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Abstract 
As wind power grows from its present 4% market share in the US, knowing how often the wind fails 
and power must be supplied by other generators becomes important. The statistics of these low prob-
ability events have “thin tails”; the wind fails less frequently than would be predicted by a Gaussian 
distribution. In order to investigate a future in which wind plants are geographically numerous, we 
examine the occurrence frequency of low wind-power levels for arrays of wind generators simulated 
from anemometer data at nine tall-tower sites spread across the contiguous United States. We find 
that the number of low-power hours per year declines exponentially with the number N of sites 
comprising the array. Power levels below 5% of total capacity, for example, drop by a factor of about 
60, from 2140 h/y for the median single site to 36 h/y for the generation aggregated from all nine 
sites. The systematic dependence of the low-power duration on both N and on power threshold is in 
accord with an explanation based on the theory of Large Deviations. Combining this theory for tail 
behaviour with the normal distribution for behavior near the mean allows us to estimate the entire 
generation duration curve as a function of the number of sites in the array. 
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Broader context 
Wind power variability must be considered when integrating this low-pollution electricity source 
onto the grid. It has long been recognized that this variability can be reduced by combining the out-
puts of wind generators spread over a large geographic area. The magnitude of the benefit has most 
often been understood conceptually in terms of the size of the typical deviation of wind power from 
its mean, which falls as 1/√𝑁 for a number N of independent wind sites. A different variability 
measure, one of critical importance to the reliability and economics of grids with large amounts of 
wind power, is the probability of widespread low-wind conditions. Explanations of how this proba-
bility might depend on geographic area or number wind sites are scant. Results reported here show 
that geographic diversity can reduce tail probabilities much more sharply than it reduces the size of 
typical variations. The theory of Large Deviations convincingly explains the exponential decrease we 
observe in the occurrence of low wind-power conditions with increasing N. 

Introduction 
The benefit of geographic diversity in reducing the variability of wind power has been investigated 
since integration of wind generation into the electric grid was first seriously considered. Based on his 
analysis of 5,000 wind speed data points recorded by the U.S. Weather Bureau at twenty cities east of 
the Mississippi River, Thomas speculated in 1945 that firm capacities of 50‒60% of average 
generation could be obtained,1 while shortly thereafter Putnam assessed the capacity value of 
geographic diversity to be worth less than the cost of transmission needed to achieve it.2 The 
smoothing benefit provided by geographic diversity would have considerable economic importance if 
it allowed a grid system to meet reliability targets with less conventional “dispatchable” generating 
capacity than would otherwise be needed for a similar amount of unsmoothed wind power. In the 
terminology of grid reliability this is equivalent to asking to what extent geographic diversity 
increases wind power’s effective load carrying capacity (ELCC).3-6 

The probability that the aggregated power from an array of wind generators falls below some 
small generation level is of particular importance in determining ELCC, as pointed out by Kahn3 and 
by Haslett and Diesendorf.4 Characterizing such “tail” probabilities and modeling how they depend 
on factors such as the number and geographic layout of wind plants making up the array can be chal-
lenging. Conventional measures of variation around the mean, such as the variance or standard devi-
ation, reveal little about tail probabilities. Even though the power statistics of large arrays of inde-
pendent wind generators approach the normal distribution, as required by the Central Limit Theorem, 
they remain distinctly non-normal for small power levels near the hard lower bound at zero output. 

Some previous studies have characterized the occurrence of low wind levels empirically by 
examining historical wind-speed records. In a 1978 study of data from 25 weather stations in what 
was then West Germany, Molly found that the times during which total generation of arrays of 
hypothetical wind plants was zero declined from 1500‒7200 hours per year for single sites to less 
than 5 h/y for arrays of 18 sites within the 800-km (N-to-S) national region.7 A more recent study by 
Archer and Jacobson using wind-speed data from meteorological stations in the U.S. Midwest found 
that the incidence of average afternoon wind speed less than a typical turbine cut-in speed (i.e. v < 3 
m/s) dropped from 7.6% of the time for single sites to 2.6% for three sites spread over a 120 × 160 
km area, to what they said was 0% for eight sites spread over a 550 × 700 km area.8 From the duration 
curve they present in follow-on work9 one can see that wind generation was below 5% of turbine 
capacity 21% of the time for a single site, 10% of the time for a 7-site array, and 1.6% of the time for 
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a 19-site array. In a study of the Nordic region using actual wind generation records, Holttinen found 
that while Denmark alone had production below 1% of capacity nearly 5% of the time during the 
years 2000‒2002, the entire Nordic region never fell that low.10 Using numerical-weather-model 
reanalysis data roughly corresponding to the territory of the Midwest Midcontinent independent 
system operator (MISO) Fisher et al. found that for a network of 108 sites the output level that could 
be counted upon all but 10% of the time was 7% of capacity during the winter and 3% of capacity 
during the summer.11 

