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Abstract 
We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity 
generation using 13 months of observed power production from utility-scale plants in Gujarat, 
India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV 
using actual generation data at high time resolution from utility-scale solar PV plants. We use 
geographic correlation and Fourier transform estimates of the power spectral density (PSD) to 
characterize the observed variability of operating solar PV plants as a function of time scale.  
Most plants show a spectrum that is linear in the loglog domain at high frequencies f, ranging 
from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high 
frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than 
those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat 
plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 hours and 
1 hour by 23% and 45%, respectively.  Half this smoothing can be obtained through connecting 
4-5 plants; the diminishing returns of less than 1% occurs at 12-14 plants. The largest plant 
(322MW) showed an f-1.76 spectrum. This suggests that in Gujarat, the potential for smoothing is 
limited to that obtained by one large plant.   
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1. Introduction  
Low-pollution electric power sources, such as solar power, have significant potential to reduce 
the emissions associated with generating electricity.  However, solar photovoltaic (PV) 
generation is a variable energy source, with large and rapid changes in output [1, 2].  This 
variability of solar PV is sometimes cited as a barrier to its large scale integration into the grid 
[3, 4, 5, 6]. 
 
Many authors have examined the potential for geographic smoothing of PV in the time domain. 
That literature is of two broad types. One uses modeled or (less commonly) measured solar 
illumination. The second uses observed data from power plants. There are few of the second type 
because data are often proprietary and unavailable to researchers. Here we use 13 months of 
approximately 1- or 2-minute time resolution data from 50 utility-scale PV plants separated by 
up to 470 km; we have made these data publically available. 
 
Some hope that geographic separation may smooth PV variability comes from irradiance studies. 
The correlation of solar irradiance measured at two locations decreases as the distance between 
the sites increases [7, 8, 9, 10, 11, 12, 13, 14].  In addition, cloud models have been used to 
estimate the smoothing effect of geographic diversity [15, 16], and changes in clear sky index for 
twenty-three locations show smoothing is likely for as few as five plants [2].  
 
However, studies examining actual generation data provide conflicting results.  Five-minute step 
changes in normalized PV power from one German plant can exceed +/-50% but are never larger 
than +/- 5% for 100 summed German PV sites [17]. Modeled generation at hourly resolution 
shows smoothing, which is greater on partly-cloudy days [18]. Other studies have examined area 
effects, suggesting that larger capacity plants [19, 20] or plants spread out over a wider area [21] 
exhibit less variability than smaller or more densely packed solar farms, respectively.  Similarly, 
geographic smoothing using a large number of smaller plants can reduce variability 
[22, 23, 24, 25], where the maximum variability is theoretically proportional to the square root 
of the number of plants aggregated [26]. On the other hand, several studies suggest smoothing 
may not occur.  For instance, correlation of real power output for three tracking PV sites in 
Arizona is high, suggesting smoothing might not be effective there [1]. Similarly, Murata et al. 
find that sites in Japan separated by less than about 200 km are not independent [27],which 
suggests smoothing might also not be effective there. 
 
Here we examine the potential for geographic smoothing of solar PV in the Indian state of 
Gujarat using actual generation data from multiple utility-scale solar power installations. We use 
geographic correlation and Fourier transform techniques to estimate the power spectral density 
(PSD) [28, 29] and characterize the observed variability of operating solar PV plants as a 
function of time scale.   
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Figure 1: Generation data for the Precious Energy’s 15 MW plant (Plant 5 in the listing in 
the Supplementary Data) for a) a year, b) a week, c) a clear day, and d) a partly-cloudy 
day. 
 

 
2. Data 
Real time generation data from the State Load Dispatch Centre of Gujarat Energy Transmission 
Corporation website are available [30] for fifty solar PV plants in Gujarat, India.  These 
measured power output values are updated at uneven time intervals, generally ranging between 
one to two minutes. We captured website data at one-minute intervals from February 17, 2014 to 
March 16, 2015. The data capture process, link to our archived data, and power plant 
characteristics are in the Supplementary Data.  
 
We used four tests to clean the data.  In the first two tests, the full datasets from 13 sites were 
discarded either because 1) peak generation exceeded the inverter’s capacity (resulting in a flat 
generation during peak hours), or 2) the resolution of the instruments measuring generation was 
too coarse (resulting in reported generation at increments of 0.1MW or larger). For the remaining 
data, we conducted two tests at each timestep.  Reported generation values less than -0.1MW 
occurred almost entirely during nighttime hours, but the individual points (as opposed to the full 
day) were discarded anyway.  Finally, we used visual inspection to confirm the “goodness” of 
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the data, resulting in discarding one additional day of a small MW plant that our data cleansing 
algorithm had not captured. 
 
