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Abstract 

Over the next decade, many U.S. coal-fired power plants are expected to retire, posing a 

challenge to system planners.  We investigate the resource adequacy requirements of the PJM 

Interconnection, and how procuring less capacity may affect reliability.  Assuming that plant forced 

outages are independent of one another, we find that PJM’s 2010 reserve margin of 20.5% was 

sufficient to achieve the stated reliability standard of one loss of load event per ten years with 90% 

confidence.  PJM could reduce reserve margins to 13% and still achieve levels of reliability accepted 

by other U.S. and international power systems with 90% confidence.  Reducing reserve margins 

from 20.5% to 13% would reduce PJM’s capacity procurement by 11 GW, the same amount of coal 

capacity that PJM has identified as at high risk of retirement.  However, if plant failures are caused 

by external events such as extreme weather and are correlated, reliability may be significantly lower 

than forecast by PJM’s current resource planning process (we consider correlated outages in sections 

1.2.4 and 1.3.6).  The risk posed by supply shortages is primarily due to very rare, but severe events.  

System operators should work to ensure that the system is robust to these extreme events.  
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1.1 Introduction 

Over the next decade, significant coal plant retirements are expected in the United States.  The 

Energy Information Agency forecasts that 40 GW of coal capacity will retire between 2014 – 2020 

(EIA 2013).  These retirements are due to a combination of factors.  Many coal plants are near the 

end of their expected lifespan.  Many small and outdated coal plants are finding it cost prohibitive to 

make the retrofits necessary to comply with emission regulations.  Low natural gas prices have put 

downward pressure on revenues from wholesale electricity prices. 

These retirements pose a new challenge to system operators, who are mandated to meet 

resource adequacy requirements.  To meet these requirements, systems procure generation capacity 

that is rarely used but is needed in extreme circumstances.  This capacity, typically natural gas 

combustion turbines, has low upfront capital costs but high operating costs.  In the traditional 

regulated utility model, these generators are compensated through rate-of-return ratemaking, even if 

they produce no power.  The restructuring of 20 U.S. states in the late 1990s and early 2000s led to 

the industry to recognize the so-called “missing money problem”, whereby market designs would 

not support sufficient generation investment (Spees et al 2013).  Today, most restructured markets 

use capacity markets to compensate generators for the capacity they provide. 

In both traditional regulated utilities and systems with capacity markets, the system operator 

centrally models the amount of capacity needed to achieve a given resource adequacy standard.  

These models consider the reliability of existing generators and forecasts of load.  Both generator 

outages and load forecasts are highly uncertain, creating the risk that inaccurate modeling may lead 

to an over- or under-procurement of capacity.  Over-procuring capacity will increase costs for 

ratepayers; under-procuring capacity will create outage risks above reliability targets. 
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The traditional metric of resource adequacy is the number of loss of load events (LOLE) per ten 

years.  Most U.S. systems, including the PJM Interconnection, procure enough capacity to meet a 

LOLE standard of one expected event per ten years, or 0.1 events per year (0.1 LOLE standard) 

(PJM 2013). The 0.1 LOLE standard dates back to the 1950s, although its origins are unknown 

(EISPC 2013).  Here we follow the standard definition of an outage “event” as an outage lasting one 

or more consecutive hours.  The LOLE metric is problematic, in that it does not consider either the 

duration of an outage, or magnitude of load that is shed during an outage. 

Due to the limitations of the LOLE metric, some systems have adopted other standards.  The 

Southwest Power Pool (SPP) uses the metric of 24 expected loss of load hours (LOLH) per ten 

years, or 2.4 hours per year (2.4 LOLH standard) (EISPC 2013).  The Scandinavian system uses the 

metric of expected unserved energy (UE) totaling 0.001% of total load served (0.001% UE 

standard).  Australia’s National Energy Market (NEM) and South West Interconnected System 

(SWIS) have adopted a 0.002% UE standard (Pfeifenberger et al 2013).  The North American 

Electric Reliability Corporation has recommended system operators adopt UE standards, as they 

explicitly consider the magnitude of outages (NERC 2010).  All three metrics consider only the risk 

of generator outages, and exclude other risks such as transmission or distributions outages. 

Resource planners base their capacity procurement decisions on the expected value of the metric 

used (0.1 LOLE, 2.4 LOLH, 0.001% UE).  By considering only the expected value, resource 

planners imply that they are risk neutral to supply shortages.  However, evidence suggests system 

operators are highly risk averse to supply shortages, as these shortages reflect poorly on the system 

operator, draw unwanted public attention, and can cause a host of grid management problems such 

as network collapse, leading to cascading failures (Joskow and Tirole 2007).  
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Although a significant body of literature exists on the electric system reliability, resource 

adequacy risks have received less attention.  As part of a study into electricity reliability more 

broadly, (Hines et al 2009) find that supply shortages over the period 1984 – 2006 were responsible 

only for 2.3% of U.S. outage events.  The methods used by system planners today are very similar to 

those outlined by Billinton in the 1970s (Billinton et al 1973).  More recently, system planners have 

begun to analyze the economically optimal reserve margin, or the reserve margin that minimizes 

total system costs and outage costs (Pfeifenberger et al 2013). 

Here we analyze the resource adequacy requirements of the PJM Interconnection, and how 

future retirements could affect reliability.  PJM anticipates 11 GW of coal capacity, or ~7% of total 

capacity, is “at high risk” of retirement (PJM 2011b).  Since 2007, PJM has procured capacity 

through its centralized capacity market.  Capacity market billings were $8 billion in both the 

2009/2010 and 2010/2011 auctions.  In 2010, capacity costs were roughly 18% of total 2010 billings 

(PJM 2011a). 

PJM uses a forecasting model to calculate the capacity needed to meet the 0.1 LOLE standard 

(PJM 2003).  The robustness of this model is important, as it sets the amount of capacity PJM 

procures, and therefore costs on the capacity and energy markets.  However, it is difficult to verify 

the model’s accuracy due to the rarity of supply shortages in PJM. 

We develop a robust statistical model of resource adequacy in PJM for the year 2010.  The 

model consists of a probabilistic forecast of hourly load and a probabilistic forecast of generator 

outages.  The load model explicitly considers three major drivers of uncertainty: uncertain load 

growth, natural temperature variability, and uncertainty in the underlying model/process.  The load 

model uses five years of load data and sixty years of temperature data from Pittsburgh International 
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Airport and Reagan National Airport. We combine the load and outage models into a probabilistic 

forecast of supply shortages. 

We analyze the sensitivity of LOLE, LOLH, and UE to PJM’s reserve margin, measured in 

terms of installed capacity.  In 2010, PJM calculated a 15.5% reserve margin was needed to achieve 

the 0.1 LOLE standard.  PJM procured more capacity than needed, making the realized reserve 

margin 20.5%.  We vary PJM’s reserve margin from 10% - 25% to see how LOLE, LOLH, and UE 

change.   

We find that PJM’s 15.5% reserve margin target met the 0.1 LOLE standard.  By procuring 

additional capacity such that the actual reserve margin was 20.5%, PJM’s revealed risk preference 

was to meet the 0.1 LOLE standard with 90% confidence.  

PJM could reduce reserve margins to 13% or 14% by switching to the 2.4 LOLH or 0.001% UE 

standard, while maintaining current risk preferences.  This represents a 9 – 11 GW reduction in 

capacity from a 20.5% reserve margin. We therefore conclude that PJM could significantly reduce 

reserve margins and still maintain reliability standards commonly used by other systems and current 

risk preferences.  More specifically, the 11 GW of coal capacity identified by PJM as “at high risk” of 

retirement could retire. 

However, the risk of a supply shortage rises if the potential for correlated outages among 

generators is considered.  We show that the risk of a natural gas supply disruption to PJM’s natural 

gas combustion turbines could increase outage risk, and cause PJM to underestimate this risk.   

We also find that the distribution of outage size is ‘fat tailed’, and the largest 10% of outages 

account for half of total load shed.  Therefore, system operators should recognize that supply 

shortages are more rare, but more disruptive than implied by reliability metrics.  
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1.2 Methods 

We develop a probabilistic forecast of supply shortages in PJM for 2010.  This forecast consists 

of two separate analyses: a probabilistic simulation of hourly load, and a probabilistic simulation of 

capacity available at each hour.  These analyses are described in detail below.  We then use Monte 

Carlo analysis to find the probability that load exceeds supply for each hour of the year.  We analyze 

three reliability metrics: LOLE, LOLH, and UE, and their sensitivity to PJM’s reserve margin. We 

perform several sensitivity analyses, and compare the results of our simulation to PJM’s modeling of 

capacity needs. 

1.2.1 Load forecast 

We use historic load and temperature data to forecast load in PJM.  Load forecasts have three 

sources of uncertainty: uncertainty in load growth, natural temperature variability, and uncertainty in 

the underlying model/process.  We consider each separately to robustly forecast load. 