A number of studies have attempted to estimate the complete probability distributions of 
aggregated wind power, including the tails, in terms of parameters determined from the contributing 
generators. Justus and Mikhail12 devised an interesting technique wherein they supposed that an 
entire array of wind generators was characterized by a single “effective” array wind speed having a 
Weibull distribution with its shape parameter chosen to make its standard deviation σN smaller than 
the standard deviation for a single site σ1 according to the number of sites in the array and their 
average correlation �̅�: 𝜎𝑁 = 𝜎1[(1 + �̅�(𝑁 − 1))/𝑁]1/2. They then modelled the array output power 
distribution by transforming the array wind speed distribution through a new power curve that cut in 
at a lower wind speed and reached rated capacity at a higher speed than did the turbines supposed to 
be deployed at the individual sites. This produces a complete model output-power probability density 
function; the “narrowing” of the wind-speed distribution and the “widening” of the power curve act 
in concert to greatly diminish the probability of low array power.  Kahn used their extensive data and 
pioneering method to calculate the ELCC for wind arrays in California.3 Carlin and Haslett pursed an 
alternate approach where they assumed the square-root of site wind speed was approximately 
normally distributed, allowing the probability of zero array power to be calculated almost exactly 
from the characteristics of contributing individual sites.13 They noted “that the effect of dispersal on 
the probabilities of zero and rated power is significantly more marked than on the coefficient of 
variation of windpower,” a result we concur with and further quantify here. Hasche fit array output-
power probability distributions to the Pearson-family Type I (beta) distribution by using empirical 
functions to match observed and model moments.14 The chosen beta distribution has the advantage 
that it naturally accommodates the bounds on array output power at zero and total turbine capacity. 
Alternately, non-parametric distributions can be defined using kernel estimators.15  

Some recent investigations have focused on the effects of spreading arrays of wind generators 
over especially large distances. Kempton et al.16, 17 considered an array of offshore wind plants 
distributed along the entire extent of the U.S. East Coast, while Fertig et al.18 and Louie19 evaluated 
the smoothing effect on wind generation of interconnections between independent system operators 
(ISOs) across the U.S. Huang et al. used reanalysis data to study the variability of coupled wind 
plants spread over the Great Plains of the U.S. from Montana to Texas.20 A common feature of these 
studies is a sharp decline with increased geographic diversity of the fraction of time the aggregated 
wind power falls below small generation thresholds. Here, we attempt to provide a systematic 
explanation for the dependence of this behavior on the number of sites being aggregated and the 
characteristics of the individual wind-power distributions. 

Methods 
Simulated wind-power data 
We investigate the number of hours per year that aggregate wind power is less than a chosen 
threshold by simulating the power output of arrays of widely separated wind plants using historic 
wind speed data. We select 9 wind plant sites in the continental United States, shown in Figure 1, 
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according to three criteria: they have publically-available 
data from towers taller than typical meteorological stations 
(instrument height h in Table 1), their mean wind speeds are 
similar (mean �̅� in Table 1), and their simulated wind power 
outputs are poorly correlated (correlation coefficients in 
Table 1). We use 1-hour mean wind speeds for the period 
from January 2007 to December 2012, a total of 5.26 × 104 
hours. Most sites have anemometers at multiple heights; we 
used the data from the height with mean wind speed closest 
to 6 m/s because that is the speed range for which data is available at the largest number of sites. We 
exclude any measurements identified as bad by the supplier, measurements less than 0 or greater than 
40 m/s, or measurements inconsistent with those taken by other sensors on the same tower at the 
same time. This quality control excludes 9–38% of the data from the individual sites and leaves 1.46 
× 104 hours when data are available from all sites simultaneously. The mean wind speeds from these 
nine sites, shown in Table 1, are lower than would typically be selected for commercial wind power 
development, but that is the range for which we could get the largest number of sites with similar 
wind speeds. 