Figure 1 shows generation data for Precious Energy’s 15 MW plant for a year, a week, a clear 
day, and a partly-cloudy data. 
 
3. Methods 
Given an improved understanding of type of variability exhibited by different power sources, a 
power system operator can understand what combination might be needed to match demand. We 
use Fourier decomposition to examine the generation data in the frequency domain, where the 
PSD at a particular frequency indicates the relative amount of variability at the corresponding 
timestep.   
 

 
Figure 2: Sample PSDs (blue) and line of best fit via Equation 1 (red) for two plants. a) 
Plant 27, 5 MW, slope of f-1.31.   b) Plant 35, 25 MW, slope of f-1.53. Plant numbers 
correspond to the listing in the Supplementary Data. 
 

a. Calculating the PSD  
We used Fourier decomposition to examine the generation data in the frequency domain.  To 
handle the observed uneven time steps, we used the Lomb periodogram [31] as coded in Press et 
al. [29].  An attribute of the Fourier or Lomb methods of estimating the PSD is that increasing 
the temporal length of the dataset does not reduce the standard deviation of the PSD at any 
frequency.  To increase the signal-to-noise ratio, we used the standard technique of partitioning 
the dataset into 32 time segments with an oversampling frequency of 4 (most datapoints are in 4 
time segments), resulting in time segments of approximately 1.5 months.  Since most time steps 
were less than two minutes resolution, the highest frequency the data can represent without 
aliasing (the Nyquist frequency) corresponded to 4 minutes. 
 

b. Scaling plants for comparison 
To understand the potential for smoothing plants over thousands of plant combinations, we 
needed a simplifying process to compare plants.  A linear line of best fit would not work due to 
the unusual shape of the PSDs.  Therefore, we make the simplifying assumption that the PSD of 
a single plant has a flat spectrum (constant power spectral density) in the loglog domain at low 
frequencies and an f -m spectrum at high frequencies, such that the PSD can be approximated 
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using coefficients A (the PSD value at low frequencies), m (the slope of the PSD at high 
frequencies), and β (relates to y-intercept in loglog domain) via Eq.(1):   

𝑃𝑃𝑃(𝑓) = 𝐴
1+𝛽𝑓𝑚

    Eq. 1 
Since the day-night cycle causes solar PSDs to exhibit a peak at 24 hours (and its harmonics), we 
fit this equation in Matlab in the loglog domain to frequencies corresponding to times slower 
than 48 hours and faster than 12 hours. Figure 2 shows the PSD of a 5MW and a 25MW plant 
with their respective fitted curves. 
 
To compare the PSD of a single plant to the PSD of interconnected plants in a way that controls 
for plant capacity, we scale the PSDs using Equation 1’s A values.  First we fit Eq. 1 in the 
loglog domain to both the PSD of a single plant and the PSD of the interconnected plants to 
determine the respective A coefficients, Asingle and Ainterconnected. We then multiple the 
interconnected PSD by Asingle / Ainterconnected so that y-intercept at low frequencies is identical to 
the single plant PSD.  Finally, we refit the PSD of the interconnected plants with A, β, and m 
such that the lines of best fit for the single and the interconnected plants cross at f=1/24hrs. After 
scaling, a spectrum with a steeper negative slope (e.g. f-1.76) has smaller high-frequency 
fluctuations than a spectrum with a less-steep slope (e.g. f-1.23); in other words, a steeper negative 
slope represents more high-frequency smoothing. This is the procedure used by Katzenstein et al. 
[39] for wind plants. 
 

c. Understanding the potential for smoothing plants 
To understand the potential for smoothing variability in plants, we summed plants, calculated the 
PSD, and compared the slopes m. Averaging over all possible combinations for 2 through 20 
plants, we investigate how interconnecting plants can potentially provide smoothing. 
 
The PSD of some plants was noisy due to frequent data dropouts. For some others, the PSD 
exhibited low-pass filtering at frequencies above 0.001Hz (corresponding to approximately 15 
minutes). In what follows, we used twenty plants with spectra that had neither of these features 
(Fig. 3). For each period when good generation data existed for all twenty plants, we calculated 
the PSDs for all possible initial plants and combinations of 2 through 20 of the plants.  For each 
combination, we normalized the interconnected PSD to the single plant PSD using the process 
described above.  We then compared the line of best fit for the two PSDs at particular 
frequencies by taking the ratio of the single plant value to the interconnected plants value in the 
x-y domain.  If no smoothing occurs when solar plants are interconnected, the result should be 
close to 1 for all frequencies. If there is a reduction in variability then there will be frequencies 
for which the fraction is less than 1.   
 
