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Abstract 
Reanalysis data sets have become a popular data source for large-scale wind power analyses of 

because they cover large areas and long time spans, but those data are uncertain representations of 
“true” wind speeds. In this work we develop a model that systematically quantifies the uncertainties 
across many sites and corrects for biases of the reanalysis data. We apply this model to 32 years of 
reanalysis data for 1002 plausible wind-plant sites in the U.S. Great Plains to estimate variability of 
wind energy generation and the smoothing effect of aggregating distant wind plants. We find the 
coefficient of variation (COV) of annual energy generation of individual wind plants in the Great 
Plains is 8-17%, but the COV of all those plants aggregated together is 3.6%, Similarly, the average 
variability of quarterly cash flow to equity investors in a single wind plant is 37%, but that can be 
reduced to 26 – 29% by small creating portfolios of two wind plants selected from regions with low 
correlations of wind speed. 

Introduction 
Wind power is generating an increasing fraction of electricity in many countries and affecting 

electrical system operation and planning. Long-term wind data are important for predicting these 
effects. For developers and financers, long-term data reduce uncertainty about the expected 
revenues of a proposed wind plant. For electrical grid operators and planners, long-term data make 
it possible to estimate the probabilities of rare events, such as extreme low winds that necessitate 
conventional power plants as backup. Long-term data are also necessary to assess trends and cycles 
in wind resource. 

Meteorological monitoring stations have collected data for many decades, but those data have 
several characteristics that make them problematic for wind power analyses (Brower 2012). First, 
meteorological stations measure wind speeds at 10-m height, which is far below the 60 – 100m hub 
heights of utility-scale wind turbines. It is possible to extrapolate measured wind speeds to those 
heights, but such extrapolations are uncertain because meteorological stations do not typically 
measure variables such as atmospheric stability and surface roughness that are required to calculate 
the vertical wind profile. Second, meteorological stations are often not located near areas well-suited 
for wind power development; in the U.S. most stations are located at airports. Third, observations 
contain errors and gaps in coverage, especially data collected manually before automated stations 
were deployed (Fiebrich 2009). Finally, measurement instruments, station locations, and surrounding 
land cover sometimes change, which make it difficult to compare measurements from a single site 
taken in different periods.  

Because of these problems with historical data, many wind power researchers have turned to 
reanalysis data, which interpolate meteorological observations in space and time using numerical 
weather prediction models. Recent examples include NARR (Mesinger et al. 2006), ERA-40 (Uppala 
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et al. 2006), MERRA (Rienecker et al. 2011), and the Climate Forecast System Reanalysis (CFSR) we 
use in this work (Saha, Moorthi, Pan, Wu, Jiande Wang, et al. 2010a). Reanalysis data sets are 
attractive because they span several decades, contain observations for variables, locations, and times 
not recorded in historic data, and have uniformly-good data quality and no missing observations 
(Brower 2012). Researchers have used reanalysis data for wind resource assessment, long-term 
trends (Holt & Jun Wang 2012; Pryor et al. 2009), long-term variability (Henson et al. 2012), 
geographic smoothing (Giebel 2000; Fisher et al. 2013; Huang et al. 2014), and extreme winds 
(Larsén & Mann 2009).  

Relatively few of the researchers who use reanalysis wind speeds have validated those data 
against historical data. Researchers who compare reanalysis-predicted wind speeds at 10-m height to 
historical measurements from meteorological stations find significant uncertainties: RMS error of 
2.5-3 m/s for surface-level winds in NARR (Mesinger et al. 2006) and correlation coefficients of 80-
90%  and energy correction factors of 1.06-1.10 for MERRA and CFSR (Liléo & Petrik 2011). 
However, these validations do not capture errors and uncertainties introduced when wind speeds are 
extrapolated from 10-m to typical wind turbine hub heights using assumed vertical wind speed 
profiles. A few authors validate reanalysis data using wind speeds measured at heights closer to wind 
turbine hub height (50 – 100m). A comparison of daily average wind speeds from several reanalysis 
models to tall tower data calculates average R2 values of 0.73 for CFSR and 0.67 for MERRA 
(Brower et al. 2013). A thorough analysis with offshore wind speed measurements in the UK finds 
MERRA under-predicts hourly wind speeds by an average of 7% and over-predicts the COV of 
annual wind speeds by an average of 17%. That study also calculates R2 values of 64-93% for hourly 
speeds, 80-97% for daily averages, and 90-99% for monthly averages (The Crown Estate 2014). 
Henson finds correlation coefficients of 75-87% for hourly MERRA wind speeds with data from 
on-shore sites in Massachusetts (Henson et al. 2012). 

In this work we present a model that corrects biases and quantifies the uncertainty in wind 
energy calculated from reanalysis data. Whereas previous studies estimate uncertainty for individual 
sites assuming a separate model for each site, the model we present quantifies the uncertainty 
attributable to between-site differences as well as within-site variability. We apply this model to 
generate 32 years of quarterly energy generation for individual wind plants, which we analyze to 
estimate inter-annual variability of wind energy generation and quarterly variability in cash flow to 
equity holders in a wind plant.  