A large literature exists on forecasting load.  Techniques commonly used include regression 

analysis, time-series analysis, and neural networks (PJM 2013, Hagan and Behr 1987, Hippert et al 

2001).  The model used by PJM to set reserve margin targets is a probabilistic model derived from 

Billinton (PJM 2003, Billinton et al 1973).  The model is not regression based, but uses heuristics 

that PJM has developed over time.  PJM uses a separate regression model to forecast long-term load 

growth (PJM 2013). 

We use regression analysis to forecast hourly load in PJM.  The regression model shares many 

features in common with the regression model PJM uses to forecast long-term load growth.  

Regression analysis is useful for estimating the expected value of load at each time period.  However, 

our focus is extreme events, i.e. high-load hours in which outages are more likely.  To account for 
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these extreme events, we bootstrap the model’s residuals to simulate uncertainty in load at each time 

period. 

We forecast hourly load in 2010 using hourly data from the previous five years. Using five years 

worth of data results in higher accuracy than if 10 or 15 years of data were considered.  This is 

because the relationship between temperature and load has changed in PJM over time, with loads 

becoming increasingly sensitive to high temperatures.  Using data more than five years old causes 

the model to under-forecast load at high temperatures.  For more details, see Appendix A.  

Hourly load data is from PJM (PJM 2014a).  Hourly temperature and associated weather data is 

from the National Oceanic and Atmospheric Association (NOAA) for the Reagan National Airport 

and Pittsburgh International Airport weather stations (NOAA 2014a).  These weather stations were 

chosen as they have reliable temperature data available dating back to the 1940s, which is used to 

forecast 2010 temperatures.  Data on the minutes of daylight for each day is from (US Naval 

Observatory, 2012) for Washington DC. 

Since its inception, the PJM territory has undergone several expansions (Table 1).  To account 

for these expansions, we forecast load separately for “PJM Classic” (the PJM region prior to any 

expansions) and each expansion zone.  We then combine the forecasts into an overall PJM load 

forecast. 

Table 1. PJM Expansions, 1993 – 2010 (PJM 2014a) 

Expansion Date 
Rockland Energy March 2002 
Allegheny Energy April 2002 
Exelon – Commonwealth Edison May 2004 
AEP October 2004 
Dayton Power & Light October 2004 
Duquesne Light Co January 2005 
Dominion Virginia May 2005 
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For each zone, the analysis has the following seven steps: 

Step 1: Regress long-term trend 

We first identify and remove the five year, long-term trend in load growth.  By removing the 

long-term trend, we are able to explicitly incorporate PJM’s forecast of future load growth (step 5).  

To remove the long-term trend, we use a non-parametric, additive model and regress load against 

the hour index, as shown in Eq. (1)1.  The hour index starts at 1 for the first hour of 2005, and ends 

at the last hour of 2009.  Using an additive model allows us to account for nonlinearities in load 

growth, and regressing the logarithm of load allows us to account for higher variability at high-load 

hours.  The model’s residuals, β0, are stationary.  We use these residuals in step 2.  Figure 1 shows 

the long-term trend of “PJM Classic”, the original PJM footprint, and the model’s stationary 

residuals.   

   (1)  

 

                                                 
1 Non-parametric, additive terms calculated using R software and gam command from ‘gam’ package in R with 
default settings, see (Hastie, 2013). 

A B 
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Figure 1. (A) Fitted long-term trend and (B) stationary hourly residuals, β0, for PJM Classic. 

Step 2: Regress stationary time series 

The second step is to regress β0, the stationary residuals from step 1, on several explanatory 

variables, including calendar events such as major holidays and weekends, temperature, and length of 

daylight hours.  This is shown in Eq. (2). For hour of the day and length of daylight hours, we 

include interaction terms with the month of the year to account for changes in electric load patterns 

throughout the year.  Table A.1 lists all explanatory variables.  We use model’s residuals, , to 

account for uncertainty in the underlying model/process (see step 7).   

 (2) 

We use hourly weather data to calculate the Tadj,avgD, the average daily temperature adjusted 

for wind chill index (WCI) and temperature humidity index (THI) (Equations (3) to (6)).  For each 

region, we use data for either Reagan National Airport (DCA) or Pittsburgh International Airport 

(PIT) (NOAA 2014a), depending on which is closest (Table 2).   

Because the relationship between temperature and load is highly nonlinear (Figure 2), we used a 

nonlinear, additive term to account for temperature in the regression.  We found that using a non-

linear model of temperature was more accurate than using linear relationships (see Appendix A).  

The remaining regression terms are linear.  

Table 2. Weather station used for each zone’s regression 

Region Weather station 
used 

PJM Classic DCA 
Rockland Energy DCA 
Allegheny Energy DCA 
Exelon – Commonwealth Edison PIT 
AEP PIT 
Dayton Power & Light PIT 
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Duquesne Light Co PIT 
Dominion Virginia DCA 

 

 
Figure 2. Relationship between hourly load in PJM Classic and adjusted average daily 
temperature at Reagan National Airport (DCA), 2005 - 2009.  Because the relationship is 
highly nonlinear, we use a non-linear, additive model to account for temperature 
dependence. 
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Table 3: Temperature calculations 

THIi = c1 + c2Ti + c3Ri + c4TiRi + c5Ti
2 + c6Ri

2 + c7Ti
2Ri + c8TiRi

2 + c9Ti
2Ri

2 

c1 = -42.379 
c2 = 2.04091523 
c3 = 10.14333127 
c4 = -0.22475541 
c5 = -6.83783x10-3 
c6 = -5.481717x10-2 
c7 = 1.22874x10-3 
c8 = 8.5282x10-4 
c9 = -1.99x10-6 

(3)  

WCIi = 35.74 + 0.6215Ti – 35.75Vi
0.16 + 0.4275TVi

0.16 (4)  

                  THIi,   if Ti ≥ 80 oF and Ri ≥ 40% 
Tadji =      WCIi,  if Ti ≤ 50  oF and Vi ≥ 3 mph 
                  Ti,      otherwise 

(5) 

Tadj,avgD = mean(Tadji),       (6)  

i = hour of the day 
D = day of the year 
Ti = hourly temperature [oF] 
Ri = hourly relative humidity [percentage value between 0 and 100] 
Vi = hourly wind speed [mph] 
THIi = temperature humidity index [oF] 
WCIi = wind chill index [oF] 
Tadji = hourly adjusted temperature 
Tadj,avgD = daily average adjusted temperature [oF] 
 
WCI index equation from (NOAA 2013); THI index equation based on (NOAA 2014b). 
Although conversion equations are in English units, the remainder of our analysis uses 
Celsius. 

 

  

Step 3: Bootstrap residuals of the stationary model 

To account for uncertainty in the underlying process/model, we bootstrap the residuals of the 

stationary time series model, Y, Eq. (2).  We bootstrap residuals by month, in 24-hour blocks.  

Bootstrapping by month allows us to account for heteroskedasticity in the residuals (Figure A.6); 
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using 24-hour blocks allows us to account for time dependence in the residuals (Figure A.7). The 

resulting bootstrapped residuals are used in Step 7. 

Step 4: Forecast temperatures 

Because the next year’s temperatures are uncertain, we develop temperature forecasts for 2010 

based on historic NOAA weather data dating back to 1949 for DCA and PIT airports (NOAA 

2014a) (years 1966 – 1972 were excluded due to missing data).  We use hourly temperature, relative 

humidity, and wind speed data to calculate the average adjusted daily temperature (Tadj,avgD) for 

DCA and PIT each day (Equations (3) to (6)).  We bootstrap days from this 60 year dataset, by 

month, in 10-day blocks.  Bootstrapping by month allows us to account for the seasonal variations 

in temperature; using 10-day blocks allows us to account for time dependence in weather patterns 

that can last for several days (Figure A.8)  Using 60 years of temperature data allows us to robustly 

account for extreme temperatures that may occur.  We do not observe a secular trend in the NOAA 

temperature data.  By using historic data, we do not account for the possibility of future climate-

induced changes in temperature levels or volatility.  

Step 5: Forecast the stationary time series 

Once we have a model of the underlying stationary process (step 2), we use the model to predict 

the next year’s stationary time series.  This stationary time series excludes the effects of load growth.  

In this prediction, we use the temperature forecast developed in step 4.   

Step 6: Forecast load growth 

Our forecast of growth in average load is based on PJM’s 2009 forecast for 2010 load growth.  

We adjust the forecast to account for the historic accuracy of the Energy Information Agency’s 

(EIA) load forecasts in the Annual Energy Outlook; insufficient data on PJM forecast accuracy is 

publically available.  Between 1999 – 2008, EIA load growth forecasts had an average bias of -0.3% 
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and standard deviation of 1.9% (EIA 2008).  We assume forecast errors are normally distributed, 

and develop a distribution of possible load growth rates (Figure 3).  We then sample growth rates 

from the resulting distribution.  We assume load growth is linear throughout the year.  