Wind power is simulated from the historical wind speed data using a turbine power curve based 
on the Vestas V110 2.0 MW turbine,21 with a cut-in wind speed of 3 m/s, reaching rated power 
normalized to 1 at wind speed of 11 m/s, and cut-out wind speed of 25 m/s. Details of the functional 
form of the power curve are given in the Electronic Supporting Information (ESI). 

We count the number of hours per year that the simulated power aggregated from combinations 
of N sites is less than a chosen threshold p0, for N ranging from 1 (individual site) to 9 (all sites 
combined), and plot p0 vs. the count in the form of a generation duration curve. This curve, which 
depicts the same information as a cumulative distribution function (cdf), is a plot with the power 
threshold p0 on the y-axis and the number of hours per year that aggregate power is less than p0 on 
the x-axis. (Here we plot hours less than threshold rather than the conventional hours greater than 
threshold, but on an x-axis with its origin at the right where values increase to the left. The curves 
thus retain their conventional form but allow the use of a logarithmic axis to portray small duration 
values.)  For each combination of sites, the duration curve was calculated by averaging the individual 
sites’ simulated power at each hour (excluding any hour for which data was missing from one or 
more of the sites comprising that array). 

To characterize a single site with behavior “representative” of the nine sites we also pooled all 

  h v̅ μ = cf δ0 δ1  correlation coefficients 
 site (m) (m/s)     1 2 3 4 5 6 7 8 

1 Argonne 60 5.4 0.27 0.11 0.02          
2 Brookhaven 88 5.8 0.32 0.13 0.03  0.062        
3 Hanford 122 5.0 0.27 0.36 0.08  −0.034 −0.026       
4 Kennedy 90 6.0 0.35 0.12 0.03  0.091 0.078 0.015      
5 LLNL 23 6.0 0.37 0.27 0.12  −0.025 −0.028 −0.041 −0.026     
6 Los Alamos 92 4.6 0.23 0.38 0.04  0.049 0.002 0.077 0.008 0.004    
7 NWTC 80 4.8 0.22 0.37 0.06  0.070 0.048 −0.077 0.052 −0.070 −0.007   
8 SGP 25 6.1 0.36 0.15 0.08  0.170 0.031 −0.014 0.071 −0.043 0.240 0.055  
9 WLEF 122 6.3 0.41 0.13 0.03  0.220 −0.010 0.029 0.029 −0.055 0.065 0.023 0.061 
 “representative”   0.31 0.23 0.06          

Table 1. Data characteristics for each site: anemometer height h above ground, average wind speed v̅; for simulated wind 
power, the capacity factor cf, the fraction of time the turbine is stalled δ0, and the fraction of time it is at full power δ1; 
Pearson cross-correlation between sites.  The parameters of the representative site are those of the histogram in Figure 2. 

 
Figure 1. Locations of nine tall-tower sites. 
(See ESI for site details). 
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the hourly simulated power values from the 
nine individual sites (about 4.2 × 105 samples) 
and calculated a single histogram, as shown in 
Figure 2, taking care to separately accumulate 
those simulated power values that were exact-
ly 0 (δ0) or exactly 1 (δ1). We use a histogram 
with 72 bins (70 full-width and 2 zero-width 
for δ0 and δ1), but we show in the ESI that our 
results are not sensitive to the number of bins. 
For these nine sites the “representative” wind 
plant produces zero power approximately 2000 
h/y, and full power about 520 h/y. Its capacity 
factor or average output power is μ = 31%. 
The 0.00‒0.014 bin is empty because the min-
imum non-zero power output of the simulated 
turbine is 0.014, which is the power produced 
at the cut-in wind speed. 