Method 
We estimate the quarterly energy generated by each of 1,002 wind plants in the U.S. Great Plains 

for the period 1979 – 2010 using reanalysis wind speed data. We calculate the 80-m height hourly 
wind speed at each wind plant site by extrapolating data from the CFS reanalysis (Saha, Moorthi, 
Pan, Wu, Jie Wang, et al. 2010b). We then aggregate the energy for each site by quarter and apply a 
model we develop to correct for biases and quantify uncertainty in the CFS data. Finally, we simulate 
103 probable realizations of quarterly energy generation at each site. 

 

A1.1 Wind Plant Locations 
We simulate the wind power at the locations of all wind plants from the Eastern Wind Integration 
and Transmission Study (EWITS) (Brower 2009) that are in the U.S. Great Plains (north and west of 
the Mississippi and Ohio rivers). We combine the few wind plants that are less than 5 km apart, 
which leaves 1,002 wind plants. We consider only sites in Great Plains for four reasons. First, most 
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wind power development in the U.S. is taking place in the Great Plains. Second, the terrain is 
generally flat, so we expect the reanalysis-predicted wind speeds to be more accurate. Third, the area 
has a good coverage of historical record of meteorological observations, which are assimilated into 
the reanalysis model. Finally, good empirical validation data were available for the Great Plains in the 
form of tall-tower wind speed data not assimilated into the reanalysis model.  

The empirical data consists of several years of hourly wind speed measurements from tall towers 
at 78 sites in the Great Plains, measured at heights of 50 - 120m. At sites with anemometers at 
multiple heights, we selected the one closest to 80m. A table listing the locations, heights, date 
ranges, and mean wind speeds of the empirical data sets is given in the Supporting Information. 
These data were collected by economic development agencies in various states and then checked for 
quality control and compiled into a single database by the University of North Dakota Energy & 
Environmental Research Center (Simonsen & Stevens 2004). 

A1.2 Extrapolating Hub-Height Wind Speed from CFSR Data 
We estimate hourly wind speed at 80-m height u(z = 80) at each location using 1 – 6 hour 

forecast data from the CFSR (Saha, Moorthi, Pan, Wu, Jie Wang, et al. 2010b) and the following 
formula for a logarithmic vertical wind profile given by Panofsky (Panofsky 1963): 

 
 

( 1 )  

where: 
u* = friction velocity [m/s] 
κ = 0.4 (von Kármán constant) 
z = hub height [m] 
z0 = surface roughness length [m] 
Ψ(z/L) = correction for atmospheric stability, a function of the stability measure z/L 
L = Obukhov length  [m] 

 
The friction velocity and surface roughness values are taken from the CFS reanalysis data. The 

Obukhov length is calculated by an expression given in the Supporting Information. The correction 
for atmospheric stability Ψ is given in ( 2 ) for unstable (z/L <0), neutral (0≤ z/L <0.5), and stable 
(z/L ≥0.5) atmospheric conditions: 

 

 

( 2 ) 

where p1 = -2.0, p2 = -0.36, q1 = -0.26, and q2 = 2.4. The expressions we present in ( 2 ) for stable 
and unstable conditions are new in this work because we find the expressions typically given in the 
literature (Panofsky 1963; Emeis 2013) are a poor fit for the CFS reanalysis data.  

We determined these novel expressions for Ψ in stable and unstable conditions by substituting 
historical wind speeds from the empirical data described in Section 2.1 for u(z), solving ( 1 ) for Ψ, 
and then fitting empirical curves to Ψ as a function of z/L using robust (least absolute squares) 
regression. This method is less sensitive to outlier data than are other forms of regression. We divide 
the empirical data randomly into two equally-sized subsets: a “training” set used to fit the curves and 
a “validation” set used to test the fit. Within each subset, data from all sites are pooled, so we cannot 
separate within-site variation from between-site variation. We exclude the small number of data 
points from hours with z/L > 10 or z/L < -10 from the curve fitting because variance of the 
residuals grows rapidly for | z /L| > 10.  
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A1.3 Correcting Biases and Quantifying Uncertainty in Quarterly Energy Generation 
The hourly hub-height wind speeds extrapolated from reanalysis data using ( 1 ) have biases and 

uncertainties from the extrapolation procedure and from the reanalysis model. We develop a 
correction and uncertainty model to correct for the biases (a procedure known as Model Output 
Statistics (Potter et al. 2007)) and quantify the uncertainties. Our procedure is similar to the linear 
regression method described by Brower for determining the relationship between wind speeds at 
different locations (Brower 2012). 