 
Figure 3. PJM’s 2010 load growth forecast, with and without the historical accuracy factor, 
and actual load growth that occurred. 

Step 7: Forecast hourly load  

Finally, we sum the three components of our load forecast model: forecast load growth (step 6), 

the forecast stationary time series (step 5), and the residuals of the stationary time series regression 

(step 3).  This allows us to separately account for the three sources of uncertainty: uncertain load 

growth, natural temperature variability, and uncertainty in the underlying model/process. As all three 

components are probabilistic, we repeat the process many times to measure the uncertainty 

associated with each.  The result is a probabilistic hourly forecast of load. 

Once we have developed probabilistic hourly load forecasts for each zone, we sum these 

forecasts to find the total load forecast for PJM.  We repeat the entire process 5,000 times to 

develop a probabilistic forecast of hourly PJM load in 2010. 
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1.2.2 Supply forecast 

We next forecast the total capacity available at each hour.  Total available capacity is the summed 

capacity of all online dispatchable plants, demand response, import capacity, and firm wind capacity.  

We use data from the 2010 PJM Form EIA-411 to identify each dispatchable plant’s summer and 

winter capacity, as cleared in the capacity auction (PJM 2010b).  We therefore assume the system 

operator has perfect information as to what generators will be available for the forecast year. We 

simulate the online status of each PJM generator, taking into consideration forced outages, planned 

outages, and maintenance outages.  We simulate total capacity available for each of the 8760 hours 

of the year, and repeat the simulation 5,000 times to get a distribution of capacity available at each 

hour.  We do not model other supply-side actions PJM can take to mitigate outage risks, such as 

voltage reductions. 

We first schedule planned outages and maintenance outages for all plants.  These outages are 

scheduled such that the likelihood of a supply shortage is minimized.  As such, the majority of 

outages are scheduled during the spring and fall. NERC’s Generating Availability Data System 

(GADS) provides data on the average number of planned outage hours and maintenance outage 

hours for plants, aggregated by plant type and size (NERC 2014).  We find that these outages can be 

scheduled with minimal effect on LOLE. We schedule each plant’s planned outages and 

maintenance outages with the following process: 

1. Find the total planned outage hours (POH) and forced outage hours (FOH) for each plant 

2. Divide plants into two categories: peaking plants (<100 MW) and non-peaking plants 

3. Schedule peaking outages such that the total offline capacity is roughly equal for all hours of the 

year.  Each plant is assumed to undergo one outage, of duration POH + FOH.  ~1.7 GW of 

peaking capacity is scheduled offline each hour. 
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4. Schedule non-peaking outages to occur during the spring (March, April, May) and fall 

(September, October, November).  Each plant is assumed to undergo one outage, of duration 

POH + FOH.  ~35 GW of non-peaking capacity is scheduled offline each spring and fall hour. 

By scheduling outages in this manner, we minimize the likelihood of a supply shortage.  We also 

mimic the actual scheduling of outages in PJM, in which baseload coal and combined cycle plants 

are primarily offline during the spring and fall, and combustion turbines are offline throughout the 

year (Figure A.1). 

We next model forced outages.  Forced outages are caused by unforeseen technical problems, 

occur randomly throughout the year, and have an uncertain duration.  We model plant forced 

outages as a two-stage discrete Markov chain (Billinton et al 1973).  Figure 4 illustrates this process.  

At each time period t, if the plant is online there is probability P1,1 that it remains on at period t+1 

and probability P1,0 that is fails.  If the plant is offline, it remains off with probability P0,0 and is 

repaired with probability P0,1.  Accounting for the duration of outages increases the uncertainty of 

how much capacity is available at each hour.  We simulate each plant’s forced outages over one year 

(8760 hours), then sum the total online capacity of all PJM plants.  We assume that each plant’s 

transition probabilities are constant throughout the year. 

GADS provides data on the mean number of forced outages, and PJM provides data on plant 

equivalent demand forced outage rates (EFORd) (PJM 2014b).  We use these data to calculate the 

transition probabilities with equations (7) through (11).  EFORd is defined as “the probability that a 

generating unit will fail, either partially or totally, to perform when it is needed to operate” (PJM 

2011a). All data are aggregated by plant type and size.  
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Figure 4. Forced outages 2-stage discrete Markov process 

Table 4. Forced outage equations 

  (7)  

  (8) 

 (9) 

 (10) 

 (11) 

MOD = mean outage duration 

NFO = Annual number of forced outages 

EFORd = Equivalent forced outage rate 

 

We estimate the available DR capacity and net import capacity based on the results of the 

capacity auctions (PJM 2009) (Table 5).  Each auction covers the period of June 1 of the first year to 

May 31 of the second year.  We derate DR capacity by 5%, as is PJM’s practice to account for DR 

that does not respond to PJM requests (PJM 2010a).  Firm wind capacity is assumed by PJM to be 

13% of nameplate capacity (PJM 2009); for both 2009 and 2010, firm wind capacity was 40 MW. 

Table 5. DR capacity and net import capacity, by capacity auction (PJM 2009) 

Capacity 
auction 

DR capacity 
(MW) 

Net import 
capacity (MW) 

2009/2010 7,290 +320 
2010/2011 9,050 -400 
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1.2.3 Outage forecast 

We assume here that an outage occurs when total load exceeds total available capacity.  Using 

the procedures outlined above, we develop yearly forecasts of hourly load and available capacity.  

We then subtract the hourly load forecast from the hourly forecast of available capacity to identify if 

an outage has occurred, Eq. (12).  We calculate UE and LOLH with equations (13) and (14) to find 

the number of outages per ten simulated years.  LOLE is calculated in a similar manner as LOLH, 

but all consecutive outage hours are counted as one outage event.  We repeat the process 10,000 

times to develop distributions of LOLE, UE, and LOLH.  We repeat the entire process, varying the 

amount of installed capacity in order to see how reliability metrics change versus reserve margin. To 

vary capacity, we add or subtract a constant amount from each hour’s available capacity. 

 

 

 

Table 6. Outage equations 

     (12) 

   (13) 

      (14) 

I = set of 8760 annual hours 

AvailableCapacityi = summed capacity of all online PJM generators, DR, net 
imports, and reliable wind power at hour i 

Loadi = total PJM load at hour i 

Outagei = binary variable indicating if an outage occurred at hour i 
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Our modeling does not consider the effect of transmission constraints on resource adequacy.  In 

the 2009/2010 auction, PJM found inflows were constrained to the Eastern Mid-Atlantic Area 

Council (EMAAC) and southwestern MAAC.  Additional capacity was procured in these regions, 

resulting in higher capacity prices in these regions (PJM 2008).  In the 2010/2011 auction, PJM 

found no transmission constraints, and capacity prices were equal throughout the interconnection.  

We also ignore any operating or synchronous reserve requirements. 

PJM’s Base Residual Auction is held in May, three years prior to the delivery year.  By 

conducting the auction three years in advance, PJM seeks to reduce uncertainty for market 

participants.  Each year after the Base Residual Auction, PJM conducts Incremental Auctions to 

account for changes in market conditions.  Our analysis simulates the last Incremental Auction, one 

year in advance of the delivery date.  As such, we use data from 2009 and earlier to develop the 2010 

forecast.  In principle, our methods could be used to simulate the Base Residual Auction, but would 

need to be adjusted to account for the increased uncertainty in available capacity and load three 

years in advance. 

1.2.4 Correlated outages 

As one example of correlated outages, we test how LOLE, LOLH, and UE would vary if all 30 

GW of PJM natural gas combustion turbines (NGCTs) were subject to the risk of a natural gas 

supply disruption during winter months (December – February). We model the hourly risk of a fuel 

supply shortage as PFS.  We then evaluate each winter hour if a supply shortage occurs with Eq. (15).  

We assume the risk of a supply shortage is uniform throughout the winter.  If a supply shortage 

occurs, the probability of each individual NGCT failing is Poutage,FS, Eq. (16); if no supply shortage 

occurs, we adjust the probability of an independent failure occurring such that the overall risk of 
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failure is equal to the case in which all outages are independent, Eq. (10).  We therefore do not 

change the probability of an outage occurring.  Rather, we adjust the fraction of outages due to a 

supply shortage versus an independent failure. 

Because data on the frequency and severity of correlated outages is not publically available, we 

test the sensitivity to each parameter.  First, we vary the hourly probability of a supply shortage from 

0.093% to 0.008% (twice per winter to once every 5.5 winters), assuming that all NGCTs fail if a 

shortage occurs (Poutage,FS  = 1).  In the second test, we vary fraction of generators forced offline by a 

supply shortage from 0% to 100%, assuming that shortage occur on average once per winter (PFS = 

0.046%). 