4. Results  

a. Calculating individual PSDs 
The Supplementary Data contains a PSD for each of the twenty plants.  Most plants exhibit a 
spectrum at high frequencies ranging from f-1.23 to f-1.56, with the very large 322MW plant 
displaying a f-1.76 slope. We find that larger plant size is correlated with a steeper slope with a 
correlation coefficient of 0.57 at p<0.001 (Figure 3).  These results agree with the approximately 
f-1.3 spectrum identified by previous research using generation data [1, 32, 33], (as well as the f-

0.7 spectrum identified when the y-axis is the square of the power [34]). This implies that there is 
still a large need for fast ramping power or demand response to compensate for PV fluctuations 
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at high frequencies.  Our results also validate for a real plant the conjecture based on irradiance 
data that as the capacity of the plant increases, it is likely that the plant will cover a larger 
horizontal area and thus be able to naturally filter out some of the variability [19, 20].   
 

b. Understanding the potential for smoothing plants 
To understand the potential for smoothing plants, we summed generation of 20 plants as 
described above.  The time domain generation data are given in the Supplementary Data, and 
Figure 4 shows the PSDs and resulting lines of best fit for 1, 5, 10, and 20 plants. The amplitude 
of variability of 20 interconnected PV plants at a frequency corresponding to 1 hour has ~45% of 
variability than that of a single PV plant (Fig. 5). As for wind’s geographic smooting, the 
reduction is very dependent on the time scale examined; at 6 hours the variability of 20 plants is 
80% of that of a single plant. We find a steepening of the f-1.3 spectrum toward f-1.66 as the 
number of plants increases.  
 
For reference, we calculated the Bird and Hulstrom Clear Sky Index for direct normal irradiance 
upon a horizontal surface and global horizontal irradiance upon a horizontal surface [35] at the 
location of Plant 50 (Charanka) using 1-minute resolution for one year.  The slope of both of 
these models is -1.84 at high frequencies, and the full PSDs are given in the Supplementary Data. 
 
Figure 5 shows the fraction of the spectrum of a single plant retained versus the number of 
interconnected solar plants (N) at different timescales.  For reference, we show the reduction that 
would occur if cloud activity in all locations was independent per Hoff and Perez’s N-0.5 
calculation [26] (which is very similar to empirical results showing a N-0.46 relationship [24]).  
Interconnecting approximately 20 plants yields a 25-45% reduction in variability depending on 
frequency examined.  Approximately half the geographic smoothing occurs by interconnecting 
4-5 plants, with marginal returns of less than a 1% change per plant after 12-14 plants have been 
connected.  This observed smoothing is not only much less than that suggested by the theoretical 
N-0.5 [26], it also appears to asymptote to a nonzero value at high N.  

  
Figure 3: a) Location of Solar PV Power Plants in Gujarat, India. b) Installed capacity 
versus absolute value of the slope of PSD at high frequencies.  Blue dots are the 
observations, while the solid red and dotted blue lines are the line of best fit and the 95% 
confidence interval, respectively.   
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Figure 4: Sample summed power output for ten power plants.  a) The normalized PSD of 1, 
5, 10, and 20 plants (in black, red, green, and magenta, respectively) using only the data for 
the days all 20 plants are available. b) The corresponding line of best fit for these PSDs. 
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Figure 5: Fraction of the spectrum of a single plant retained versus the number of 
interconnected solar plants normalized at f=1/24 hours at different timescales. 
Interconnecting as few as 12 PV plants achieves the majority of the reduction of variability 
where additional plants reduce less than 1% of variability. 
 
In order to enable comparison with earlier work [2, 9, 18], we also investigated the potential for 
smoothing by examining the distance dependence of the correlation of generation ramps.  We 
first calculated ramp data (difference in generation between timesteps) between 10:00 and 17:59 
local time.  We then interpolated these data to even one-minute timesteps, then decimated the 
values to 5, 15, 30, and 60 minute timesteps (thus accounting for selection bias).  As shown in 
the Supplementary Data, we found a decrease in correlation as distance between plants increases 
toward 50km.  Near 100km, the correlation becomes almost constant as a function of distance, as 
one might expect with the correlation in the solar cycle (e.g., p=0.55, 0.25, 0.1a, and 0.01 for 1 
hour, 30 minute, 15 minute, and 5 minute timesteps, respectively).  These findings agree with the 
previous results examining distance versus correlation of irradiance data. 
 
