. The 

largest driver of difference across zones is the market price for spinning reserve – southern 

California often has higher prices than northern California. 

However, niche applications of DR for spinning reserve can make a profit. In Fig. 6, we fix 

revenue at the 75th percentile of the distribution of revenue for interior lighting, ventilation, and 

refrigeration. The plots shows the cumulative percentage of projects versus payback period under 

uncertainty in the cost of communication equipment installation (as given in Fig. 2). The costs 

included in Fig. 6 are the costs of equipment installation, telemetry, and a $20/kW customer 

incentive. 
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Fig. 6. Payback distribution for three end uses with fixed revenue (75th percentile of zone-segment combinations) and uncertainty 
in the cost of communication equipment installation and programming. Approximately 10% of projects in these end uses at the 
75th percentile of revenue would have payback periods less than 5 years. 

Approximately 10% of projects in the 75th percentile zone-segment combination for each of 

these end uses could achieve a payback less than 5 years. The 5 year simple payback threshold is 

important because many companies use simple payback as a metric for energy decisions and 

most of these companies use a threshold of 5 years or less (Prindle and Fontaine, 2009). The 

spinning reserve requirement in CAISO is around 3% of load (FERC 2013). Thus, a small 

number of projects could have a significant effect on the mix of resources in the spinning reserve 

market. Table 6 displays a sensitivity analysis of the cumulative probability of a payback less 

than 5 years under different end uses and customer incentives. 

Table 6: Cumulative percentage of projects with payback period less than 5 years at 75th percentile revenue. 
 Customer Incentive 
 $10/kW $20/kW $30/kW 
Refrigeration 27% 15% 7% 
Int. Lighting 19% 10% 0% 
Ventilation 16% 9% 0% 

4. Conclusion and Policy Implications 

4.1 Avoided Carbon Emissions 
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We have shown that the profitability of using DR for spinning reserve alone is inadequate to 

attract interest from most DR aggregators. However, providing incentives to DR would 

encourage participation. We now consider if such an incentive is justified by a market failure not 

currently captured in spinning reserve clearing prices; namely, the damages associated with 

carbon dioxide (CO2) emissions from fossil fuel power generation. California already considers 

the social cost of carbon in their cost effectiveness tests for utility energy efficiency and demand 

response programs (CPUC 2010). 

To our knowledge, there has been no detailed study of the emissions avoided from DR 

participation in electricity markets for either energy or ancillary services. Studies of avoided 

emissions in reserve markets have mostly focused on renewable energy (Fripp, 2011) or pumped 

hydroelectric power (Koritarov et al., 2014). The most rigorous approach to this problem would 

make use of a dispatch model of the California grid to understand the quantity and type of fossil 

fuel power plants offset from DR and the duration of offset. Here we instead make a first-order 

estimate. 

The procurement of spinning reserve is fundamentally an option to produce power, not an 

actual call for power. Marginal changes in the fuel mix of reserves that do not change the overall 

energy dispatch will not displace emissions as nothing has physically changed on the grid. 

However, if enough DR is procured to offset the reserve provided by an entire plant, that plant 

can shut down11. The emissions saved would be the difference between the reduction from 

turning off the partly-loaded reserve plant and the increase of the base load plant that is now 

making up for the energy generation of the reserve plant. 

To calculate emissions savings, it is thus important to understand the fuel types which 

typically provide spinning reserve and base load. The 2013 CAISO Annual Report on Market 

Issues and Performance (CAISO, 2013) reports that hydro supplies approximately half of the 

spinning reserve in a typical year. Natural gas and imports supply approximately a quarter of this 

reserve each. Droughts and changing climate patterns, however, may reduce the potential for 

high-elevation hydropower production in California in the future (Phinney and McCann, 2005). 