Table 7. Correlated outage equations 

     (15) 

    (16) 

 (17) 

Iannual = set of all 8760 annual hours 

Iwinter = set of 2160 winter hours 

PFS = Probability of a fuel shortage 

fuelShortagei = binary variable indicating if there is a fuel shortage at hour 
i 

Poutage,FS = Probability that a generator goes offline if a fuel shortage occurs
 

1.3 Results 

Table 8 shows accuracy statistics of the load model, both in the training data for 2005-2009 and 

test data when predicting 2010 load.  The test error is the model’s prediction error when given actual 
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2010 temperatures and load growth; it therefore ignores uncertainty in temperature and load growth.  

Normalized root-mean-square error (NRMSE) controls for the size of the PJM region, Eq. (18).  

Table A.1 shows detailed regression results for the “PJM Classic” region. Figure 5 shows training 

and test residuals distributions.  Because the distributions are similar, resampling from the training 

residuals should reasonably account for model uncertainty (see Methods - Step 3). 

  (18) 

Table 8. Accuracy statistics of the load forecast model, both training error (1993 – 2009) and 
test prediction error (2010).  

 Training, 1993 - 2009  Test, 2010 

PJM Region 
RMSE 
[MW] 

NRMSE 
[%] 

 RMSE 
[MW] 

NRMSE 
[%] 

PJM Classic 1690 4.0  1800 4.5 
AEP 790 5.2  910 6.7 
Allegheny Energy 300 5.3  330 6.2 
Dayton Power & Light 130 4.7  140 6.1 
Dominion Virginia 640 3.3  760 5.8 
Duquesne Light Co 80 4.1  90 5.2 
Exelon – Commonwealth Edison 930 5.6  1000 6.9 
Rockland Energy 20 4.2  20 5.1 
PJM total 3510 3.5  3840 4.3 
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Figure 5. Distribution of training residuals and test residuals for PJM total. 

The model’s accuracy could certainly be improved further.  Including weather data from more 

points within PJM would likely have the greatest effect on model accuracy.  Our model uses weather 

data from Reagan National and Pittsburgh International Airports; PJM’s long-term load forecasting 

model uses temperature data from 24 airports (PJM 2013). 

1.3.1 The effect of temperature and load growth uncertainty 

Our probabilistic forecast of 2010 load considers uncertainty in temperature, load growth, and 

model error. Figure 6 illustrates the model’s accuracy when these uncertain factors are considered. 

Although the actual load is within the forecast’s 95% confidence bounds, the forecast is biased to 

somewhat under-predict the probability of high loads.  This is because 2010 had an unusually high 

number of days with temperatures between 20 oC and 25 oC (Figure 7).  Using actual 2010 

temperatures and load growth instead of probabilistic forecasts removes the model’s bias to 

underpredict the probability of high loads (Figure 6). 

 

Figure 6. Accuracy of load model.  Cumulative probability of actual 2010 hourly load, and 
forecasts’ 95% confidence intervals. 
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Figure 7. 2010 temperature distributions, and 95% confidence interval of temperature 
distributions from 1949 – 2010.  2010 had an unusually high number of days with average 
adjusted temperatures of 20 oC – 25 oC. 

1.3.2 Reliability metrics 

Figure 8 shows simulated 2010 LOLE for reserve margins of 10% to 25%.  The expected value 

of our 2010 simulation closely matches that of PJM’s 2013 simulation (data on PJM’s 2010 

simulation is not available, but the results of the simulation have changed very little over time).  In 

2010, PJM found a 15.5% reserve margin was necessary to meet the 0.1 LOLE standard (PJM 

2010a); we find a 15.5% reserve margin would have resulted in an LOLE of 0.09 events per year.  

Our simulation’s 90% confidence interval ranges from zero to three events per ten years at 15.5% 

reserve margin.   

The actual 2010 reserve margin was 20.5% (164 GW), as PJM procured more capacity than was 

needed on the capacity market (PJM 2008)2.  We find that a 20.5% reserve margin corresponds to an 

expected LOLE of 0.02 events per year, and achieves the 0.1 LOLE standard with 90% confidence.  

                                                 
2 Generation offered + fixed resource requirement (FRR) commitments – generation offered but not accepted 
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Therefore, PJM’s revealed risk preference in 2010 was to meet the 0.1 LOLE standard with 90% 

confidence. 

 
Figure 8. 2010 LOLE versus reserve margin.  Also shown are results from PJM’s 2013 
resource adequacy modeling (recreated from (PJM 2010a)). 

Figure 9 shows simulated 2010 unserved energy versus reserve margin.  At a 15.5% reserve 

margin, the expected UE is 1.5 GWh per year, or 0.0002% of actual 2010 load.  The 90% confidence 

interval ranges from 0 GWh per year to 7.5 GWh per year (0.0000% - 0.0011% of load unserved, 

respectively).  UE becomes increasingly uncertain at lower reserve margins.  Expected LOLH is 4, 

with a 90% confidence range of 0 to 16.   
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Figure 9. 2010 unserved energy versus reserve margin.   

1.3.3 Optimal reserve margin and the effects of risk aversion 

We find that PJM’s target 2010 reserve margin of 15.5% was sufficient to meet the 0.1 LOLE 

standard.  Switching to either the 2.4 LOLH standard or the 0.001% UE standard could reduce 

reserve margins to 10% or 11% (Table 9).  By procuring additional capacity such that the realized 

reserve margin was 20.5%, PJM’s implied risk preference is to meet the 0.1 LOLE standard with 

90% confidence.  PJM could meet the 2.4 LOLH standard and 0.001% UE standard with 90% 

confidence at reserve margins of 13% and 14%, respectively.  Requiring that the reliability metric be 

met with 95% or 99% confidence would further increase reserve margin requirements. 

Table 9. Sensitivity of the target reserve margin and installed capacity to different reliability 
metrics and risk tolerances.  PJM’s target 2010 reserve margin was 15.5% (158 GW), and 
actual 2010 reserve margin was 20.5% (165 GW).  

Metric 

Optimal reserve margin [%] 
(installed capacity [GW]) 

Risk Neutral 
90% 

Confidence 
95% 

Confidence 
99% 

Confidence 

0.1 LOLE 
15.5% 
(158) 

20.5% 
(165) 

23% 
(168) 

>25% 
(>170) 
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2.4 LOLH 
10% 

(151) 
13% 

(154) 
14% 

(156) 
16% 

(159) 

0.001% UE 
11% 

(152) 
14% 

(156) 
16% 

(159) 
18% 

(161) 

 

1.3.4 Distribution of outage size 

We find that there is extreme variation in the amount of load shed during outages. As shown in 

Figure 10, the distribution of unserved energy resulting from an outage is extremely fat tailed.  At a 

15.5% reserve margin, the mean outage is 15 GWh, but outages range from 0 GWh to 126 GWh 

(Table 10).  The top 10% largest outages account for half of total unserved energy, and the top 1% 

of outages account for 10% of total unserved energy.  The risk of a very large outage becomes more 

pronounced at lower reserve margins. 

 
Figure 10. Distribution of the size of simulated outages, in terms of unserved energy, versus 
a fitted normal distribution.  Assumed reserve margin is 15.5%.   

Table 10. Outage summary statistics, 15.5% reserve margin 

  
Expected 

value 
90% Confidence 

Interval Maximum 

Outage duration [hours]  4   1 - 9   11  
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Largest magnitude [GW]  4   0 - 11   18  

Total load shed [GWh]  15  0 - 58 126 

 

1.3.5 Model form uncertainty 

Load in PJM is highly sensitive to temperature, and accurately modeling this relationship is 

important for accurately calculating LOLE.  We used a nonparametric, additive model to account 

for the relationship between load and temperature.  We also tested a linear model to account for the 

relationship.  The linear model divided days into heating degree days (HDD) and cooling degree 

days (CDD).  Details can be found in Appendix A.  We find that the linear model significantly over-

predicts load at high temperature hours, which increases the modeled probability of outages relative 

to the nonparametric, additive model (Figure 11). 

 
Figure 11. Comparison of LOLE estimates for non-parametric and linear temperature 
models at 15.5% reserve margin.  The linear model overestimates load at high temperature 
hours, and therefore overestimates the probability of an outage occurring. 

We also analyze the sensitivity of the model’s parameters to ‘leave-one-out’ testing (Figure 12).  

The base model uses data from 2005 – 2009 to estimate model parameters.  Estimating model 

parameters from only four years’ worth of data, leaving one of the years out, would change model 
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parameters and therefore estimates of LOLE, LOLH, and UE. The baseline expected value of 

LOLE is 0.9 at a 15.5% reserve margin; ‘leave-one-out’ testing can vary the mean LOLE by +/- 

30% (0.64 to 0.97). 

 
Figure 12.  Sensitivity of LOLE to ‘leave-one-out’ parameter testing. The base model (solid 
line) estimates parameters with data from 2005 – 2009.  The shaded area shows the range of 
results if one year’s worth of data is left out when estimating the parameters.  Evaluated at 
15.5% reserve margin. 