Large Deviations Theory model 
Although the simulated power outputs of the sites in Figure 1 are neither independent nor identical 
we nevertheless model the simulated aggregate wind power of an N-site array as the mean  of N 
independent identically distributed (i.i.d.) copies of a “representative” random variable X having the 
probability distribution given by the histogram shown in Figure 2. Large Deviations Theory (LDT) 
gives, under quite broad conditions, tight bounds on the probability that this mean is less than some 
small value (see Lewis and Russell22 for an accessible introduction to LDT). According to LDT, 
Pr  falls with N as . The “rate function” Q(p0)  is given as the Legendre transform 
of the random variables’ cumulant generating function λ(θ): 

 ≡	 sup ; 	 ≡ 	 ln〈 〉, (1) 

with 〈∙〉 denoting expectation. Although the exponential of the rate function captures the leading 
asymptotic dependence of probability on N, following Rozovsky23 a more complete expression is 
given by: 

 Pr
√

1 1 	, (2) 

where ϑ is the value of	θ at which the supremum in equation (1) is found, and the second derivative 
of the cumulant generating function gives σ(ϑ) = [λʺ(ϑ)]½. With bin heights yk for the histogram in 
Figure 2 normalized to represent the total fraction of samples in each of the 70 bins, we calculated 
the cumulant generating function as: 

 ≡ ln ∑ . (3) 

Finding the maximum of equation (1) by numerical search gives Q and ϑ; evaluating the second 
derivative of λ(θ) at ϑ let us calculate the desired probability in equation (2).  

In this simple model, the variability-reducing benefit of aggregating wind power from N sites is 
largely determined by the magnitude of rate function Q. As seen in Figure 3, Q rises as power thresh-
old p0 is decreased below mean μ, indicating that modeled variability reduction through geographic 

 
Figure 2. Histogram of simulated wind power for wind-speed 
records from all nine sites. Dark bars at each end represent 
instances of power being exactly 0 or exactly 1; bars are 
widened and offset for clarity. The distribution has a mean μ = 
0.31 and standard deviation σ = 0.34. 
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diversity becomes more effective at smaller 
thresholds. The limiting value of Q at small 
thresholds can be understood by considering 
the probability that the output wind power of an 
N-site array is zero. This requires that its N sites 
are all simultaneously at zero power, which un-
der our model’s i.i.d. assumption has probabil-
ity (δ0)

N; hence the LDT rate function saturates 
for small power thresholds p0 at −ln(δ0): e

−QN ~ 
(δ0)

−N. The importance of the model’s proba-
bility distribution being bounded to zero out-
side the [0,1] limits on wind power generation 
can be seen by comparing the rate function cal-
culated above with the rate function for a nor-
mal distribution having the same mean and 
variance. This can easily be expressed analyti-
cally,22 and is shown in Figure 3 as well. Both 
go to zero at μ, but for thresholds (“deviations”) away from the mean, the tail of the mean of 
normally-distributed variables, which extends to −∞, declines at a slower rate than does the tail of the 
mean of our bounded wind-power variables. That is, for bounded distributions like wind power, LDT 
shows the distribution’s tails are thinner than those of the normal distribution. The effect of changes 
in δ0 and in the output-power distribution on the rate function is further illustrated by the dashed 
curve, which shows the rate function calculated from the simulated wind power distribution for a site 
in Sweetwater, TX (see ESI) where higher average wind-speeds (7.9 m/s) result in the modeled 
turbine being above cut-in all but 6.3% of the time. 

We said above that LDT provides good estimates of the probability that mean aggregate power 
	is less than some small value of p0, but we did not define “small value.”  For the purposes of 

LDT, p0 is considered “small” if there is a small probability that 	 is less than p0, i.e. if p0 is far 
from the centre of the distribution of . For the cases we investigate in this paper with N ≤ 9 and the 
distribution shown in Figure 2 with μ = 0.31, p0 values less than 0.07 can be considered “small.” 
When p0 is not small, i.e. when it is close to the mean, the Central Limit Theorem tells us that, at 
least for large N, Pr 	~	Φ / /√ , where Φ is the cdf of the unit normal 
distribution and μ and σ are the mean and standard deviation of the distribution in Figure 2. We illus-
trate the ranges of p0 for which LDT and a normal distribution provide good estimates of the proba-
bilities with Figures S1 and S2 in the ESI. 