 
5. Discussion 
Prior to wide-spread solar PV adoption, the power sector will need to address solar generators’ 
intermittency and variability. Here we study the potential for geographic smoothing of PV using 
13 months of observed power production from utility-scale plants in Gujarat, India.   
 
All of the plants examined displayed similar power spectra to those in previously published 
literature [1, 32, 33], albeit with slightly different slopes.  The expected diurnal peaks at 24 hours 
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and harmonics are present. At high frequencies, the plants exhibit a spectrum similar to cloud 
processes [36, 37]. These processes may be a function of the f-5/3 spectrum displayed by wind 
[32] and the f-1 spectrum displayed by hydrologic processes [38], or the PV plant may act as a 
low pass filter [34]. 
 
When interconnecting Gujarat PV plants, approximately half of the smoothing can be obtained 
through connecting 4-5 plants.  Reduction in variability exhibits diminishing marginal returns, 
with interconnecting 12-14 plants yielding a f-1.66 spectrum. However, the largest plant, the 
322MW Charanka Solar Park (at 23°54'N, 71°12'E), has an f-1.76 spectrum. This suggests that in 
Gujarat, the potential for smoothing may be limited to that obtained by one large plant.   
 
We further note that the PSD of the clear sky index at the Charanka Solar Park showed a f-1.84 
slope, a steeper slope than all of our observed individual and combined plants.  While this 
suggests more smoothing to reduce the noise from clouds may be possible, we are do not observe 
this smoothing, suggesting that other limiting factors may be in play. One possibility is that this 
study was limited to Gujarat, India, which according to the Koeppen classification system has a 
low-latitude (h), and either very dry (BW) or dry (BS) climate over the spatial area examined 
[39].   Gujarat may be a climatological region where generation at different plants cannot be 
considered independent, even across three degrees of longitude (almost 400 km); aggregating 
further plants outside this region may help filter out the noise of the clouds such that the slope 
will approach the clear sky model.  Another possibility might occur because our plants are spread 
across several degrees of longitude with an approximately 7 minute difference in the solar peak 
across the data set.  Consequently, while ramps in the clear sky index component are positively 
correlated at most times of the day, there would be some times where the ramps would be anti-
correlated. This would suggest that geographic smoothing would be a function of longitude 
spanned (and thus distance between solar peaks), altering the theoretical limit. 
 
The power sector may also wish to compare the potential for geographic smoothing of solar PV 
to that from other renewable energy types.  In comparison to the geographic smoothing of 
distributed wind plants in Texas [40], the PV plants we examined show substantially less 
smoothing. The two areas are of comparable size (roughly 400 km x 400km). Interconnecting 20 
wind plants in Texas was found to reduce fluctuations at frequencies corresponding to 6 hours 
and 1 hour by 65% and 95% respectively, substantially more than the 23% and 45% observed for 
PV plants in Gujarat.  We also find that when interconnecting observed PV plants, reaching 
marginal returns of less than a 1% change per plant requires two or three times the number of 
interconnected plants than for wind (12-14 for PV, 3-6 for wind).   Since the area examined is 
comparable in size to many balancing areas, the relatively small amount of smoothing is likely to 
be relevant to practical application of solar photovoltaic generation at grid scale. 
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1. URL for the archived data used in this research  
 
Real time generation data from the State Load Dispatch Centre of Gujarat Energy Transmission 
Corporation website are available for 50 solar PV plants in Gujarat, India.  The website is: 
 
https://www.sldcguj.com/RealTimeData/GujSolar.asp  
 
These values are updated at uneven time intervals, generally ranging between one to two 
minutes. Since the State Load Dispatch Centre does not archive the data, we captured website 
data at one-minute intervals from February 17, 2014 to March 16, 2015. We have made these 
data available at: http://wpweb2.tepper.cmu.edu/electricity/datadownloads.asp . 
 