Finally, we test the sensitivity of results to a scenario in which EFORd varies with ambient 

temperature.  We find that LOLE would increase if EFORd rose in summer months and fell in 

winter months.  For more details, see Appendix A. 

1.3.6 Correlated failures 

We find that natural gas supply disruptions during the winter have the potential to increase the 

risk of a supply shortage, assuming such outages force a large percentage of PJM’s NGCTs offline at 

once.  If a supply disruption that forces all 30 GW of NGCTs offline occurs on average once every 

year, the expected UE increases by 40%. 
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The risk posed by supply disruptions increases significantly if outages are not constrained to only 

occur during winter months.  If unconstrained supply disruptions that force all 30 GW of NGCT 

capacity offline were to occur on average once every five years, expected UE would double (Figure 

13).  If unconstrained supply disruptions were to occur on average once per year, expected UE 

would increase by more than 10 times.  However, supply disruptions pose a significant risk only if 

they force more than 50% of NGCTs offline at once (Figure A.10).  Supply disruptions can 

significantly increase the maximum size of supply shortages (Figure A.11). 

 
Figure 13. Sensitivity of unserved energy to natural gas supply shortages that can occur at 
any point during the year, and force all PJM NGCTs offline.  Evaluated at 15.5% IRM. 

1.4 Discussion 

Using our probabilistic regression method, we find the 2010 reserve margin target of 15.5% was 

sufficient to meet the mandated 0.1 LOLE standard.  PJM procured 7 GW more capacity than 

needed to meet the 15.5% target, making the realized reserve margin 20.5%.  By procuring more 

capacity than needed, PJM’s revealed 2010 risk preference was to meet the 0.1 LOLE standard with 

90% confidence.  This risk aversion is due to PJM’s policy to procure more capacity than needed if 
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the capacity can be procured at a cost less than the net cost of new entry of a natural gas 

combustion turbine (~$270/MW-day) (PJM 2008, Spees et al 2011). 

Switching from the 0.1 LOLE standard to either the 2.4 LOLH or 0.001% UE standard would 

have reduced PJM’s 20.5% reserve margin in 2010.  A 14% reserve margin would have been 

sufficient to meet the 0.001% UE standard with 90% confidence.  A 13% reserve margin would 

have been sufficient to meet the 2.4 LOLH standard with 90% confidence.  This represents a 9 GW 

– 11 GW reduction in capacity procurement, while still maintaining levels of reliability accepted by 

other systems.  If PJM were to switch to either standard, the 11 GW of coal capacity “at high risk” 

of retirement could be retired without needing to be replaced. 

NERC recommends that PJM adopt a reliability metric based on unserved energy.  We agree. 

The LOLE metric is flawed, in that it measures only the probability of an outage occurring and 

ignores both the severity and duration of outages. Our modeling shows that the severity and 

duration of outage events vary greatly (Table 10), undermining the usefulness of the LOLE metric.  

Because supply shortages could cause political fallout both regionally and for PJM management, we 

recommend that PJM work through their stakeholder process to identify both the appropriate UE 

target and the risk tolerance of PJM participants. 

System operators should be aware that the risk posed by supply shortages is primarily due to 

extremely severe, but infrequent outages.  Our simulations show that the largest 10% of supply 

shortages are responsible for 50% of unserved energy.  Taking into account the possibility of 

correlated generator outages further exacerbates this risk.  The risk of very large outages increases at 

low reserve margins, suggesting that some risk aversion on part of PJM may be justified.  System 

operators should work to ensure that their system is robust to large supply shortages, and that these 

shortages do not lead to cascading network failures.  
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PJM’s resource adequacy modeling assumes that generator outages are independent.  We find 

that correlated outages among plants due to natural gas supply shortages could increase outage risk, 

and cause PJM to underestimate this risk.  Evidence suggests that correlated outages do occur with 

some regularity; winter storms on January 7, 2013 led to 19 GW of natural gas plants and 21 GW of 

other capacity simultaneously experiencing forced outages (PJM 2014c).  We recommend further 

research into the risks posed by correlated outages.  If the risks posed by correlated outages are 

found to be significant, we recommend that PJM consider this risk when planning resource 

adequacy needs.  If correlated outage risks are found to be significant, PJM may need to significantly 

increase reserve margins.  
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Appendix A 

Scheduling planned outages and maintenance outages 

 
Figure A.1. Equivalent availability factor, PJM generators, 2010 (Bresler, 2012). 

 

Detailed Regression Results 

Table A.1 provides detailed regression results for the PJM Classic region.  We find that the 

significant results have the expected sign in most cases.  For example, signs are negative for holidays, 

reflecting that load are lower on these days.  Signs are also negative for low-load hours during the 

night and positive for high-load hours during the day and evening.   

Table A.1. Detailed regression results for the PJM Classic region.   

Note: Dependent variable is residuals from the long-term trend regression (see main paper, step 1). 

Significance codes: ‘***’ (P < 0.001); ‘**’ (P < 0.01); ‘*’ (P < 0.05); ‘.’ (P < 0.1); ‘ ‘ (P < 1) 

Variable Estimate Std. Error t value Significance Notes 

(Intercept) 1.81E-01 2.82E-02 6.42 *** 
 isTue 1.06E-02 6.83E-04 15.551 *** 
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Variable Estimate Std. Error t value Significance Notes 
isWed 1.39E-02 6.84E-04 20.32 *** 

 isThu 1.46E-02 6.87E-04 21.199 *** 
 isFri 1.67E-03 6.92E-04 2.417 * 
 isSat -8.53E-02 6.86E-04 -124.412 *** 
 isSun -1.15E-01 6.87E-04 -167.982 *** 
 isMLK -1.07E-02 3.53E-03 -3.036 ** 
 isPresidentsDay 3.24E-03 3.55E-03 0.913 
  isGoodFriday -5.23E-02 3.50E-03 -14.933 *** 
 isMemorialDay -1.01E-01 4.28E-03 -23.616 *** 
 isMemorialDayWeekend -2.92E-02 2.73E-03 -10.701 *** 
 isJuly4 -1.14E-01 3.57E-03 -31.912 *** 
 isLaborDay -1.13E-01 4.26E-03 -26.464 *** 
 isLaborDayWeekend -2.25E-02 2.63E-03 -8.572 *** 
 isChristmas -1.41E-01 4.65E-03 -30.313 *** 
 isXmasEveEve -1.56E-03 4.65E-03 -0.335 
 
Dec 23 

isChristmasEve -7.55E-02 4.65E-03 -16.234 *** Dec 24 

isXMasWk -2.49E-02 3.51E-03 -7.091 *** Dec 26 - 30 

XMasLights 1.39E-02 2.65E-03 5.256 *** Dec 4 - Dec 22 

isThanksgiving -1.50E-01 3.80E-03 -39.4 *** 
 isThanksgivingFriday -1.01E-01 3.80E-03 -26.556 *** Day after Thanksgiving 

isNewYearsDay -9.74E-02 3.62E-03 -26.935 *** 
 isNewYearsEve -5.05E-02 4.55E-03 -11.086 *** 
 isThanksgivingWeek -4.39E-03 1.95E-03 -2.249 * Mon - Sun, Thanksgiving week 

isXmasDayAfter -4.66E-02 3.84E-03 -12.129 *** Dec 26 

isFeb 5.69E-01 3.58E-02 15.918 *** 
 isH1 -1.27E-01 3.18E-03 -40.034 *** 
 isH2 -1.58E-01 3.18E-03 -49.564 *** 
 isH3 -1.71E-01 3.18E-03 -53.732 *** 
 isH4 -1.72E-01 3.18E-03 -53.952 *** 
 isH5 -1.52E-01 3.18E-03 -47.793 *** 
 isH6 -9.37E-02 3.18E-03 -29.479 *** 
 isH7 1.63E-04 3.18E-03 0.051 
  isH8 5.40E-02 3.18E-03 16.975 *** 
 isH9 6.73E-02 3.18E-03 21.169 *** 
 isH10 7.31E-02 3.18E-03 23.001 *** 
 isH11 7.34E-02 3.18E-03 23.104 *** 
 isH12 6.48E-02 3.18E-03 20.401 *** 
 isH13 5.12E-02 3.18E-03 16.099 *** 
 isH14 3.93E-02 3.18E-03 12.356 *** 
 isH15 2.67E-02 3.18E-03 8.407 *** 
 isH16 2.58E-02 3.18E-03 8.13 *** 
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Variable Estimate Std. Error t value Significance Notes 
isH17 5.70E-02 3.18E-03 17.928 *** 