Results and discussion 
The number of hours per year that simulated wind power aggregated from an N-site array is less than 
a given threshold p0 decreases essentially exponentially with the number N of aggregated sites, as 
shown in Figure 4. The box-plot shows the range of durations for all possible combinations of N of 
the 9 sites shown in Figure 1. The durations of low-wind events for our nine sites are significantly 
higher than would be expected at a typical commercial wind site as shown by the red crosses. Using 
the rate-function values shown in Figure 3 we calculated the dependence of Pr 0  on N, with 
the results shown by the solid curves in Figure 4. The correspondence of these results to the simu-

 
Figure 3. Rate functions for the distribution of Figure 2 com-
puted according to LDT and the normal approximation. 
Symbols show the rate function values used for the LDT 
model curves in Figure 4. Also shown is the rate function for 
a site (Sweetwater, TX) with wind resource quality more 
typical of a commercial wind plant. 
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lated power data, achieved without the use of 
any adjustable parameters, encouraged us to 
compare LDT results to the complete forms of 
the N-site generation duration curves.  

Figure 5 plots duration curves for N-site 
arrays. For both N = 3 and N = 6 there are 84 
different combinations possible; the solid-color 
curve shows the median of their durations while 
the dashed lines and shading encompass the 5‒ 
95% range. Each duration curve plots the frac-
tion of hours (reversed x-axis) that the aggregate 
wind power is less than the value p0 (y-axis). The 
inset is provided to show on familiar linear axes 
that this unconventional plot style nevertheless 
gives a conventional-looking duration curve, as 
explained above in Methods. The thin black 
curves show the LDT model, again calculated 
without adjustable parameters from the represen-
tative distribution in the histogram of Figure 2. 
Horizontal “slices” of Figure 5 for chosen power 
thresholds (p0 = 0.01, 0.05, 0.15) are equivalent 
to the curves shown above in Figure 4. Accord-
ing to the correlation coefficients listed in Table 
1 our sites are not completely independent, with 
two of the site-pairs having correlation coeffi-
cients in excess of 0.2. Nevertheless, the partial 
correlation seems not to prevent a close corre-
spondence of the LDT curves to the median 
simulated wind-power data in Figures 4 and 5. 
Additional insight into the degree of correlation 
between sites can be had by comparing the vari-
ances of the N-site arrays to the variances of the 
underlying individual sites over which the array 
averages; if the individual sites were uncorre-
lated the array variance should be equal to 1/N 
times the sum of the individual variances. The 
variance of the 9-site array simulated wind 
power (0.0154) is actually 7.6 times smaller than 
the average single-site variance of the distribution in Figure 2 (0.118), indicating that its behaviour 
might be closer to that of an array of 8 uncorrelated sites: partial correlation effects are modest but 
definitely not negligible.  

We now return to the question posed in the title: “Is it always windy somewhere?” A more useful 
question to answer is “How windy is it almost always?” This is the question asked by the system 
planner who decides how much non-wind reserve generation must be available. To provide an an-
swer we measure the aggregate simulated wind power capacity available except for allowed outages 
of 5, 50, and 500 h/y (“firm capacity”) as a function of the number of sites N. These results, plotted 

 
Figure 4. Fraction of time wind power for an array of N 
sites is less than p0 = 15%, 5%, or 1% of total capacity. 
Low-power occurrence decreases approximately exponen-
tially with N. Box and whisker symbols show the spread of 
the various possible combinations of N sites with the whis-
ker spanning minimum to maximum and the box the cen-
tral two quartiles. Circles plot value for a unique combina-
tion. For p0 = 1% the missing circle and cut-off whiskers 
and box indicate values of 0. Dashed curve shows normal 
distribution: Φ[(μ – 0.15)/(σ/√N)]. Solid curves show LDT: 
𝟏.𝟔𝟗𝒆−𝟎.𝟒𝟗𝑵/√𝟐𝝅𝑵, and 𝟏.𝟔𝟕𝒆−𝟎.𝟗𝟕𝑵/√𝟐𝝅𝑵), respectively. 
LDT predicts far fewer hours below a given threshold than 
would a normal distribution. Red crosses plot durations for 
a site with mean wind speeds (7.9 m/s) more typical of a 
commercial wind power plant. 