We develop this correction and uncertainty model by comparing the wind power calculated from 
reanalysis data with ( 1 ) to wind power calculated from historical data. First, we interpolate the raw 
data from the reanalysis model to the locations of the sites in the “validation” subset of the empirical 
data described in Section 2.1. We use that interpolated raw reanalysis data as inputs to ( 1 ) to 
calculate hub-height wind speeds. Finally, we convert the reanalysis and empirical wind speeds to 
wind power using the power curve for a generic 2-MW wind turbine (Brower 2009). 

The correction and uncertainty model given in ( 3 ) is a hierarchical random-effects model 
(Ntzoufras 2009) that estimates “actual” quarterly energy Ei,j for site i in quarter j as a function of 
reanalysis energy Ri,j for the corresponding site and quarter. The slope β is fixed, the offset αj for site 
j is drawn from a normal distribution with mean 0 and standard deviation σα ( 4 ), and the error term 
ε for each measurement is drawn from a normal distribution with mean 0 and standard deviation σε 
( 5 ).  
  

( 3 ) 

  
( 4 ) 

  
( 5 ) 

 
We fit the model to the available data using Markov Chain Monte Carlo (MCMC) methods, as 

implemented in OpenBUGS version 3.2.3 (Thomas et al. 2006). Fitting the model parameters using 
MCMC methods yields distributions of probable values for each parameter (β, σα, σ), rather than 
point estimates; summary statistics for the distributions of values of β, σα, σ are given in Table 1. 
Figure 1 plots the data to which the mode is fitted, overlaid with the model using the mean 
parameter values in Table 1. The inset shows the model for a single site (thin red line) with 1-
standard-deviation error bounds (dashed lines). 
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Table 1: Summary statistics of hierarchical model of quarterly energy for a 2-MW turbine described in ( 3 ) - ( 5 ). 
Units are MWh/quarter for a 2-MW turbine. 

 Mean Median Std. Dev. Pearson Corr. Coeffs. for β, σα, σ 
β 0.85 0.85 0.023 

 

σα 376 372 52 

σ 173 173 5.3 
 

 
Figure 1: Comparison of measured energy generation to reanalysis-predicted generation. Each point represents the 

quarterly generation for a 2-MW turbine in a given site. The red line shows the nominal values of the model described by 
equation ( 3 ) and parameters in Table 1. The inset compares data from a single site to its corresponding model: the thin 
red line shows the site-specific model, which is offset from the nominal model by αi, and the dashed lines show the error 
term ε. 

We apply this model to quarterly wind generation from reanalysis data by first randomly drawing 
values of the parameters β, σα, and σ to simulate 103 probable realizations of quarterly energy 
for each site. Those values of σα, and σ drawn for each realization are then used as the parameters 
for normal distributions from which the offset for each site αi and the measurement error for each 
quarterly energy value εi,j  are drawn. We subsequently refer to the resulting values of quarterly 
energy as “corrected” reanalysis data. 

The hierarchical model in ( 3 ) - ( 5 ) estimates the bias (β), between-site variability (σα), and 
within-site variability (σ) of quarterly energy generation. The mean value of the bias parameter β = 
0.85 ± 0.023 shows that the “actual” quarterly energy production is slightly lower than predicted 
from the reanalysis data. The mean value of the within-site variability parameter σ = 173 
MWh/quarter and between-site variability parameter σα = 376 MWh/quarter (for a turbine that 
generates an average of 1800 MWh/quarter) show that between-site variability dominates the 
uncertainty in energy generation. These results suggest that additional research is needed to 
determine the source of the between-site variability and find additional inputs to the model to better 
explain that variability. 
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To the best of our knowledge, this is first model of the uncertainties and biases in reanalysis-
predicted wind speed or energy. Previous work summarized in Section 1 calculated the R2 values (or 
the related correlation coefficients) for the relationship between reanalysis and actual wind speeds 
but not applied those findings to estimating the uncertainty bounds on the. For comparison with 
previous work, we fit linear functions (unrelated to the model described in ( 3 )) to quarterly wind 
energy for each of the 38 sites in the validation subset of the empirical data and find R2 values in the 
range 0.04 – 0.997, with a mean of 0.72. 

Results 
We use the realizations of corrected wind energy developed in Section 2.3 to estimate several 

measures of long-term wind energy variability.  

A1.4 Variability of Single-site Annual Energy Generation 
The energy generated by a single wind plant varies from year to year due to weather and climate. 

We quantify that variability for each EWITS site using the corrected reanalysis data described in 
Section 2.3. The mean coefficient of variation (COV = σ⁄μ) of annual energy generation for 
individual sites range from 5.9% to 15%, with a mean value of 7.9%; the mean COV values are 
plotted in Figure 2. We refer to “mean COV” because we calculate 103 realizations of COV for each 
site from the uncertain reanalysis data described in Section 2.3. The median 1-standard-deviation 
confidence interval for the COV of those realizations at an individual site is ±2.9 percentage points 
and 90% of the confidence intervals are smaller than 7.7 percentage points. 