 isH18 1.31E-01 3.18E-03 41.196 *** 
 isH19 1.45E-01 3.18E-03 45.666 *** 
 isH20 1.32E-01 3.18E-03 41.475 *** 
 isH21 1.11E-01 3.18E-03 34.75 *** 
 isH22 6.89E-02 3.18E-03 21.672 *** 
 isH23 3.30E-03 3.18E-03 1.039 
  isH24 -6.95E-02 3.18E-03 -21.878 *** 
 isMar 7.45E-01 3.44E-02 21.642 *** 
 isApr 6.17E-01 3.65E-02 16.902 *** 
 isMay 1.35E-02 4.38E-02 0.309 
  isJun -2.49E+00 1.18E-01 -21.184 *** 
 isJul 1.13E+00 6.13E-02 18.502 *** 
 isAug 1.88E-02 3.87E-02 0.486 
  isSep 1.85E-02 3.64E-02 0.51 
  isOct 3.60E-01 3.41E-02 10.542 *** 
 isNov 5.39E-01 3.87E-02 13.929 *** 
 isDec 1.57E+00 1.08E-01 14.539 *** 
 sun.hours 6.30E-04 4.99E-05 12.617 *** Daily daylight length, DC [mins] 

isFeb:isH1 2.94E-02 4.54E-03 6.474 *** 
 isFeb:isH2 3.16E-02 4.54E-03 6.966 *** 
 isFeb:isH3 3.40E-02 4.54E-03 7.483 *** 
 isFeb:isH4 3.58E-02 4.54E-03 7.88 *** 
 isFeb:isH5 3.75E-02 4.54E-03 8.259 *** 
 isFeb:isH6 4.06E-02 4.54E-03 8.939 *** 
 isFeb:isH7 4.15E-02 4.54E-03 9.139 *** 
 isFeb:isH8 3.38E-02 4.54E-03 7.456 *** 
 isFeb:isH9 3.47E-02 4.54E-03 7.645 *** 
 isFeb:isH10 3.13E-02 4.54E-03 6.888 *** 
 isFeb:isH11 2.77E-02 4.54E-03 6.106 *** 
 isFeb:isH12 2.42E-02 4.54E-03 5.324 *** 
 isFeb:isH13 2.12E-02 4.54E-03 4.675 *** 
 isFeb:isH14 1.90E-02 4.54E-03 4.179 *** 
 isFeb:isH15 1.67E-02 4.54E-03 3.678 *** 
 isFeb:isH16 1.22E-02 4.54E-03 2.695 ** 
 isFeb:isH17 -1.80E-03 4.54E-03 -0.396 
  isFeb:isH18 -2.08E-02 4.54E-03 -4.584 *** 
 isFeb:isH19 1.29E-02 4.54E-03 2.848 ** 
 isFeb:isH20 1.84E-02 4.54E-03 4.051 *** 
 isFeb:isH21 2.00E-02 4.54E-03 4.403 *** 
 isFeb:isH22 2.13E-02 4.54E-03 4.693 *** 
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Variable Estimate Std. Error t value Significance Notes 
isFeb:isH23 2.30E-02 4.54E-03 5.076 *** 

 isFeb:isH24 2.53E-02 4.54E-03 5.569 *** 
 isH1:isMar 2.86E-02 4.42E-03 6.465 *** 
 isH2:isMar 2.71E-02 4.42E-03 6.126 *** 
 isH3:isMar 2.66E-02 4.43E-03 6.004 *** 
 isH4:isMar 2.71E-02 4.42E-03 6.143 *** 
 isH5:isMar 2.91E-02 4.42E-03 6.59 *** 
 isH6:isMar 3.70E-02 4.42E-03 8.378 *** 
 isH7:isMar 3.87E-02 4.42E-03 8.766 *** 
 isH8:isMar 4.10E-02 4.42E-03 9.294 *** 
 isH9:isMar 4.69E-02 4.42E-03 10.619 *** 
 isH10:isMar 4.77E-02 4.42E-03 10.795 *** 
 isH11:isMar 4.78E-02 4.42E-03 10.816 *** 
 isH12:isMar 4.71E-02 4.42E-03 10.674 *** 
 isH13:isMar 4.68E-02 4.42E-03 10.593 *** 
 isH14:isMar 4.64E-02 4.42E-03 10.498 *** 
 isH15:isMar 4.38E-02 4.42E-03 9.908 *** 
 isH16:isMar 3.60E-02 4.42E-03 8.163 *** 
 isH17:isMar 1.15E-02 4.42E-03 2.605 ** 
 isH18:isMar -3.91E-02 4.42E-03 -8.847 *** 
 isH19:isMar -4.31E-03 4.42E-03 -0.977 
  isH20:isMar 2.86E-02 4.42E-03 6.465 *** 
 isH21:isMar 3.68E-02 4.42E-03 8.326 *** 
 isH22:isMar 3.57E-02 4.42E-03 8.073 *** 
 isH23:isMar 3.13E-02 4.42E-03 7.093 *** 
 isH24:isMar 2.67E-02 4.42E-03 6.045 *** 
 isH1:isApr 1.16E-02 4.48E-03 2.599 ** 
 isH2:isApr -8.57E-04 4.48E-03 -0.191 
  isH3:isApr -1.03E-02 4.51E-03 -2.291 * 
 isH4:isApr -1.44E-02 4.48E-03 -3.209 ** 
 isH5:isApr -1.68E-02 4.48E-03 -3.74 *** 
 isH6:isApr -9.50E-03 4.48E-03 -2.122 * 
 isH7:isApr -4.69E-03 4.48E-03 -1.048 
  isH8:isApr 9.13E-03 4.48E-03 2.039 * 
 isH9:isApr 3.21E-02 4.48E-03 7.178 *** 
 isH10:isApr 4.73E-02 4.48E-03 10.555 *** 
 isH11:isApr 5.98E-02 4.48E-03 13.365 *** 
 isH12:isApr 6.93E-02 4.48E-03 15.469 *** 
 isH13:isApr 7.69E-02 4.48E-03 17.172 *** 
 isH14:isApr 8.28E-02 4.48E-03 18.502 *** 
 isH15:isApr 8.44E-02 4.48E-03 18.859 *** 
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Variable Estimate Std. Error t value Significance Notes 
isH16:isApr 7.70E-02 4.48E-03 17.194 *** 

 isH17:isApr 4.43E-02 4.48E-03 9.89 *** 
 isH18:isApr -2.95E-02 4.48E-03 -6.597 *** 
 isH19:isApr -4.54E-02 4.48E-03 -10.138 *** 
 isH20:isApr -1.11E-02 4.48E-03 -2.486 * 
 isH21:isApr 4.66E-02 4.48E-03 10.399 *** 
 isH22:isApr 5.28E-02 4.48E-03 11.788 *** 
 isH23:isApr 4.11E-02 4.48E-03 9.186 *** 
 isH24:isApr 2.47E-02 4.48E-03 5.521 *** 
 isH1:isMay -2.65E-02 4.56E-03 -5.812 *** 
 isH2:isMay -4.77E-02 4.56E-03 -10.455 *** 
 isH3:isMay -6.37E-02 4.56E-03 -13.978 *** 
 isH4:isMay -7.67E-02 4.56E-03 -16.82 *** 
 isH5:isMay -8.53E-02 4.56E-03 -18.709 *** 
 isH6:isMay -8.81E-02 4.56E-03 -19.331 *** 
 isH7:isMay -9.21E-02 4.56E-03 -20.197 *** 
 isH8:isMay -6.09E-02 4.56E-03 -13.356 *** 
 isH9:isMay -2.11E-02 4.56E-03 -4.626 *** 
 isH10:isMay 1.01E-02 4.56E-03 2.223 * 
 isH11:isMay 3.71E-02 4.56E-03 8.13 *** 
 isH12:isMay 5.92E-02 4.56E-03 12.994 *** 
 isH13:isMay 7.75E-02 4.56E-03 17.009 *** 
 isH14:isMay 9.32E-02 4.56E-03 20.442 *** 
 isH15:isMay 1.04E-01 4.56E-03 22.723 *** 
 isH16:isMay 1.03E-01 4.56E-03 22.628 *** 
 isH17:isMay 7.35E-02 4.56E-03 16.118 *** 
 isH18:isMay -4.76E-03 4.56E-03 -1.045 
  isH19:isMay -3.53E-02 4.56E-03 -7.745 *** 
 isH20:isMay -3.06E-02 4.56E-03 -6.721 *** 
 isH21:isMay 1.95E-02 4.56E-03 4.27 *** 
 isH22:isMay 4.21E-02 4.56E-03 9.243 *** 
 isH23:isMay 2.59E-02 4.56E-03 5.685 *** 
 isH24:isMay 1.37E-03 4.56E-03 0.3 
  isH1:isJun -1.33E-01 6.46E-03 -20.594 *** 
 isH2:isJun -1.63E-01 6.46E-03 -25.214 *** 
 isH3:isJun -1.88E-01 6.46E-03 -29.167 *** 
 isH4:isJun -2.10E-01 6.46E-03 -32.541 *** 
 isH5:isJun -2.28E-01 6.46E-03 -35.239 *** 
 isH6:isJun -2.49E-01 6.46E-03 -38.536 *** 
 isH7:isJun -2.67E-01 6.46E-03 -41.394 *** 
 isH8:isJun -2.28E-01 6.46E-03 -35.286 *** 
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Variable Estimate Std. Error t value Significance Notes 
isH9:isJun -1.68E-01 6.46E-03 -26.041 *** 