                                                 
11 This assumes that the marginal plant used for reserves is online only because of the need to provide reserve. 

We adjust for this assumption in our calculations. 
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Reduced hydropower energy production is typically offset by natural gas in California (EIA, 

2014b). We assume that reduced spinning reserve from hydropower is also offset by natural gas. 

Natural gas plants represent the majority of the available dispatchable generation in CAISO, 

hence the energy production from plants providing reserve that are offset by DR is likely 

assumed by other natural gas generation. We assume that all natural gas generation is performed 

by combined-cycle (NGCC) plants12. In this analysis, we focus just on the emissions and 

associated damages from CO2 and not from criteria pollutants (e.g., sulfur dioxide, nitrogen 

oxide, particulate matter)13. Social damages from CO2 are orders of magnitude larger than 

damages from criteria pollutants for natural gas plants14. 

The relationship between CO2 output and power generation is nearly linear for a NGCC plant 

(Katzenstein and Apt, 2009), thus marginally unloading one plant and reloading another of the 

same type saves no CO2. But if one plant is able to be fully shut down, the CO2 saved is equal to 

the no-load emissions of that plant. To make a first-order estimate of the annual CO2 saved from 

procuring DR for spinning reserve we use Equation 3. The input assumptions are presented in 

Table 7. Total reserve was divided by the idle generating capacity of an average plant in order to 

calculate the number of plants shut down by procuring DR. We assume that there is enough DR 

to offset the reserve of natural gas plants that provide half the average annual spinning reserve 

requirement15. 

𝐴𝐴𝐴𝐴𝑎𝑅 𝐶𝐶2 𝑆𝑎𝑎𝑆𝐴𝑎𝑆 =
𝑇𝑇𝑇𝑎𝑅 𝑅𝑇𝑆𝑇𝑎𝑎𝑇

𝐼𝐼𝑅𝑇
∗ 𝐶𝑎𝑎𝐶𝑇𝐴𝑊𝑛_𝑙𝑛𝑙𝑑 ∗ %𝑅𝑇𝑆𝑇𝑎𝑎𝑇 ∗ 8,760                     Equation 3 

                                                 
12 In reality, some spinning reserve is provided by natural gas combustion turbines (NGCTs). NGCTs have 

higher heat rates than NGCC plants. Thus, ignoring NGCTs likely underestimates carbon savings. 
13 This first-order analysis does not consider the emissions savings during actual spinning reserve events, only 

the savings from a different economic dispatch of generation resources. However, criteria pollutant emissions 
savings during spinning reserve events may be significant. Nitrogen oxide ramping emissions from simple-cycle 
natural gas combustion turbines can be significantly higher than steady state emissions (Katzenstein 2010). Thus 
during a spinning reserve event, demand response can offset much higher emissions from ramping natural gas plants 
than it does under normal dispatch conditions. 

14 Assuming damages of $37 per tonne of CO2 (IWG on SCC 2013) and emissions of 0.375 tonne of CO2 / 
MWh (EIA 2014a) for natural gas plants, we calculate damages of ~$14/MWh. From the National Academies’ 
Report Hidden Costs of Energy (2010), we find damages from criteria pollutants emitted from natural gas plants on 
the order of $0.05/MWh. 

15 This corresponds to a future scenario where the proportion of reserves provided by natural gas has increased 
due to falling hydro reserves. 
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Table 7 
Variable Descriptions and Assumed Values for Equation 3 

Variable 
(Units) Description Assumed Value Range 

   Low Savings 
Scenario 

High Savings 
Scenario 

Total Reserve 
(MW) 

The total MW of 
spinning reserve in 
CAISO offset by DR 

500 MW (approx. half 
of average spin 
requirement) 

250 MWa 750MWb 

Idle (MW) 

The amount of 
spinning reserve 
provided by each 
natural gas plant (idle 
generating capacity) 

50 MWc (approx. 10-
min ramp capability 
for 200MW 
combined-cycle 
turbine) 

100MWd 40MWe 

Carbonno_load 
(Tonnes CO2 / 
hr) 