These values are similar to previous estimates of COV of annual energy: Milligan calculates 10% 
from historical weather data at one low-wind-speed site in North Dakota (Milligan 1997), Baker 
calculates 12 – 13% from historical weather data for 3 sites in the Pacific Northwest (Baker et al. 
1990), and Wan calculates 8% - 13% from historical wind power production data at 4 sites in the 
Great Plains (Wan 2012). The COV for individual sites shows a geographic trend that is the inverse 
of the geographic trend in wind resource (Elliot et al. 2010; Katzenstein & Apt 2012): sites with 
better wind resource (average annual wind speed) have lower COV (plotted in the Supporting 
Information).  

This long-term variability of annual energy at an individual site is important to wind plant 
developers because it sets an upper limit on the allowable debt load for the wind plant. Most plants 
sell their energy on a fixed-price contract, so revenue variability is proportional to variability in 
energy generation. The expected revenue in a bad year determines the amount of debt financing a 
wind plant can obtain. Typically, the debt payments are set to some multiple of the plant’s revenue 
in the 1st percentile (“P99”) or 10th percentile (“P90”) year (Tindal 2011). If two plants have identical 
mean generation but different year-to-year variability in generation, the plant with less variability will 
be able to take a larger amount of debt and have a higher debt-to-equity ratio. In practice, 
uncertainties about future revenue will be larger than the results we give here because wind plant 
developers estimate the distribution of energy generation from much shorter periods of data: 1 – 2 
years, compared to the 32 years we use in our analysis.  
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Figure 2: Mean Coefficient of Variation (COV) of annual energy generation for EWITS wind plants in the U.S. Great 

Plains and the Eastern Interconnect. Each COV value has a 1σ confidence interval of  ±2.9 percentage points. 

A1.5 Variability of Aggregate Annual Energy Generation 
The inter-annual variability of wind generated in large regions is of interest to power system 

planners. We calculate the aggregate annual energy generation for all the EWITS sites, using the 
corrected reanalysis data weighted by capacity. The mean COV of energy for the aggregated sites, 
3.6%, is much smaller than the COVs calculated for individual sites, which illustrates the smoothing 
effects of aggregating many wind plants. Figure 2 plots a time series of aggregate annual energy (with 
1 standard deviation error bars) and Table 2 presents summary statistics. 

We also present results from previous studies for comparison with our results. Giebel used 
reanalysis data to calculate a COV of 6.4% for aggregate annual energy for 83 sites in northern 
Europe; see Table 2 (Giebel 2000). Katzenstein used historical data to calculate a COV of 5.4% for 
16 sites in the Great Plains (Katzenstein et al. 2010); see Table 2 and the red line in Figure 2. The 
time series of our results in Figure 2 is qualitatively similar to Katzenstein’s, but our results show less 
variability (3.6% compared to Katzenstein’s 5.4%). To test whether the lower variability of our 
results is caused by the much larger number of sites we aggregate (1002 compared to 16) or the 
turbine power curve we use, we use our corrected reanalysis data to calculate the aggregate energy 
for the 16 sites Katzenstein analyzes with the same power curve. We calculate a COV of 3.8% for 
those sites. The summary statistics for our analysis of those 16 sites is labeled “This work (compare 
to Katzenstein)” in Table 2 and a plot of the time series is given in the Supporting Information. For 
comparison, we also include statistics for aggregate U.S. hydroelectric generation in the last row of 
Table 2 (EIA 2012). These statistics show that aggregate annual hydroelectric is much more variable 
than aggregate annual wind generation. 

The year-to-year variability of aggregate generation is important for the financing of wind plants 
because these results show that aggregating many wind plants distributed across a large area 
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significantly reduces the variability of energy generation and corresponding revenue. Grid operators 
already manage the inter-annual variability of hydroelectric generation, which has a COV of 12%, 
approximately three times as large as the variability we estimate for wind generation. Long-term 
planning for generation capacity may benefit from understanding the size of this inter-annual 
variability. However, grid operators typically estimate the contribution of wind power to peak 
generation capacity based on the correlation between hourly wind power and electricity demand. 

 

 
Figure 3: Annual wind energy the aggregate of all EWITS wind plants in the U.S. Great Plains (blue) with error bars 

showing 1σ confidence intervals. Red line plots aggregate annual wind energy for 16 sites in the Great Plains from 
Katzenstein (Katzenstein et al. 2010).  

 
Table 2: Summary of annual variability of aggregate wind power from this work and two previous studies. Results 

from this work give ±1σ confidence intervals in parentheses. The last row (labeled “EIA 2012”) summarizes annual 
aggregate hydroelectric generation in the U.S. for comparison. 