 isH10:isJun -1.18E-01 6.46E-03 -18.229 *** 
 isH11:isJun -7.30E-02 6.46E-03 -11.307 *** 
 isH12:isJun -3.42E-02 6.46E-03 -5.288 *** 
 isH13:isJun -1.52E-03 6.46E-03 -0.234 
  isH14:isJun 2.60E-02 6.46E-03 4.024 *** 
 isH15:isJun 4.75E-02 6.46E-03 7.355 *** 
 isH16:isJun 5.42E-02 6.46E-03 8.385 *** 
 isH17:isJun 2.65E-02 6.46E-03 4.101 *** 
 isH18:isJun -5.42E-02 6.46E-03 -8.397 *** 
 isH19:isJun -9.27E-02 6.46E-03 -14.353 *** 
 isH20:isJun -1.07E-01 6.46E-03 -16.592 *** 
 isH21:isJun -9.39E-02 6.46E-03 -14.533 *** 
 isH22:isJun -6.30E-02 6.46E-03 -9.746 *** 
 isH23:isJun -7.39E-02 6.46E-03 -11.446 *** 
 isH24:isJun -9.86E-02 6.46E-03 -15.263 *** 
 isH1:isJul 3.13E-02 4.90E-03 6.4 *** 
 isH2:isJul -9.19E-04 4.90E-03 -0.188 
  isH3:isJul -2.99E-02 4.90E-03 -6.107 *** 
 isH4:isJul -5.57E-02 4.90E-03 -11.372 *** 
 isH5:isJul -7.88E-02 4.90E-03 -16.098 *** 
 isH6:isJul -1.07E-01 4.90E-03 -21.945 *** 
 isH7:isJul -1.48E-01 4.90E-03 -30.185 *** 
 isH8:isJul -1.16E-01 4.90E-03 -23.785 *** 
 isH9:isJul -4.95E-02 4.90E-03 -10.106 *** 
 isH10:isJul 1.15E-02 4.90E-03 2.349 * 
 isH11:isJul 6.66E-02 4.90E-03 13.598 *** 
 isH12:isJul 1.15E-01 4.90E-03 23.4 *** 
 isH13:isJul 1.55E-01 4.90E-03 31.573 *** 
 isH14:isJul 1.87E-01 4.90E-03 38.222 *** 
 isH15:isJul 2.12E-01 4.90E-03 43.326 *** 
 isH16:isJul 2.21E-01 4.90E-03 45.119 *** 
 isH17:isJul 1.94E-01 4.90E-03 39.662 *** 
 isH18:isJul 1.14E-01 4.90E-03 23.296 *** 
 isH19:isJul 7.45E-02 4.90E-03 15.213 *** 
 isH20:isJul 5.32E-02 4.90E-03 10.871 *** 
 isH21:isJul 5.90E-02 4.90E-03 12.056 *** 
 isH22:isJul 8.59E-02 4.90E-03 17.552 *** 
 isH23:isJul 7.95E-02 4.90E-03 16.23 *** 
 isH24:isJul 6.15E-02 4.90E-03 12.557 *** 
 isH1:isAug -1.60E-02 4.48E-03 -3.57 *** 
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Variable Estimate Std. Error t value Significance Notes 
isH2:isAug -4.49E-02 4.48E-03 -10.022 *** 

 isH3:isAug -7.22E-02 4.48E-03 -16.118 *** 
 isH4:isAug -9.64E-02 4.48E-03 -21.53 *** 
 isH5:isAug -1.18E-01 4.48E-03 -26.299 *** 
 isH6:isAug -1.39E-01 4.48E-03 -31.018 *** 
 isH7:isAug -1.74E-01 4.48E-03 -38.891 *** 
 isH8:isAug -1.57E-01 4.48E-03 -35.129 *** 
 isH9:isAug -9.56E-02 4.48E-03 -21.352 *** 
 isH10:isAug -3.69E-02 4.48E-03 -8.232 *** 
 isH11:isAug 1.73E-02 4.48E-03 3.853 *** 
 isH12:isAug 6.52E-02 4.48E-03 14.567 *** 
 isH13:isAug 1.05E-01 4.48E-03 23.494 *** 
 isH14:isAug 1.38E-01 4.48E-03 30.847 *** 
 isH15:isAug 1.63E-01 4.48E-03 36.395 *** 
 isH16:isAug 1.71E-01 4.48E-03 38.156 *** 
 isH17:isAug 1.43E-01 4.48E-03 31.836 *** 
 isH18:isAug 6.06E-02 4.48E-03 13.53 *** 
 isH19:isAug 1.92E-02 4.48E-03 4.299 *** 
 isH20:isAug 4.13E-03 4.48E-03 0.922 
  isH21:isAug 2.70E-02 4.48E-03 6.029 *** 
 isH22:isAug 3.24E-02 4.48E-03 7.246 *** 
 isH23:isAug 2.01E-02 4.48E-03 4.48 *** 
 isH24:isAug 3.15E-03 4.48E-03 0.704 
  isH1:isSep -2.96E-02 4.48E-03 -6.603 *** 
 isH2:isSep -5.28E-02 4.48E-03 -11.8 *** 
 isH3:isSep -7.29E-02 4.48E-03 -16.288 *** 
 isH4:isSep -9.00E-02 4.48E-03 -20.102 *** 
 isH5:isSep -1.04E-01 4.48E-03 -23.172 *** 
 isH6:isSep -1.09E-01 4.48E-03 -24.309 *** 
 isH7:isSep -1.06E-01 4.48E-03 -23.76 *** 
 isH8:isSep -1.00E-01 4.48E-03 -22.41 *** 
 isH9:isSep -5.75E-02 4.48E-03 -12.845 *** 
 isH10:isSep -1.41E-02 4.48E-03 -3.152 ** 
 isH11:isSep 2.48E-02 4.48E-03 5.534 *** 
 isH12:isSep 5.79E-02 4.48E-03 12.928 *** 
 isH13:isSep 8.69E-02 4.48E-03 19.415 *** 
 isH14:isSep 1.12E-01 4.48E-03 25.011 *** 
 isH15:isSep 1.31E-01 4.48E-03 29.165 *** 
 isH16:isSep 1.35E-01 4.48E-03 30.26 *** 
 isH17:isSep 1.07E-01 4.48E-03 23.929 *** 
 isH18:isSep 2.63E-02 4.48E-03 5.865 *** 
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Variable Estimate Std. Error t value Significance Notes 
isH19:isSep -5.96E-03 4.48E-03 -1.332 

  isH20:isSep 2.19E-02 4.48E-03 4.892 *** 
 isH21:isSep 3.78E-02 4.48E-03 8.452 *** 
 isH22:isSep 2.63E-02 4.48E-03 5.871 *** 
 isH23:isSep 7.17E-03 4.48E-03 1.603 
  isH24:isSep -1.35E-02 4.48E-03 -3.014 ** 
 isH1:isOct -1.58E-02 4.41E-03 -3.572 *** 
 isH2:isOct -3.00E-02 4.39E-03 -6.834 *** 
 isH3:isOct -4.09E-02 4.41E-03 -9.264 *** 
 isH4:isOct -4.90E-02 4.41E-03 -11.094 *** 
 isH5:isOct -5.28E-02 4.41E-03 -11.971 *** 
 isH6:isOct -4.45E-02 4.41E-03 -10.078 *** 
 isH7:isOct -2.13E-02 4.41E-03 -4.818 *** 
 isH8:isOct -7.60E-03 4.41E-03 -1.723 . 
 isH9:isOct 1.05E-02 4.41E-03 2.39 * 
 isH10:isOct 2.83E-02 4.41E-03 6.42 *** 
 isH11:isOct 4.42E-02 4.41E-03 10.024 *** 
 isH12:isOct 5.70E-02 4.41E-03 12.915 *** 
 isH13:isOct 6.85E-02 4.41E-03 15.525 *** 
 isH14:isOct 7.82E-02 4.41E-03 17.723 *** 
 isH15:isOct 8.39E-02 4.41E-03 19.011 *** 
 isH16:isOct 8.04E-02 4.41E-03 18.219 *** 
 isH17:isOct 5.33E-02 4.41E-03 12.073 *** 
 isH18:isOct -9.01E-03 4.41E-03 -2.043 * 
 isH19:isOct 6.71E-03 4.41E-03 1.522 
  isH20:isOct 3.96E-02 4.41E-03 8.976 *** 
 isH21:isOct 3.67E-02 4.41E-03 8.307 *** 
 isH22:isOct 2.87E-02 4.41E-03 6.505 *** 
 isH23:isOct 1.46E-02 4.41E-03 3.311 *** 
 isH24:isOct -7.66E-05 4.41E-03 -0.017 
  isH1:isNov 2.41E-03 4.51E-03 0.535 
  isH2:isNov -4.85E-03 4.50E-03 -1.076 
  isH3:isNov -9.05E-03 4.51E-03 -2.008 * 
 isH4:isNov -1.14E-02 4.51E-03 -2.529 * 
 isH5:isNov -9.98E-03 4.51E-03 -2.214 * 
 isH6:isNov -1.68E-03 4.51E-03 -0.372 
  isH7:isNov 5.75E-03 4.51E-03 1.274 
  isH8:isNov 6.81E-03 4.51E-03 1.511 
  isH9:isNov 2.07E-02 4.51E-03 4.589 *** 
 isH10:isNov 2.84E-02 4.51E-03 6.288 *** 
 isH11:isNov 3.27E-02 4.51E-03 7.243 *** 
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Variable Estimate Std. Error t value Significance Notes 
isH12:isNov 3.67E-02 4.51E-03 8.132 *** 

