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Abstract 

Electric power systems with substantial wind capacity require additional flexibility to react to rapid changes in 
wind farm output and mismatches in the timing of increased generation and increased demand. Controlled 
variable-rate charging of plug-in electric vehicles allows demand to be rapidly modulated, providing an 
alternative to using fast-responding natural gas plants for balancing supply with demand and potentially reducing 
costs of operation and new plant construction. We investigate the cost savings from controlled charging of 
electric vehicles, the extent to which these benefits increase in high wind penetration scenarios, and the trade-off 
between establishing a controlled charging program vs. increasing the capacity of generators in the power 
system. We construct a mixed integer linear programming model for capacity expansion, plant dispatch, and 
electric vehicle charging based on the NYISO system. We find that controlled charging can offer significant cost 
reductions in a system with 10% penetration of electric vehicles; however, the magnitude of these benefits is 
only slightly higher in a system a 20% renewable portfolio standard (RPS) compared to a system no RPS policy. 
In the systems examined, controlled vehicle charging reduces the costs of integrating electric vehicles but 
provides little additional cost benefits for integrating wind. 

Keywords:  

1.  Introduction 

Electricity generation is responsible for over 40% of U.S. CO2 emissions [1], and producing electricity from 
traditional fossil fuel sources also creates other emissions that harm human health and the environment, such as 
NOx and SO2. Integrating low-emission power options, such as wind and solar power, will play a key role in 
reducing harmful emissions. Many states have recognized the need for more renewable energy production, and 
twenty-nine states have adopted renewable energy portfolio standards (RPS) requiring between 10% and 40% of 
generated power to come from renewable sources [2]. To compensate for the increased amounts of these 
inherently–variable sources of electricity, the power grid requires additional flexibility to manage fluctuations in 
generation. For systems incorporating high levels of wind power, ramping natural gas combustion turbine plants 
in response to changes in output from variable resources has typically provided this flexibility. Recent research 
has shown that ramping gas turbines to manage the variability of wind power can increase NOx emissions and 
reduce the greenhouse gas benefits associated with wind power production [3].  
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Plug-in electric vehicles create additional demand, resulting in additional air emissions from electricity generation 
[4], [5]. But they have also been proposed as a means for increasing grid flexibility in order to integrate 
renewables, with much emphasis on the possibility of using the vehicles for grid storage via a bidirectional 
electrical connection between the vehicle and the electricity grid, referred to as vehicle-to-grid (V2G). For 
example, Lund and Kempton calculate the additional cost-savings and emissions-savings from adding V2G 
capabilities to the power system, given simplified ramping constraints for the power generation fleet [6]. 
However, it has been shown that the market for V2G ancillary services is small, arbitrage potential is limited, and 
participation can significantly reduce battery life by increasing the total energy processed by the battery [7]. V2G 
systems also require a substantial investment in power electronics, control software, and additional grid 
infrastructure. As an alternative, electricity demand can be partially managed by modulating the charging rate of 
plug-in electric vehicles – for example, following variations in wind supply. Such controlled charging can take 
advantage of the high levels of wind generation that commonly occur at night in the U.S. At these times, other 
load is likely to be low and coal plants would likely need to be cycled adding costs and emissions that could be 
saved with smart charging of electric vehicles. Alternatively, ramping of thermal plants could be reduced by 
building excess wind capacity, curtailing wind energy when it is not needed, and taking it when most cost 
effective for the system.  

Previous work has shown the benefit of controlled charging in power systems with wind power. Wang et. al. 
evaluate different charging strategies of plug-in vehicles in the Illinois power system and find significant cost 
savings with controlled charging. They assume the rest of the power system is static and use a simple scaling of 
existing wind data to model new wind construction [8], exaggerating variability by ignoring the complex impacts 
of plant size and geographic diversity on mitigating wind generation correlation [9]. Sioshanshi and Denholm 
analyze a system based on the Electric Reliability Corporation of Texas (ERCOT) in its current form with 10% 
wind generation to calculate the additional benefit of V2G over controlled charging, again allowing only 
operation of existing power plants to vary [10]. They find that V2G could decrease system costs by around 0.5%.  

Other work has focused on how charging can be used as balancing power in systems with high wind penetration 
by modeling forecasting error for wind and load instead of evaluating detailed operating constraints. A study by 
the Pacific Northwest National Laboratory estimates the number of vehicles necessary to provide a complete 
response to the balancing signal [11], capturing the high frequency behavior of the wind and vehicle charging but 
ignoring other types of flexibility already present in the grid. Druitt and Früh also focus on how controlled 
electric vehicle charging can provide balancing power at high wind penetrations [12]. They use a simplified 
scheduling of conventional generation, which ignores many operating constraints, and develop a model based on 
historic prices to estimate economic effects. 