CO2 emissions at no 
load 

17.5 tonnes 
(Katzenstein & Apt 
2009) 

14 tonnesf 21 tonnesg 

%Reserve 
(Unitless) 

Percent of annual 
hours that system 
dispatch is reserve-
constrainedh 

77%i 74%j 80%k 

8,760 (Hours) Number of hours in a 
year    

a Scenario where DR displaces current reserves from natural gas (~25% of requirement) 
b Scenario where DR displaces current reserves from natural gas and hydro (~75% of requirement) 
c Ramp rate of 2.5%/min (Fripp 2011) 
d Ramp rate of 5%/min (Black & Veatch 2012) 
e Ramp rate of 2%/min (lower end of ramp rates shown in Katzenstein 2010 Figure 4-13) 
f 5% quantile of the true intercept of Katzenstein & Apt 2009 Figure S4 
g 95% quantile of the true intercept of Katzenstein & Apt 2009 Figure S4 
h Reserve-constrained means that the system dispatch was different from a hypothetical scenario where reserves are not required. 

Alternatively, a dispatch is not reserve-constrained if the removal of the reserve constraints from the system optimization 
problem does not change the overall dispatch. Reserve-constrained periods are those in which increased DR procurement would 
cause marginal reserve plants to shut down. 

i Calculated from the average number of hours that spinning reserve prices are above the minimum value from 2011-2013. A 
reserve price at the minimum value reflects a system which is not reserve-constrained. 

j Calculated from the low annual number of hours that spinning reserve prices are above the minimum value from 2011-2013. 
k Calculated from the high annual number of hours that spinning reserve prices are above the minimum value from 2011-2013. 

We estimate annual carbon savings at approximately one million metric tonnes (0.2 x 106 – 

2.8 x 106 tonnes for the low and high scenarios, respectively). Avoided damages associated with 

carbon emission savings were calculated using two different values of carbon: (1) the social cost 

of carbon (SCC) computed by the United States government for emissions year 2010 under the 

average 3% discount rate scenario ($37 in 2014 dollars) (IWG on Social Cost of Carbon, 2013), 

and (2) the average 2014 market price for carbon under California’s cap and trade system set up 
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under AB32 ($12) (Climate Policy Initiative, 2014). The annual results are shown in Fig. 7 

relative to the up-front capital required to install telemetry on DR resources.  

 

Fig. 7. Damages avoided from carbon emission savings due to DR procurement in spinning reserve market. Uncertainty bars 
reflect 90% confidence interval for uncertainty in the value of damages per metric ton and the uncertainty in the estimated 
magnitude of carbon savings (low to high savings scenarios of Table 7). No correlation was assumed between the value of 
damages per metric ton and the savings scenario. Uncertainty in the value of damages per metric ton for SSC were derived from 
the distribution of carbon value per ton for the 3% discount rate for emission year 2010 (IWG on SCC 2013). Uncertainty in the 
value of damages per metric ton for AB32 were derived from the variance of carbon allowance futures prices during 2014. 
Capital investment for telemetry calculated at $50/kW. 

Fig. 7 demonstrates that meaningful incentives for demand response might be justified by 

avoided damages from carbon emissions. The value of avoided damages under AB32 produce far 

less compelling results than under the SCC, but still reflect a payback of the up-front telemetry 

capital costs in approximately 2 years. The effect of offsetting telemetry costs on payback 

periods is shown in Fig. 8. At the 75th percentile for revenue, the cumulative percentage of 

projects with a payback period less than 5 years improves significantly for all three end uses. 
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Fig. 8. Cumulative percentage of projects with payback period below 5 years with and without telemetry incentive for 
aggregators. Revenue is fixed (75th percentile of zone-segment combinations). Incentives provided by aggregator to customer 
vary from $10/kW to $30/kW. 