 
Figure 5.  Duration curves for aggregate power from N 
sites: empirical (colored) and LDT (black). Dashed lines 
and shading enclose 5‒95% range of durations from differ-
ent combinations of N sites; solid line is the median. Inset: 
median duration curves on linear axes.18 
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in Figure 6, unsurprisingly show that the 
capacity available at a given reliability level 
increases with the number of sites. For exam-
ple, doubling the number of sites from N = 4 to 
N = 8 increases the median capacity available 
at least 50 h/y from 0.01 to 0.047. The results 
in Figure 6 also show that increasing the de-
sired reliability level (i.e. tightening the defini-
tion of “almost always”) decreases the available 
capacity. For example decreasing the allowed 
outage rate from 50 h/y to 5 h/y for N = 8 de-
creases the available wind power capacity from 
0.047 to 0.02. For large N (not shown), the 
LDT curves approach a horizontal asymptote 
equal to average capacity factor μ. 

Conclusions 
The model presented here provides a quantitative basis for understanding the increase in firm capac-
ity with geographic diversity. However, relating the predictions of our model to the variability of real 
wind power plants depends critically on the extent to which the number of statistically independent 
sites is a good proxy for geographic diversity. The empirical results presented here evidence good 
agreement with model results based on the assumption that the sites are independent. We presume 
that this agreement is a consequence of the weak correlation of our widely spread sites. The data we 
analyze inform speculation neither about the performance of arrays of more-closely spaced wind 
plants nor about achieving more than nine effectively independent sites within the contiguous U.S. 
This work may be useful in addressing planning for future modifications to the electric power grid. It 
demonstrates that aggregating wind plants can decrease the occurrence frequency of low-power 
events more dramatically than it decreases the magnitude of typical of variations around the mean. 
For weakly correlated sites we find the occurrence of low-power events in fact declines exponentially 
with N, in accord with Large Deviations Theory. For comparison, according to the Bienaymé 
Formula, the standard deviation of the mean decreases as 1/√𝑁. Thus, to decrease the odds of aggre-
gated wind power falling below 1% of capacity by a factor of 20 for a 3-site array requires an 
increase in the number of aggregated sites from 3 to 6, at least for sites with characteristics similar to 
those investigated here. Cutting the standard deviation by a similar factor would require increasing 
the number of independent sites from 3 by a factor of 400 to 1200—almost certainly unfeasible.  

For our data year-to-year variations in the simulated wind power distribution have only modest 
effects on the rate function (see ESI, Fig. S4). This may allow a grid planner to extrapolate the firm 
wind power capacity available with a given reliability from limited historical data. With regard to 
smoothing benefits in general, it is important to note the important caveat that our results do not 
calculate the time duration of individual low-wind-power events, i.e. they do not distinguish between 
ten one-hour periods and one ten-hour period of low power. 

Additional work is needed to determine to what extent the methods and results presented above 
apply to situations with the higher inter-site correlations that typically result from clustering wind 
plants in areas with the best wind. The Gärtner-Ellis theorem24 allows generalization of the Large 
Deviations approach to correlated non-identical random variables. Alternately, an array of partially-

 
Figure 6. Simulated wind power available at least 5, 50, and 
500 hr/yr from N-site arrays. Box and whisker symbols show 
simulated power from N-site arrays. Solid lines show LDT 
predictions based on the distribution in Figure 2. 
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correlated sites may be characterized as comprising a smaller effective number25 N* of independent 
sites, with  array statistics obeying LDT in terms of N*.26 