We seek to evaluate cost savings from controlled charging in scenarios with and without an RPS in order to 
understand whether electric vehicles can provide extra cost savings in systems with increased levels of wind 
power, or whether controlled charging only limits the impact of the vehicles themselves on the system. The 
interaction of electric vehicle charging with the grid is complex, and a complete understanding requires 
evaluating the power system in a range of circumstances and at a variety of time scales. We examine the benefit 
of controlled charging of electric vehicles relative to convenience charging (vehicle charges at maximum rate 
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upon arrival), delayed charging (vehicle begins charging at maximum rate just in time for its next use), and no 
charging (no electric vehicles) under alternative scenarios of high vs. low wind penetration in the power 
generation fleet, high vs. low electric vehicle penetration in the vehicle fleet, and high vs. low initial plant 
capacity. For this analysis, we develop a capacity expansion, unit commitment, and dispatch optimization model 
with detailed plant constraints. We use hourly and 15-minute time scales with perfect information of wind and 
load (no forecast error) to focus on capacity expansion and unit commitment decisions, and we study a period of 
20 days selected to be representative of the year. We do not evaluate the entire range of power plant fleets that 
exist in the U.S. but instead focus on comparing the difference between system with sufficient capacity and those 
requiring investment in new capacity. We find that controlled charging does help to reduce system costs by 
about 2% in the scenarios examined with 10% EV penetration. However, the additional benefit of controlled 
charging in high wind-penetration scenarios is much smaller. Thus the benefits of controlled charging are general 
to power systems and not specific to wind integration under the scenarios examined. We also examine the 
tradeoff between adding new capacity to the system versus controlled charging in order to accommodate high 
wind penetration scenarios, finding that controlled charging reduces the number of combined cycle gas plants 
that would otherwise be built. 

2.  Methods 

2.1   Model Overview 

A mixed integer linear programming (MILP) capacity expansion model with hourly unit commitment and 
dispatch, plus hourly vehicle availability and charging rate finds the optimal combination of new power plants 
and controlled vehicle charging to meet demand at lowest costs. Capacity expansion optimizes which power 
plants should be added to the system, if any. Unit commitment and dispatch determine which plants will be on 
in each hour and the level of output for each. The model also determines the rate of charging in each hour for 
each of a set of vehicles, where the set of vehicle driving profiles are selected to be representative of the U.S. 
vehicle population. The model assumes the penetration of plug-in vehicles that must be charged is exogenous, 
and the grid operator can choose a percentage of the vehicles to participate in a controlled charging program for 
a given annual payment. We vary the number of vehicles present in the system and the amount of the annual 
payment to vehicle owners in a sensitivity analysis. The model constrains electricity generation to meet the load 
each hour, while keeping all plants within their operating constraints and satisfying a Renewable Portfolio 
Standards (RPS) that define a minimum percentage of overall power generation that must be supplied by wind1. 
Figure 1 shows a graphical representation of the framework used. 

                                                           

1 As the cheapest renewable energy source by levelized cost, wind is likely to make up the bulk of power installed to meet RPS. Some RPS policies include 
specific set-asides for solar power, but these are very small: 0.2%-2.5% [2]. We assume the RPS will be satisfied entirely by wind. 
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Figure 1: System Overview - Energy is provided by conventional power plants and wind plants and 
must meet the demand from plug-in vehicles and non-vehicle load in each time step. 

2.2   Power Plant Fleets 

We construct two different power plant fleet scenarios using the power plant fleet characteristics from the New 
York Independent System Operator (NYISO) area: one is used to examine a scenario with sufficient existing 
capacity to meet non-vehicle load (Fixed Capacity Scenario); and the second where capacity expansion is required 
regardless of electric vehicle penetration (Capacity Expansion Scenario). Because NYISO has significant amounts of 
hydro power for which operational data is unavailable, we construct the first power system by adding additional 
fossil fuel plants to make a fleet with the same total capacity as NYISO. In order to create a Capacity Expansion 
Scenario, we reduce the starting fleet by using only the existing nuclear, coal, oil and natural gas capacity from 
NYISO. Individual plant data were not available for all fossil fuel plants in NYISO, so the fleet was chosen from 
a sample of plants in NYISO, ERCOT and PJM with available data, optimizing to match capacity and heat rate 
distributions for each generation type in NYISO. Because of the missing data, the fleets used in this analysis are 
not meant to exactly replicate the New York system, but rather serve as a test system with realistic plant 
distributions matched to a realistic load. Average ramp rates and minimum generation levels by generation type 
were taken from Ventyx [13], and power plant capacities and heat rates were taken from the National Electric 
Energy Data System (NEEDS) [14]. 
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2.3   Electric Vehicle Fleet 