 Data 
source 

Sites COV Max year Min year Max year-year 
change 

This work Reanalysis 1002 3.6% (3.5–3.7) +9.2% (6.3-12) -9.2% (6.8-12) 12.4% (12.0-12.9) 
This work 
(compare to 
Katzenstein) 

Reanalysis 16 3.8% (3.4-4.1) +8.3% (6.2-10) -7.9% (5.8-10) 11.8% (9.8-13.9) 

Katzenstein 
2010 Historical 16 5.4% +15% -9.6% 22% 

Giebel 2000 Reanalysis 83 6.4% +13% -12% 18% 
EIA 2012 Historical 

(Hydro)  12% +26% -23% 21% 

 

A1.6 Variability in quarterly cash flow to equity investors 
The variability of wind generation affects not only debt financing for a wind plant, as we 

describe in Section 3.1, but it also equity financing. Variations in cash flow to equity investors are 
significantly larger than variations in wind generation because the equity investments are leveraged 
by debt financing. We use the corrected reanalysis data to estimate the COV of quarterly cash flow 
to an equity investor for single wind plants or portfolios of two wind plants selected to reduce 
variability. 
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We create a simple financial model of a wind plant based on typical financing terms in the U.S. 
in 2013 (Wiser & Bolinger 2014). The installed capital cost of a wind plant is $2 x 106 /MW, a 
portion of which is financed with debt at 6% interest for 15 years. The debt load is determined as 
1.2 times the 10-year average annual 10th percentile revenue (P90), which is calculated from the 
reanalysis data described in Section 2.3 with a fixed energy price of $25/MWh, operating cost of 
$24/MWh, and federal production tax credit of $23/MWh. This yields debt financing of 
approximately 35% of the capital cost, which is significantly lower than the historical averages for 
wind plants because the capital cost in 2013 was higher than the historical average and the energy 
price was significantly lower. 

Given those financing terms, we calculate the COV of quarterly cash flow for individual wind 
plants and pairs of wind plants and plot the results in Figure 4. The median COV for individual sites 
is 32% with an inter-quartile range from 25 – 42%. Figure 4 also plots the COV values for various 
portfolios composed of two wind plants. This shows that aggregating two plants reduces variability 
of quarterly cash flow, similar to the effects of aggregating many plants we discuss in the previous 
section. The median COV of randomly-chosen pairs of sites is 28%, a decrease of 4 percentage 
points from the COV for individual sites. The variability can be reduced further by carefully 
selecting pairs of sites. The median COV for optimally-chosen pairs (chosen to minimize average 
correlation of quarterly energy generation) is 23%. However, we find it is possible to achieve COV 
values nearly as low by selecting pairs of sites from the regions shown in Figure 5. The median COV 
values for pairs of sites selected from regions A, B, and C are 21 – 25%. The Supporting 
Information gives additional details on how the regions were determined. 

 
 

 
Figure 4:  Coefficient of Variation (COV) of quarterly cash flow to equity investors for individual sites and sites paired 

according to various criteria. The red lines denote the median, boxes span the 25th and 75th percentile values, the whiskers 
extend to 1.5 times the inter-quartile range. 

To test how much of the variability in our results is random rather than seasonal, we subtract the 
seasonal means from the quarterly cash flow and calculate a median COV of 23% for the same 
individual sites (a boxplot of these results is given in the Supporting Information). This shows that 
most of the variability is random, rather than seasonal. For comparison, Dunlop estimates a COV of 
93% for an individual plant, which is significantly higher than the COV values we calculate (Dunlop 
2004). 
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Figure 5: Regions that have high correlations in quarterly wind energy generation. The correlations between regions 

are low. 

Discussion 
In this work we develop a model to correct for biases and quantify uncertainties in wind energy 

calculated from Climate Forecast System Reanalysis (CFSR) data. This model is the first application 
of model output statistics to reanalysis wind data and the first to systematically quantify the 
uncertainties of the reanalysis data across many sites. We find the reanalysis data has a small positive 
bias: measured quarterly energy is 85% of the predicted value from CFSR data for matching 
locations and time periods. More importantly, we find energy predicted from CFSR data has 
significant uncertainties, dominated by between-site variability. 

In spite of the between-site variability in the reanalysis data, we find robust results for measures 
based on wind energy aggregated over large areas. We estimate the COV of aggregate wind energy 
from 1,002 EWITS wind sites in the Great Plains to be 3.6% ± 0.1%. This inter-annual variability is 
much smaller than the variability at individual sites (5.9% - 15% ± 2.9%), which demonstrates the 
smoothing effect of aggregating wind plants spread across a large area. We also show robust 
reductions in the variability of quarterly cash flow to equity investors when pairs of wind plants from 
certain regions are combined into portfolios.  

The significant between-site variability (σ = 376 MWh/quarter for a 2-MW turbine) suggests 
two possible sources of error. First, the reanalysis data poorly models terrain features because of the 
low resolution of the reanalysis model relative to the size of features that affect wind power. We 
compared the reanalysis data from empirical data selected from only flat regions, but it is possible 
that we did not detect subtle terrain features (e.g. ridges, upwind vegetation) that affect wind energy 
production. In our future research we will validate these CFSR data in complex terrain, similar to 
Henson et al. (Henson et al. 2012), and at offshore sites similar to The Crown Estate (The Crown 
Estate 2014). Second, the method we use to extrapolate hourly wind speed to hub height may 
introduce uncertainties. Our future work will test whether uncertainties in the uncertainties in the 
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Obukhov length calculated from reanalysis data introduce uncertainties in the extrapolated wind 
speed. Our ultimate goal is to reduce the uncertainties for hub-height wind speeds so that reanalysis 
data can accurately model wind power from short time periods (hours) and small areas. This would 
allow reanalysis data to be used to estimate measures such as the capacity value of wind power, 
which depends on the coincidence between wind generation and demand for electricity. 