The methods and results we present do not yet allow us to estimate the capacity value or ELCC 
of wind power as they neglect the correlation of wind generation with electrical load. However, the 
deviations of regional loads from their daily and seasonal cycles (i.e. the load “anomaly”) might yield 
variables that could be combined with regional wind generation in a way suitable for a treatment like 
the one employed here. 
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Large Deviations Theory vs. Central Limit Theorem 
Figure S 1 below plots the empirical duration curve, the Large Deviations Theory (LDT) curve, 
and the normal distribution duration curve for N = 6 to illustrate how LDT provides a better 
model for the tail and the normal distribution provides a better model near the mean. In this case 
with N = 6 and a mean power of μ = 0.31, the two models cross at a power threshold of p0 ≈ 0.1: 
LDT is a better model for lower thresholds and a normal distribution is a better model for higher 
thresholds. The normal distribution curve plots duration = 8760Φ[(μ − p0)/σ6]. Figure S 2 plots 
the duration and power thresholds p0 at which the LDT curve crosses the normal-distribution 
curve for various values of N. 

 
Figure S 1.  Comparison of empirical generation duration curve for median simulated wind power from 6-site arrays with 
LDT model and with normal distribution of mean μ = 0.31 and standard deviation σ6 = 0.34/√6.  
                                                 
a Enduring Energy, LLC, 5589 Arapahoe Ave., Suite 203, Boulder, CO 80303 USA. 
b Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, 
Pennsylvania 15213 USA. 
c Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 USA. 
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Figure S 2.  Locus of cross-over between LDT model and normal distribution curves for various values of N. 

Sensitivity analysis for “representative” power distribution 
In order to use LDT to model the distribution of the aggregate power of several non-identical 
wind plants, we developed a distribution for a hypothetical single site intended to be 
“representative” of all the individual sites. This “representative” distribution, shown in the main 
body of the paper as Figure 2, was calculated by pooling all the hourly simulated wind-power 
samples and then binning them into a single histogram. We show below that our results are not 
particularly sensitive to the data used to calculate the representative distribution.  

Figure S 3 shows the results of LDT calculations using the power distribution of individual 
sites and using the representative distribution. It is clear that LDT using the “representative” 
power distribution matches the empirical duration curve (blue) far better than LDT using any 
single-site power distribution.  

 
Figure S 3. LDT duration curves calculated using power distributions of each of the nine single sites along with the 
“representative” power distribution derived from all sites (Fig. 2 in main body), and 9-site aggregate empirical curve.  
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Figure S 4 shows the results of LDT calculations carried out as before, but instead of using the 
all-years “representative” distribution we substituted a histogram calculated from all sites but 
only for individual years. Each thin black line represents the LDT prediction from the pooled 
distribution for a different year. This figure shows that the distribution changes very little from 
year to year. This also suggests that a single year of data is probably sufficient to extrapolate the 
probabilities of events that occur less frequently than once per year. 

 
Figure S 4. LDT duration curves calculated using power distributions derived from single years of the all-sites-combined 
data, and the 9-site aggregate (all-years) empirical curve. 

Figure S 5 shows the results of LDT calculations based on representative distributions calculated 
using different numbers of histogram bins (see histogram in Fig. 2 of the main body). The fit of 
the LDT duration curve to the empirical duration curve is not sensitive to the number of bins in 
the histogram. 

 
Figure S 5.  LDT duration curves calculated by pooling data from all nine sites, but using different bin widths than were 
used in Fig. 2 (main body), and 9-site aggregate empirical curve. Each histogram retains zero-width bins to accumulate 
incidence of output power levels of exactly zero and exactly one. 
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Turbine power curve 
We transformed wind-speed samples to simulated wind power using the turbine power curve 
shown in Figure S 6, which approximates the manufacturer’s curve for the Vestas V110 2.0 MW 
turbine. The turbine cuts in at v = 3 m/s, at which point its output steps discontinuously from 0 to 
1.6% of capacity. For wind speeds greater than 11 m/s the output normalized by turbine capacity 
is unity, until the turbine cuts out at 25 m/s. 

Historical wind-speed data sites 
Table S 1. Wind-speed data-site locations and characteristics. 