We used four tests to clean the data.  In the first two tests, the full datasets from 13 sites were 
discarded either because 1) peak generation greatly exceeded the inverter (resulting in a flat 
generation during peak hours), or 2) the resolution of the instruments measuring generation was 
too coarse (resulting in reported generation at increments of 0.1MW or larger). For the remaining 
data, we conducted two tests at each timestep.  Reported generation values less than -0.1MW 
occurred almost entirely during nighttime hours, but the individual points (as opposed to the full 
day) were discarded anyway.  Finally, we used visual inspection was used to confirm the 
“goodness” of the data, resulting in discarding one additional day of a small MW plant that our 
data cleansing algorithm had not captured. 
  

https://www.sldcguj.com/RealTimeData/GujSolar.asp
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2. Location and size of the plants used 
Table S1 shows the location and installed capacity of the plants examined in the Main Text. 
Plant name and capacity were collected from the Gujarat State Load Despatch Centre’s website 
where data were downloaded [1].  The latitudes and longitudes were obtained from the United 
Nations Framework Convention on Climate Change (UNFCCC) online Clean Development 
Mechanism (CDM) project database [2]. 
 
Table S1: Location and size (installed capacity) of the plants examined in this study.  The 
two plants that altered capacity over the time period have been denoted in the table.  Please 
see Figure 3 for a map of these locations. 
Number Plant Name, * indicates 

plants used in analysis 
Installed Capacity, MW 
(Final capacity, MW) 

Latitude Longitude 

1 Lanco Infratech (Bhadrada) 5 23°40'56.74"N  71°46' 30.45"E 
2 Lanco Infratech (Chandiyana) 15 23°41'32.11"N  71°34'00.45"E 
3 Azure (Haryana) 10 22°52'38.8" N 72°04'13.1"E 
4 Jaihind Projects 5 21°44′N 70°06′E 
5 Precious Energy 15 23°55'06.94"N  71°56'28.25"E 
6 Solitaire Energy 15 23°54'40.11"N  71°55'52.09"E 
7 Azure (Gujarat) 5 23°22'34.1"N  71°39'02.1"E 
8 ESP Urja 5 23°23'60"N  71°42'00"E 
9 Millennium 10 23°30'00" N 71°42' 00"E 
10 Green Infra Solar* 10 21°44'11.16''N 70°07'11.19''E 
11 Adani Power* 40 23°15'46″N  69°01'27"E 
12 Visual Percept 25 23°28.205'N 71°35.103'E 
13 Backbone* 5 23.41N 70.56E 
14 PLG Photovoltaic 20 23°55'31"N   71°31'19"E 
15 Konark 5 23°22'1.43"N  70°37'0.18"E 
16 Sadla-Waa* 10 22°40'4.9" N 71°22'51.75"E 
17 GaneshWani* 5 21°43'56"N  70°06'06.7"E 
18 Cbc* 10 21°43'56"N  70°06'06.7"E 
19 Ghi* 10 21°57'24.4" N 71°19'43.94"E 
20 Mosearbear* 15 21°37'39.4"N  69°49'57.1"E 
21 Aravali* 5 21°46'35.11"N  70°04'46.74" E 
22 Welspun 15 23°21'36.6" N 70°03'14.99"E 
23 Hiraco* 20 21°37'39.4"N  69°49'57.1"E 
24 Louroux 25 22°43'35.77"N  71°25'58.16"E 
25 Gangesh 25 21°43'56"N  70°06'6.7"E 
26 Acme 15 22°19'12"N  72°25'48"E 
27 Sunkon* 5 (10) 20°52'34"N  71°16'57"E 
28 Icml 9 23°22'37.2"N 70°44'46.4"E 
29 Monosteel* 10 20.81905N 71.00877E 
30 Unity* 5 23°21'30.77"N  70°03'16.77" E 
31 Emco* 5 23°23'57"N  71°38'20"E 
32 Sandland 25 24°31'27.1"N  72°12'12.27"E 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-15-03             www.cmu.edu/electricity 

DO NOT CITE OR QUOTE WITHOUT THE PERMISSION OF THE AUTHORS                                    S 4 
 

33 Solarsemi* 20 23°19'28"N  70°24'01"E 
34 Ebellon 3 23°33'35.19"N  73°17'7.95"E  
35 Tata power* 25 22°24'32.85"N  68°59'35.46"E 
36 Sunborn 15 23°12'34"N  70°13'56"E 
37 Gipcl 5 21°25.33'N  73°07.498' E 
38 MiMy 15 23°25'5.19"N  71°37'19.8"E 
39 Dreisatz My Solar 15 23°25'23.69"N  71°37'5.41"E 
40 SJ Green* 5 22.70761N 71.41514E 
41 Euro* 5 23°23'4.462"N  70°37'2.7554"E 
42 Aston Field 11.5 23.64N  71.70E 
43 Responsive 25 23°03'37"N 71°51'42"E 
44 Chattel 25 23°15'58.8"N 71°46'42.9"E 
45 Aatash 5 23°18'14.76"N  73°18'30.6" E 
46 Ujjawala 25 23°03'37"N 71°51'42"E 
47 Gmdc* 5 23°40'17" N   68°46'27"E  
48 Texus* 5 23°15'39.73"N  70°00'5.25" E 
49 Apca 5 21°46'17"N  70°05'04"E 
50 Charanka (TOTAL) 221 (322) 23°54'N  71°12'E 
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3. Power spectral densities calculated using the Lomb periodiogram with a line of best fit 
via Eq. 1 for all plants with good data 
 