To review, this work demonstrates a model that corrects biases in the CFSR data and quantifies 
its uncertainties. We find that CSFR data over-predicts wind plant generation output by ~15% and 
that year-to-year variability of Great Plains wind is likely to be less than half that of aggregate U.S. 
hydropower. 
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Supporting Information 

A2 Power Curve 
We use the piecewise power curve of a generic 2-MW wind turbine designed for IEC Class II 

wind conditions, used in the EWITS study (Brower 2009). 

 

A3 Capacity Factor Comparisons 
The first figure below plots our calculation of the capacity factor of the EWITS sites as a 

function of the cumulative capacity of the wind plants. We present these results for comparison to 
the similar curve calculated for the EWITS study (Figure 2-2 in (EnerNex 2010)). Although we 
exclude EWITS sites in the Northeast and Mid-Atlantic states, our curve below matches Figure 2-2 
in the EWITS study well within our error bounds. 
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Figure 6: Cumulative capacity factor for the wind plants used in this study. 

The figure below plots mean COV of annual energy against mean capacity factor for each site. 
There is a clear relationship between the COV and capacity factor: the annual generation is less 
variable at plants with higher capacity factors. 
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Figure 7: Mean COV vs. mean capacity factor for individual EWITS sites in the U.S. Great Plains (calculated from 

reanalysis data described in the body of the paper) 

A4 Comparison of Aggregate Annual Generation 
The figure below recalculates Figure 2 using only the 16 sites analyzed by Katzenstein 

(Katzenstein et al. 2010) and the same turbine power curve used b Katzenstein. Our results match 
well with Katzenstein’s within our confidence bounds.  



Carnegie Mellon Electricity Industry Center Working Paper CEIC-14-05             www.cmu.edu/electricity 

DO NOT CITE OR QUOTE WITHOUT THE PERMISSION OF THE AUTHORS                                    17 
 

 
Figure 8: Aggregate annual energy calculated from reanalysis data for the 16 ASOS sites used by Katzenstein 

(Katzenstein et al. 2010) 

A5 COV of quarterly cash flow with seasonal means subtracted 

 
Figure 9: COV of quarterly cash flow to equity investors after seasonal means are removed. Compare to Figure 4 in the 

body of the paper. 

A6 Defining Regions in Figure 5 
The regions A, B, and C in Figure 5 of the body of the paper are determined by clustering the 

EWITS sites based on quarterly wind energy generation. We apply a k-means clustering algorithm 
tusing correlation of quarterly energy as the distance metric. The clustering is repeated 103 times, 
once for each probable realization of quarterly energies. Sites that are assigned to the same cluster in 
at least 70% of the realizations are considered robustly clustered, though our results and the 
boundaries of those clusters are not very sensitive to that threshold. Finally, the regions are defined 
by fitting contour lines around the sites that are robustly assigned to each cluster. 

We selected k = 5 clusters heuristically as a balance between cluster size and between-cluster 
discrimination. More clusters increase the smoothing effect of combining sites from different 
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clusters, but reduces the number of sites that can be selected to construct portfolios. Clusters D and 
E are not shown because pairs of wind plants selected from those clusters did not show significant 
reduction in the COV of quarterly cash flow. 

A7 Calculation of Obukhov Length L 
 

    Description [units] Source 

 Obukhov length [m] eq. 12.11 in (Arya 1988) 
𝑢∗    friction velocity [m/s]  from reanalysis data 
Tv = (1+0.61q)T virtual temperature eq. 2.95 in (Fleagle & Businger 1980) 
 q    specific humidity [kg/kg] from reanalaysis data 
 T    temperature 2m above ground [K]  from reanalysis data 
κ = 0.4   von Kármán constant 
g = 9.8   gravity [m/s2] 
Hv = H + aθ HL  virtual heat flux [W/m2]  eq. 12.10 in (Arya 1988) 
 H    sensible heat flux [W/m2] from reanalysis data 
 aθ = 0.61Cp Θ/Le dimensionless coefficient 
  Cp = Cpd (1+0.84*q) specific heat of moist air at const. press. [J/kg*K] 
   Cpd = 1004.67  specific heat of dry air at const. press. [J/kg*K] 