4.2 Conclusion 

To allow DR to participate in spinning reserve in California, WECC must modify the 

definitions that govern eligible resources by removing the requirement to be immediately and 

automatically responsive to system frequency; thereby bringing its policy into alignment with 

most other U.S. wholesale markets. Diversifying the resources providing ancillary services will 

allow the grid to be more resilient and less operationally expensive. 

The average costs for an aggregator to enable AutoDR and install the required telemetry were 

found to be $230/kW of controlled load; the distribution of costs ranged from $75-$350/kW. 

With an average revenue of ~$35/kW-year, steady end uses (e.g., lighting) have more than twice 

the revenue than seasonal end uses (e.g., cooling) because spinning reserve is needed year-round. 

Similarly, business segments with longer operating hours, such as groceries or lodging, have 

more revenue potential. However, average payback periods longer than 5 years do not present a 

compelling business case for a DR aggregator. Using the full distribution of installation costs, we 

find that niche applications of DR could present an attractive business opportunity: certain 

business segments in southern California can achieve nearly $60/kW-year in revenue from 

interior lighting. Avoided carbon emissions from using DR instead of fossil fuel generation for 

spinning reserve could justify the provision of incentives for the cost of installing telemetry 
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(~$50/kW) for DR resources. Avoided emissions may be larger in regions with higher 

proportions of coal-fired resources. 
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http://www.energy.gov/sites/prod/files/SGIG%20Awards%20by%20Category%202011%2011%2015.pdf
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Appendix A DR availability proportional to load 

Fig. A.1 displays DR clearing MW in each hour of the day across 4 seasons for spinning 

reserve. The Pearson correlation coefficient between the median DR MW cleared in a given hour 

across all days of 2012-2013 and the median load for that hour of the day was 0.92. DR clearing 

amounts in the summer appears quite low – this may be due to other more lucrative DR 

opportunities (such as capacity) during those times. 

 

Fig. A.1. Demand response MW cleared in spinning reserve market for each hour of the day in PJM during the period 2012-
2013. The pattern of cleared demand response mimics the typical overall load pattern seen in each season. The heavy horizontal 
line in the middle of each box marks the median. The range of the box represents the interquartile range. The whiskers extend to 
the extremes of the distribution. 

Appendix B Reasoning for removal of projects from cost information in SCE 

Fig. B.1 displays the incentive information from PG&E and SCE. 
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Fig. B.1. (a) Incentives Provided by PG&E for AutoDR. (b) Incentives Provided by SCE for AutoDR. 

The authors conducted an investigation into the AutoDR program costs and found that nearly 

all of the projects which had incentives of $300/kW in the SCE territory were likely from one 

contractor that received money from the American Recovery and Reinvestment Act (ARRA) 

grant funds. We surmise that the use of ARRA funds may have led to different recruitment 

practices and cost reporting. Thus, we do not believe that the incentive information reported for 

these projects is representative of the rest of the project population. The list below provides 

details on why the authors believe that these projects were from one contractor. 

• An AutoDR program report stated that “the U.S Department of Energy’s $11.4 million 

American Recovery and Reinvestment Act grant influenced a larger load shed and 

enablement cost in the SCE territory.” (Ghatikar et al. 2014)  

• ARRA records show a total AutoDR project cost of $22.8M in SCE (US DOE 2011b) 

attributable to one company. The 50% cost sharing required by ARRA leads to a grant of 

$11.4 million. 

• There are 348 facilities in the project incentive database from SCE that had project 

incentives of $300/kW. These projects have a total load response of 67MW. The total 

rebate amount given to these participants was just over $20M, which closely matches the 

ARRA project cost report. 

We believe that most, if not all of the projects with incentive values at $300/kW were not 

representative of the true costs to install, program, and commission this equipment. This is 

especially apparent when you compare the incentive distribution from SCE with that of PG&E. 
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There may be other projects in the database with incentive costs of less than $300/kW that were 

implemented by this DR contractor. However, we have no way of differentiating those projects. 
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