This section contains the power spectral densities (PSDs) for 36 plants with sufficient good data 
(Figures S1-S36). We calculated using PSDs the Lomb periodiogram and displayed the line of 
best fit via Eq. 1. 
 
At high frequency we observed two types of PSD characteristics.   The first characteristic 
exhibited a constant spectrum of approximately f-1.3 at all frequencies greater than 12 hours, 
which agrees with the spectrum identified by previous research [3, 4, 5].   The second exhibited 
a spectrum of approximately f -1.3 between 3 to 12 hours.  At above a “corner frequency” of 
approximately 10-3 Hz, these plants exhibited approximately an f -3 spectrum.  While this 
behavior was not directly noted in the text of previous studies, the existence of a corner 
frequency agrees well with the figures of PSDs as found by previous research [3, 4, 5]. 
 
The existence of this corner frequency does not appear to be correlated to the location, 
generation, or fraction of data points retained.  We hypothesize the corner frequency may have 
something to do with different physical arrangements of the plant (presence of inverter, angle, 
ground cover ratio, tracking or not, thin film or not) and/or cloud characteristics, but were unable 
to test for these potential relationships.  Marcos et al suggest this is the power plant acting as a 
low pass filter [6]. Since we could not conclude what might be causing the corner frequency and 
therefore if the data were corrupted or not, we conducted the remainder of the results as 
discussed in the main text for twenty locations displaying a constant spectrum of approximately 
f-1.3 at all frequencies greater than 12 hours. 
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Figure S1: PSD (blue) with line of best fit via Equation 1 (red) for Plant 3.  The slope at 
high frequencies in the loglog domain (m) is -1.33.   
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Figure S2: PSD (blue) with line of best fit via Equation 1 (red) for Plant 5.  The slope at 
high frequencies in the loglog domain (m) is -1.56.   
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Figure S3: PSD (blue) with line of best fit via Equation 1 (red) for Plant 6.  The slope at 
high frequencies in the loglog domain (m) is -1.51.   
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Figure S4: PSD (blue) with line of best fit via Equation 1 (red) for Plant 7.  The slope at 
high frequencies in the loglog domain (m) is -1.34.   
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Figure S5: PSD (blue) with line of best fit via Equation 1 (red) for Plant 8.  The slope at 
high frequencies in the loglog domain (m) is -1.3.   
 

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-2

10
-1

10
0

10
1

10
2

10
3

Frequency (Hz)

kW
/S

qr
t(H

z)
Installed Capacity:5MW, PSD Slope:1.3



Carnegie Mellon Electricity Industry Center Working Paper CEIC-15-03             www.cmu.edu/electricity 

DO NOT CITE OR QUOTE WITHOUT THE PERMISSION OF THE AUTHORS                                    S 11 
 

 
Figure S6: PSD (blue) with line of best fit via Equation 1 (red) for Plant 10.  The slope at 
high frequencies in the loglog domain (m) is -1.39.   
 

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-2

10
-1

10
0

10
1

10
2

10
3

Frequency (Hz)

kW
/S

qr
t(H

z)
Installed Capacity:10MW, PSD Slope:1.39



Carnegie Mellon Electricity Industry Center Working Paper CEIC-15-03             www.cmu.edu/electricity 

DO NOT CITE OR QUOTE WITHOUT THE PERMISSION OF THE AUTHORS                                    S 12 
 

 
Figure S7: PSD (blue) with line of best fit via Equation 1 (red) for Plant 11.  The slope at 
high frequencies in the loglog domain (m) is -1.52.   
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Figure S8: PSD (blue) with line of best fit via Equation 1 (red) for Plant 13.  The slope at 
high frequencies in the loglog domain (m) is -1.29.   
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Figure S9: PSD (blue) with line of best fit via Equation 1 (red) for Plant 16.  The slope at 
high frequencies in the loglog domain (m) is -1.29.   
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Figure S10: PSD (blue) with line of best fit via Equation 1 (red) for Plant 17.  The slope at 
high frequencies in the loglog domain (m) is -1.36.   