  𝛩 = 𝑇 �𝑝0
𝑝
�
𝜅𝑝

 potential temperature [K] 
   p0 = 105 standard pressure [Pa] 
   p atmospheric pressure at ground level [Pa] from reanalysis data 
   κp = 2/7 Poisson constant  
  Le = 2.257 x 106  latent heat of evaporation [J/kg]  
 HL   latent heat flux [W/m2] from reanalysis data 
ρ = ρd((1 + q) /(1 + q(Rw/Ra)))  Density of moist air [kg/m3] 
 ρd = p/(Ra T) Density of dry air [kg/m^3] 
  Ra = 287.058 Specific gas constant for dry air [J/kg*K] 
 Rw = 461.5 Specific gas constant for water vapor [J/kg*K] 
   
  

 
 

A8 MCMC Procedure and Code 
The OpenBUGS code we use to model the biases and uncertainties is given below. We simulate 

104 samples. The “thin” parameter is set to 20 to record every 20th sample, which means 
OpenBUGS actually simulates 20 x 104 samples but does not display them to the user. We exclude 
the first 5 x 103 for burn-in. 
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A8.1 Code 
## Inputs 
# X: reanalysis quarterly wind energy for each site, sorted by site num 
# Y: historical quarterly wind energy for each site, sorted by site num 
# N_obs: total number of observations 
# N_sites: number of sites 
# meas_this_site: number of measurements available for each site 
# my_site: site number corresponding to each mesaurement 
# start_idx_this_site: index of first measurement for this site 
 
model{  
 for(i in 1:N_sites){ 
  for(j in 1:meas_this_site[i]){ 
   Y[start_idx_this_site[i]+j] ~ dnorm(mu[i,j], tau) 
   mu[i,j] <- m*X[start_idx_this_site[i]+j] + a[i] 
  } 
  a[i] ~ dnorm(0, tau.a)  # offset, this site (between-site variability) 
 } 
  
## Prior Distributions (vague priors) 
 m ~ dnorm(0, 0.001)  # slope 
 tau.a ~ dgamma(0.001, 0.001) 
 sigma.a <- 1/sqrt(tau.a) 
 tau ~ dgamma(0.001, 0.001) 
 sigma <- 1/sqrt(tau) 
} 

 

A8.2 Initial Values 
m = 1 
a = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
tau.a = 0.2 
tau = 0.1 

A9 Empirical Data 
The empirical data we use in this work for validation was provided by the University of North 

Dakota Energy & Environmental Research Center (Simonsen & Stevens 2004). We exclude sites 
within 1 km of forested areas or buildings. The data are divided randomly into a training subset and 
a validation subset.  

A9.1 Training Data 
Site ID Latitude Longitude Height [m] Start date End Date Mean Wind 

Speed [m/s] 
14 46.2646 -96.5312 70 01-May-1996 17-Apr-2006 7.1 
21 43.7828 -93.3472 70 07-Jun-1996 14-Mar-2002 7.3 
27 44.0984 -95.5636 90 17-Aug-2000 26-Sep-2004 8.2 
32 46.3861 -98.8645 51 13-Jul-2000 14-Aug-2005 7.8 
59 45.0680 -96.0527 50 16-Jan-1998 26-Jun-2002 5.8 
71 44.0416 -94.8477 70 01-Sep-2007 05-Oct-2007 8.5 
76 48.7800 -98.0378 55 05-Jul-1995 30-May-2002 7.3 
82 47.9870 -98.0097 55 05-Jul-1995 01-Jan-1998 7.7 
89 46.7578 -96.6038 70 02-Jun-1995 08-Aug-2000 6.8 
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100 47.5003 -97.8727 85 07-Aug-2003 01-May-2005 8.4 
117 41.1900 -92.5700 50 01-May-1995 29-Dec-1999 6.2 
118 43.2700 -94.8600 50 01-May-1995 01-Jan-2000 8.0 
120 43.2800 -93.6300 50 01-May-1995 08-Nov-1999 7.0 
121 43.2500 -96.4700 50 01-May-1995 14-Dec-1999 6.9 
122 41.4500 -91.1100 50 01-Jan-1996 16-Nov-1997 6.1 
123 42.3000 -93.4400 50 01-May-1995 02-Jan-2000 7.5 
125 43.4000 -95.6800 50 01-May-1995 02-Jan-2000 7.5 
126 43.0000 -95.5200 50 01-May-1995 30-Dec-1999 7.3 
127 41.9700 -95.5100 50 01-May-1995 29-Dec-1999 6.4 
129 41.0000 -95.1700 50 01-May-1995 05-Dec-1999 6.9 
141 43.7315 -88.2927 60 09-Jul-1998 11-Jul-2001 7.0 
143 44.3588 -87.9857 83 09-Nov-1999 01-Oct-2001 7.3 
147 43.3092 -89.3232 60 05-Oct-2000 01-Oct-2001 6.2 
161 42.6742 -99.0972 50 05-May-1995 18-Nov-1996 7.2 
189 46.3140 -101.8812 50 14-Jun-2002 03-Mar-2006 7.8 
229 48.7646 -101.6947 80 02-Dec-2004 07-Aug-2006 8.2 
257 38.9403 -104.3083 70 26-Dec-2002 31-Jan-2003 8.3 
267 43.9050 -98.7533 70 26-Dec-2001 01-Jan-2006 8.8 
274 44.1292 -99.4364 70 21-Nov-2001 14-Jan-2007 7.7 
277 38.8469 -98.1889 80 18-Apr-2003 03-Sep-2005 9.0 
278 39.7842 -98.1192 80 23-Apr-2003 04-Sep-2005 8.3 
280 38.9592 -100.8526 80 01-May-2003 04-Sep-2005 8.5 
289 37.2733 -97.5653 80 11-Jun-2003 03-Sep-2005 7.8 
293 37.9957 -88.5579 70 12-Dec-2005 08-Jun-2006 5.6 
294 41.3681 -90.1552 50 02-Apr-2005 07-Mar-2006 6.3 
301 40.8160 -90.3954 50 03-Apr-2005 27-Feb-2006 6.1 
306 35.4211 -99.5392 70 30-Oct-2003 27-Jan-2005 8.4 
344 48.0508 -101.3900 50 04-Oct-2006 01-Jan-2008 8.3 
353 46.0858 -97.9465 60 01-Dec-2004 01-May-2007 7.6 
 