 isH13:isNov 4.00E-02 4.51E-03 8.865 *** 
 isH14:isNov 4.29E-02 4.51E-03 9.508 *** 
 isH15:isNov 4.50E-02 4.51E-03 9.968 *** 
 isH16:isNov 4.59E-02 4.51E-03 10.186 *** 
 isH17:isNov 5.32E-02 4.51E-03 11.807 *** 
 isH18:isNov 5.24E-02 4.51E-03 11.63 *** 
 isH19:isNov 3.94E-02 4.51E-03 8.739 *** 
 isH20:isNov 3.54E-02 4.51E-03 7.86 *** 
 isH21:isNov 3.14E-02 4.51E-03 6.966 *** 
 isH22:isNov 2.61E-02 4.51E-03 5.798 *** 
 isH23:isNov 1.94E-02 4.51E-03 4.306 *** 
 isH24:isNov 1.15E-02 4.51E-03 2.553 * 
 isH1:isDec 6.61E-02 6.13E-03 10.793 *** 
 isH2:isDec 5.80E-02 6.13E-03 9.457 *** 
 isH3:isDec 5.33E-02 6.13E-03 8.701 *** 
 isH4:isDec 5.13E-02 6.13E-03 8.377 *** 
 isH5:isDec 5.10E-02 6.13E-03 8.319 *** 
 isH6:isDec 5.08E-02 6.13E-03 8.289 *** 
 isH7:isDec 4.80E-02 6.13E-03 7.832 *** 
 isH8:isDec 4.83E-02 6.13E-03 7.879 *** 
 isH9:isDec 5.57E-02 6.13E-03 9.082 *** 
 isH10:isDec 5.85E-02 6.13E-03 9.54 *** 
 isH11:isDec 5.69E-02 6.13E-03 9.284 *** 
 isH12:isDec 5.56E-02 6.13E-03 9.073 *** 
 isH13:isDec 5.51E-02 6.13E-03 8.985 *** 
 isH14:isDec 5.54E-02 6.13E-03 9.048 *** 
 isH15:isDec 5.78E-02 6.13E-03 9.44 *** 
 isH16:isDec 6.27E-02 6.13E-03 10.231 *** 
 isH17:isDec 8.43E-02 6.13E-03 13.749 *** 
 isH18:isDec 9.31E-02 6.13E-03 15.199 *** 
 isH19:isDec 8.20E-02 6.13E-03 13.376 *** 
 isH20:isDec 8.16E-02 6.13E-03 13.31 *** 
 isH21:isDec 8.43E-02 6.13E-03 13.757 *** 
 isH22:isDec 8.79E-02 6.13E-03 14.35 *** 
 isH23:isDec 8.79E-02 6.13E-03 14.34 *** 
 isH24:isDec 7.92E-02 6.13E-03 12.922 *** 
 isFeb:sun.hours -9.88E-04 6.12E-05 -16.132 *** 
 isMar:sun.hours -1.26E-03 5.78E-05 -21.739 *** 
 isApr:sun.hours -1.08E-03 5.87E-05 -18.32 *** 
 isMay:sun.hours -3.03E-04 6.47E-05 -4.684 *** 
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Variable Estimate Std. Error t value Significance Notes 
isJun:sun.hours 2.66E-03 1.43E-04 18.647 *** 

 isJul:sun.hours -1.58E-03 8.15E-05 -19.384 *** 
 isAug:sun.hours -2.29E-04 6.01E-05 -3.82 *** 
 isSep:sun.hours -2.20E-04 5.93E-05 -3.715 *** 
 isOct:sun.hours -7.31E-04 5.81E-05 -12.582 *** 
 isNov:sun.hours -1.02E-03 6.72E-05 -15.176 *** 
 isDec:sun.hours -2.85E-03 1.93E-04 -14.738 *** 
 

Linear model results 

We use a non-parametric, additive model to account for the relationship between adjusted 

average daily temperature and hourly load (see Methods -  Step 2).  However, we also investigated 

the potential of using a linear model to account for the relationship.  As discussed below, we found 

that using a linear fit worked well for the majority of hours, but considerably over-predicted loads 

during high temperature days.  This over prediction led to the linear model over-estimating the 

probability of a supply shortage. 

The linear model we used in the second step considered the maximum and minimum daily 

temperature, as shown in Eq. (A.1).  We divided days into heating degree days (HDD) and cooling 

degree days (CDD), as is common in literature (A.2).  The split temperature between HDD/CDD 

was set to minimize model error: for Tmax terms, the temperature was 20.6 oC.  For Tmin terms, 

temperature was 7.2 oC.  We then used a linear and quadratic term for both HDD and CDD 

temperatures in the regression (A.3). 

Table A.2. Temperature calculations 

TmaxD = max Tadji,       
TminD = min Tadji       

(A.1) 

Tmax.HDD = max(69 – TmaxD, 0) 
Tmax.CDD =max(TmaxD - 69, 0) 

(A.2) 
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Tmin.HDD = max(45 – TminD, 0) 
Tmin.CDD = max(TminD – 45, 0) 

i = hour of the day 
D = day of the year 
Tadji = hourly adjusted temperature 
TmaxD, TminD = daily max and min temperature [oF] 

 

 

β0 = γ0 + γ1 weekday + γ2 (hour*month) + γ3 holidays + γ4 Tmax.HDD + γ5 Tmax.CDD 
+ γ6 Tmin.HDD + γ7 Tmin.CDD + γ8 Tmax.HDD2 + γ9 Tmax.CDD2 + γ10 Tmin.HDD2 + γ11 
Tmin.CDD2 + γ12 (daylightHours*month) 

(A.3) 

 

As shown in Figure A.2 –Figure A.4, the linear model significantly over-predicts load during 

high-temperature days.  This is because the linear model predicts exponential growth in load with 

increasing temperatures.  However, load growth actually begins to slow once a average daily 

temperatures of ~27 oC are reached (Figure 2).  This is likely because air conditioning loads start to 

saturate once temperatures are high enough.  This overprediction of peak load hours causes the 

linear model to overstate LOLE (Figure A.5).  Due to this bias in the linear model, we use a non-

linear model in our main analysis. 
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Figure A.2. In-sample and out-of-sample residuals for PJM, linear model.  Residuals are 
large at high temperature days. 

 
Figure A.3. In-sample and out-of-sample residuals for PJM, non-linear model.  The model is 
more accurate at predicting load during high temperature days than the linear model. 

  
Figure A.4. Difference in linear and nonlinear model fits, when predicting load out-of-
sample.  

Linear model fit – nonlinear model fit 
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Figure A.5. Calculated LOLE for linear and nonlinear models 

Residuals and temperature analysis 

 
Figure A.6. In-sample residuals, by month 
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Figure A.7. Autocorrelation of in-sample residuals 

 
Figure A.8. Autocorrelation function, average adjusted daily temperature.  Data is for years 
1949 – 2010, except 1966 – 1972. 

LOLE sensitivity to forced outage rate 

In our regressions, we hold each plant’s forced outage rate (EFORd) constant throughout the 

year.  Here we test the effects on LOLE of EFORd being sensitive to ambient temperature, with 

plants being 50% less likely to be forced offline during the warmest 6 months (April – September) 
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and 50% more likely to be forced offline in the coolest 6 months (October – March). Figure A.11 

shows varying EFORd in this manner more than doubles the expected value of LOLE.  

 
Figure A.9. Sensitivity of LOLE expected value to forced outage rate (EFORd).  

Correlated outages 

 
Figure A.10. Sensitivity of unserved energy to natural gas supply shortages that occur on 
average once per year, at any point during the year (not constrained to winter months).  
Evaluated at 15.5% IRM. 
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Figure A.11.  Distribution of outage size, in terms of unserved energy.  Shown are both 
scenario in which outages are independent, and a scenario in which a natural gas supply 
shortage occurs on average once per year at any point during the year (not constrained to 
winter months), forcing 50% of NGCTs offline at once.  Assumed reserve margin is 15.5%. 
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