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-2

10
-1

10
0

10
1

10
2

10
3

Frequency (Hz)

kW
/S

qr
t(H

z)
Installed Capacity:5MW, PSD Slope:1.36



Carnegie Mellon Electricity Industry Center Working Paper CEIC-15-03             www.cmu.edu/electricity 

DO NOT CITE OR QUOTE WITHOUT THE PERMISSION OF THE AUTHORS                                    S 16 
 

 
Figure S11: PSD (blue) with line of best fit via Equation 1 (red) for Plant 18.  The slope at 
high frequencies in the loglog domain (m) is -1.48.   
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Figure S12: PSD (blue) with line of best fit via Equation 1 (red) for Plant 19.  The slope at 
high frequencies in the loglog domain (m) is -1.35.   
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Figure S13: PSD (blue) with line of best fit via Equation 1 (red) for Plant 20.  The slope at 
high frequencies in the loglog domain (m) is -1.36.   
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Figure S14: PSD (blue) with line of best fit via Equation 1 (red) for Plant 21.  The slope at 
high frequencies in the loglog domain (m) is -1.48.   
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Figure S15: PSD (blue) with line of best fit via Equation 1 (red) for Plant 22.  The slope at 
high frequencies in the loglog domain (m) is -1.34.   
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Figure S16: PSD (blue) with line of best fit via Equation 1 (red) for Plant 23.  The slope at 
high frequencies in the loglog domain (m) is -1.33.   
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Figure S17: PSD (blue) with line of best fit via Equation 1 (red) for Plant 24.  The slope at 
high frequencies in the loglog domain (m) is -1.49.   
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Figure S18: PSD (blue) with line of best fit via Equation 1 (red) for Plant 25.  The slope at 
high frequencies in the loglog domain (m) is -1.55.   
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Figure S19: PSD (blue) with line of best fit via Equation 1 (red) for Plant 27.  The slope at 
high frequencies in the loglog domain (m) is -1.31.   
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Figure S20: PSD (blue) with line of best fit via Equation 1 (red) for Plant 28.  The slope at 
high frequencies in the loglog domain (m) is -1.31.   
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Figure S21: PSD (blue) with line of best fit via Equation 1 (red) for Plant 29.  The slope at 
high frequencies in the loglog domain (m) is -1.27.   
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Figure S22: PSD (blue) with line of best fit via Equation 1 (red) for Plant 30.  The slope at 
high frequencies in the loglog domain (m) is -1.24.   
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Figure S23: PSD (blue) with line of best fit via Equation 1 (red) for Plant 31.  The slope at 
high frequencies in the loglog domain (m) is -1.35.   
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Figure S24: PSD (blue) with line of best fit via Equation 1 (red) for Plant 32.  The slope at 
high frequencies in the loglog domain (m) is -1.58.   
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Figure S25: PSD (blue) with line of best fit via Equation 1 (red) for Plant 33.  The slope at 
high frequencies in the loglog domain (m) is -1.45.   
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Figure S26: PSD (blue) with line of best fit via Equation 1 (red) for Plant 35.  The slope at 
high frequencies in the loglog domain (m) is -1.53.   
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Figure S27: PSD (blue) with line of best fit via Equation 1 (red) for Plant 38.  The slope at 
high frequencies in the loglog domain (m) is -1.02.   
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Figure S28: PSD (blue) with line of best fit via Equation 1 (red) for Plant 39.  The slope at 
high frequencies in the loglog domain (m) is -1.24.   
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Figure S29: PSD (blue) with line of best fit via Equation 1 (red) for Plant 40.  The slope at 
high frequencies in the loglog domain (m) is -1.29.   
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Figure S30: PSD (blue) with line of best fit via Equation 1 (red) for Plant 41.  The slope at 
high frequencies in the loglog domain (m) is -1.33.   
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Figure S31: PSD (blue) with line of best fit via Equation 1 (red) for Plant 43.  The slope at 
high frequencies in the loglog domain (m) is -1.57.   
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Figure S32: PSD (blue) with line of best fit via Equation 1 (red) for Plant 44.  The slope at 
high frequencies in the loglog domain (m) is -1.52.   
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Figure S33: PSD (blue) with line of best fit via Equation 1 (red) for Plant 45.  The slope at 
high frequencies in the loglog domain (m) is -1.29.   
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Figure S34: PSD (blue) with line of best fit via Equation 1 (red) for Plant 47.  The slope at 
high frequencies in the loglog domain (m) is -1.27.   
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Figure S35: PSD (blue) with line of best fit via Equation 1 (red) for Plant 48.  The slope at 
high frequencies in the loglog domain (m) is -1.29.   