A9.2 Validation Data 
Site ID Latitude Longitude Height [m] Start date End Date Mean Wind 

Speed [m/s] 
2 45.5841 -96.0476 70 01-May-1995 23-Jul-2005 7.0 
15 43.7287 -95.3566 70 22-Jun-1995 20-Dec-2007 7.4 
16 44.7454 -94.3950 70 21-Jun-1995 15-Apr-2000 6.5 
19 48.7052 -97.2657 50 19-Oct-2001 22-Apr-2007 7.1 
20 43.8876 -95.9285 70 02-May-1996 18-Apr-2006 8.5 
23 47.7563 -96.6697 70 01-Jun-1995 26-May-2005 6.7 
35 47.5004 -97.8166 70 01-Jul-2000 31-May-2004 7.5 
42 47.0681 -102.9272 55 05-Jul-1995 01-Jan-1998 7.4 
46 48.8105 -96.9384 70 01-Jun-1995 20-Dec-2007 6.8 
48 43.9877 -96.2080 90 21-Oct-1998 19-Dec-2007 7.5 
51 35.0497 -99.0971 70 29-Mar-2002 05-Jan-2004 7.6 
58 46.2988 -98.8660 70 13-Jul-2000 14-Aug-2005 8.5 
60 44.3746 -92.2353 50 05-Jul-2001 06-Aug-2004 5.6 
64 44.4139 -95.2928 70 14-Jul-2007 19-Dec-2007 6.9 
67 44.4455 -96.0122 90 17-Aug-2000 13-Feb-2002 8.0 
90 43.7823 -95.8735 90 16-Sep-1998 05-Dec-2007 7.6 
102 47.1392 -100.7058 55 05-Jul-1995 01-Jan-1998 7.8 
103 43.7041 -94.0293 70 22-Jun-1995 20-Dec-2007 7.4 
108 43.7106 -96.0694 70 21-Jun-1995 02-Jul-2005 7.1 
112 43.0400 -94.1400 50 01-Jan-1996 02-Jan-2000 7.2 
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113 42.8400 -95.3400 50 01-May-1995 02-Jan-1997 7.5 
116 41.4700 -94.5400 50 01-Jan-1998 30-Dec-1999 7.3 
139 42.9527 -90.4306 60 14-Nov-1997 01-Feb-2001 6.3 
157 40.4417 -101.9917 50 01-May-1995 01-Apr-1997 7.7 
158 41.0944 -103.6094 50 01-May-1995 01-Apr-1997 7.4 
191 48.8925 -99.5606 50 14-Aug-2003 01-Nov-2005 7.6 
196 43.7331 -92.0858 90 08-Aug-2003 26-Mar-2005 6.6 
203 44.7586 -94.7158 70 30-Jul-2003 28-Oct-2006 7.2 
220 46.1822 -103.0489 65 26-Sep-2002 07-Jul-2004 9.2 
236 40.4173 -93.0390 50 14-Jan-2005 06-May-2007 6.3 
244 45.1789 -97.0158 70 20-Apr-2002 01-Jan-2006 8.8 
269 45.2058 -97.9053 70 19-Jan-2002 17-Feb-2005 8.2 
275 45.6886 -99.2539 70 04-Dec-2001 01-Dec-2006 9.1 
279 37.7373 -101.2091 80 29-Apr-2003 03-Sep-2005 8.7 
281 38.4517 -99.8151 80 04-Jun-2003 04-Sep-2005 8.0 
291 39.5120 -87.9659 50 17-Apr-2005 31-May-2006 6.3 
342 46.9468 -99.1086 65 08-Dec-2003 01-Apr-2007 8.5 
346 47.7337 -102.6580 50 03-Aug-2006 05-Jul-2007 7.2 
350 48.6167 -98.4369 60 06-Jan-2006 07-May-2007 8.1 
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