  Location Measurement 
height (m) 

Mean wind 
speed (m/s) 

1 Argonne National Laboratory 41.702º N, 087.995º W 60 5.4 
2 Brookhaven National Laboratory 40.871º N, 072.889º W 88 5.8 
3 ARM Southern Great Plains Central Facility 36.606º N, 097.489º W 25 5.0 
4 Lawrence Livermore Natl. Laboratory, Tower 300 37.675º N, 121.541º W 23 6.0 
5 Hanford Site, Station 21 46.563º N, 119.600º W 122 6.0 
6 Los Alamos National Laboratory 35.861º N, 106.320º W 92 4.6 
7 Kennedy Space Center Tower 313 28.626º N, 080.657º W 90 4.8 
8 National Renewable Energy Laboratory(NWTC)  39.810º N, 105.235º W 80 6.1 
9 WLEF TV 45.945º N, 090.273º W 122 6.3 
     
 Sweetwater, TX, 51 Tall Tower South 34.412° N, 099.646° W 75 7.9 
 

1. Argonne: Atmospheric and Climate Research Program, Environmental Science Division, Argonne 
National Laboratory. Downloaded on 2014 Jan 30 from:  
http://www.atmos.anl.gov/ANLMET/numeric/  

2. Brookhaven: Personal communication with Scott Smith, Meteorological Services, Environmental and 
Climate Sciences Department, Brookhaven National Laboratory, 2014 Jan 30. 

3. Hanford: Personal communication, Kenneth Burk, Hanford Site, Hanford Weather Station. 2014 Feb 18. 

 

 

  
u(v) ≡ (v – 3 m/s)/(11 m/s −3 m/s) 
a = √0.0144 
u0 = 0.79 
β = 20 

Figure S 6. Model turbine power curve and parametric functional form used to transform historical wind-speed samples 
to simulated wind power. 
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4. Kennedy: Kennedy Space Center Spaceport Weather Archive. Downloaded on 2014 March 17 from: 
http://kscwxarchive.ksc.nasa.gov/WeatherTower  

5. LLNL: Lawrence Livermore National Laboratory. “LLNL Weather, Custom Weather Report Tool.” 
Downloaded on 2014 March 27 from: 
http://www-metdat.llnl.gov/cgi-pub/reports/report.pl  

6. Los Alamos: Los Alamos National Laboratory, Meteorology Team. Downloaded on 2014 Jan 30 from: 
http://environweb.lanl.gov/weathermachine/data_request_green_weather.asp 

7. NWTC: Jager, D.; Andreas, A. (1996). NREL National Wind Technology Center (NWTC): M2 Tower; 
Boulder, Colorado (Data). ; NREL Report No. DA-5500-56489. Downloaded on 2014 March 26 from: 
http://dx.doi.org/10.5439/1052222.  

8. SGP: Atmospheric Radiation Measurement (ARM) Climate Research Facility. 2001, updated hourly. 
 Carbon Dioxide Flux Measurement Systems (30CO2FLX60M). 2001-01-01 to 2013-01-27, 36.605 N 
97.485 W: Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Compiled by S. Biraud and 
M. Fischer. Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak 
Ridge, Tennessee, USA. Data set accessed 2014 Mar 27 at: 
http://dx.doi.org/10.5439/1025038 

9. WLEF/Park Falls: Davis, K.J., Bakwin, P.S., Yi, C., Berger, B.W., Zhao, C., Teclaw, R., and Isebrands, 
J.G., 2003. The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a 
very tall tower, Global Change Biology, 9, 1278-1293. supported by Department of Energy, Ameriflux 
Network Management Project Support for UW ChEAS Cluster and National Science Foundation grant 
DEB-0845166. Data downloaded on 2014 Feb 2 from:  
http://flux.aos.wisc.edu/twiki/bin/view/Main/ChEASData  

Sweetwater, TX: Alternative Energy Institute, West Texas A&M University: 51 Tall Tower South, June 
1, 2003 to October 1, 2008. (Data from this site was used only to illustrate how a higher-wind single site 
compared to the 9 sites above, but was not used in any of our multi-site aggregations.) Downloaded on 
2012 Dec 4 from: 
http://www.windenergy.org/datasites/51-talltowersouth/  

 

http://flux.aos.wisc.edu/twiki/bin/edit/Main/ChEAS?topicparent=Main.ChEASData
http://flux.aos.wisc.edu/twiki/bin/view/Main/ChEASData%20on%202014%20Feb%202
http://www.windenergy.org/datasites/51-talltowersouth/
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