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-2

10
-1

10
0

10
1

10
2

10
3

Frequency (Hz)

kW
/S

qr
t(H

z)
Installed Capacity:5MW, PSD Slope:1.29



Carnegie Mellon Electricity Industry Center Working Paper CEIC-15-03             www.cmu.edu/electricity 

DO NOT CITE OR QUOTE WITHOUT THE PERMISSION OF THE AUTHORS                                    S 41 
 

 
Figure S36: PSD (blue) with line of best fit via Equation 1 (red) for 221MW plant.  The 
slope at high frequencies in the loglog domain (m) is -1.76.   
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4. Power spectral densities calculated using the Lomb periodiogram for Clear Sky Index 
For reference, we calculated the Bird and Hulstrom Clear Sky Index for direct normal irradiance 
upon a horizontal surface and global horizontal irradiance upon a horizontal surface [7] for Plant 
50 (Charanka) for 1-minute resolution for one year.  The slope of both of these models is -1.84 at 
high frequencies. 
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Figure S37: PSD (blue) with line of best fit via Equation 1 (red) for the clear sky index for 
GHI.  The slope at high frequencies in the loglog domain (m) is -1.84.   
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Figure S38: PSD (blue) with line of best fit via Equation 1 (red) for the clear sky index for 
DNI.  The slope at high frequencies in the loglog domain (m) is -1.84.   
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5. Time series data of summed generation  
We identified twenty good plants as described in the main text, resulting in the plants identified 
in Table S1.  For our summation analysis, we summed the generation for all twenty plants at 
time stamps when all plants had good data.  Figure S39 shows the resulting time series data of 
this summed generation, which was then used to create Figures 4 and 5. 
 
As noted in Apt & Jaramillo 2014 [4], using these data we could construct histograms for each 
timestep to understand the variability of generation output.  However, “it becomes tedious to 
examine every period of interest in this way”, and thus the main text used the frequency domain 
analysis. 
 

 
Figure S39: Sample summed power output retained after data cleaning for twenty power 
plants.   
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6. Scatterplot of distance versus correlation for the Gujarat plant generations 
To understand the potential for smoothing, many studies have examined correlation versus 
distance.  Most use either a clear sky index or a method to remove the diurnal cycle, and find that 
correlation decreases to 0 as distance increases [8, 9, 10, 11, 12]. This approach allows one to 
understand cloud variability, which is of importance to power plant operators.  However, power 
plant generation is a function of both the clear sky index and the solar signal, and thus to make 
siting decisions, a systems operator would likely prefer a study of generation data such as the one 
presented in the main text. 
 
We identified two studies examining distance versus correlation of irradiance data that did not 
remove the diurnal cycle.  A study in Oklahoma, United States of America showed that as 
distance increases, correlation decreases but not to 0 (see Figure 6 in Barnett et al. 1998) [13].  
Similarly, a study in Ontario, Canada (see Figure 2 in Rowlands et al., 2013) [14] shows that as 
distance increases, correlation decreases and asymptotes at a nonegative value. These findings 
align with the qualitative discussion in Mills et al. 2009 [15]. 
 
To understand whether these findings might hold true for generation data, we calculated distance 
versus correlation for power plant generation.  We first calculated ramp data (difference in 
generation between timesteps) between 10:00 and 17:59 local time.  We then interpolated these 
data to even one-minute timesteps, then decimated the values to 5, 15, 30, and 60 minute 
timesteps (thus accounting for selection bias).  Figure S40 shows a decrease in correlation as 
distance between plants increases toward 50km.  Near 100km, the correlation becomes almost 
constant as a function of distance, as one might expect with the correlation in the solar cycle.  
These findings agree with the previous results examining distance versus correlation of 
irradiance data. 
 
We next considered attempting to remove the solar cycle signal to attempt to replicate studies 
using clear sky indices and thus understand the potential for smoothing.  However, it is very 
difficult to remove this signal since it is a complex function of hour, day, season, and year.  Thus 
in the main text, we used a frequency domain method.     
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Figure S40: Scatterplot of distance versus correlation for generation of Gujarat plants 
using timestep data between 10:00 and 17:59 local time. a) 0-50km, b) 0-500km. 
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