We model a fleet of plug-in hybrid electric vehicles using the National Highway Travel Survey (NHTS) data set 
[15], which contains data for one day of driving for approximately 900,000 different passenger cars across the 
United States. While load from uncontrolled vehicles is calculated from all passenger vehicles in the dataset, the 
controlled-charging scenarios use 20 representative driving profiles for computational tractability (weighted 
profiles were selected to match the characteristics of the overall data set -- see Appendix A for more detail). We 
assume the vehicles only charge after their last trip of the day and must be either full or maximally charged by 
their first trip of the day if controlled by the system operator in the controlled charging program. The charging 
program alters the rate of charge for each vehicle but does not withdraw power from the battery (preventing 
additional battery degradation). We assume vehicle owners receive a set annual fee for participating in the 
controlled charging program, with the system operator determining how many vehicles will be paid for 
participation. We perform a sensitivity analysis to examine a range of vehicle characteristics, shown below in 
Table 1, as well as different vehicle penetration levels and payment to vehicle owners.  

Table 1: Ranges of values used to reflect the uncertainty in the characteristics of the future plug-in 
vehicle fleet. The base case for the battery size comes from the Chevy Volt, allowing for roughly 35 
miles of driving on electric power, with minimum and maximum battery sizes allowing for 5 miles and 
60 miles of electric driving, respectively. The range of charge rates come from the three standard levels 
of electric vehicle charging. Level 1 charging can be achieved from a normal household 120 V plug and 
is used as the minimum. Level 2 charging requires a 240 V outlet, such as those used by larger 
household appliances, but is more convenient for vehicle owners and is used as the base case. Level 3 
charging requires higher voltage and current levels than typically available on the household level but is 
possible at future service stations and is the upper bound on vehicle charge rates. Total fleet size in 
New York is 9 million passenger vehicles, and the range of 1% - 15% plug-in vehicle penetration 
represents 90,000 to 1,350,000 plug-in electric vehicles. 

Vehicle Fleet Characteristics Minimum Base case Maximum 
Battery Size  5 kWh 16 kWh 24 kWh 
Maximum Charging Rate 1.2 kW 7.4 kW 30 kW 
Plug-in Vehicle Penetration 1% 10% 15% 

2.4   Wind Power Data 

We use modeled wind production data for all potential, land-based wind sites in New York reported in the 
Eastern Wind Integration and Transmission Study (EWITS) dataset [16]. EWITS lists all the sites in the Eastern 
Interconnect that would be needed in order to reach a 30% RPS and contains ten-minute modeled wind plant 
output for these sites for 3 years from 2006 to 2008. We convert the ten-minute data to hourly resolution for 
model tractability. We then add wind sites from the EWITS data set to our model in order of highest capacity 
factor. We investigate an RPS range from 0% to 20% to allow for additional wind plants to be built in all 
scenarios without making use of offshore wind, as it is uncertain that offshore wind sites will be widely utilized 
by 2025.  
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We use modeled wind data instead of measured output data from existing wind sites so that wind capacity could 
be expanded beyond existing levels. Because wind production is dependent on local weather patterns and 
geography, existing empirical wind data cannot be easily scaled up to include new sites. The EWITS and Western 
Wind and Solar Data are the only existing public sources for a time series prediction of future wind production 
with future wind sites already selected. Although the meso-scale weather model used to produce the wind speed 
data in these datasets under-predicts high-frequency variability of wind speeds, the effect on the modeled power 
output is small for small wind plants, and roughly equivalent to filtering that should take place from geographic 
diversity within large wind plants [17].    

2.5   Load Data 

We use five minute demand data for the New York ISO in 2006, again converted to hourly resolution. As load is 
predicted to remain within 1% of its current level by 2025 [18], this 2006 data is used as non-vehicle load without 
any scaling. In the future, more areas can be tested in this model by using the corresponding EWITS and load 
data. It is important to use load and wind data from the same time and place to account for temporal and 
geographical correlations. 

To ensure a reasonable computation time, we chose four different seasonal periods of five days each to capture 
periods of high and low load (including the year’s peak load), while keeping the average load over the four 
periods equal to the average load of the year, 19 GW. Given the wind plants needed to meet the 20% RPS 
standard over the course of the entire year (when run as must-take), the wind generation from the modeled wind 
plants in these four periods is both sufficient to meet the RPS standard within the twenty days without building 
additional wind plants, and has an average power within 10% of the annual average wind power. Within each of 
the four periods, plant operating constraints apply. The model’s capacity expansion variables apply 
simultaneously across all four periods, along with the percent of electric vehicles with controlled charging.  

2.6   Optimization 

The optimization model minimizes new power systems cost required to meet vehicle and non-vehicle demand, 
annualized capital costs of building new plants, operating costs of new and existing plants, and compensation to 
plug-in vehicle owners to participate in a controlled charging program. We vary the value of the annual payment 
to each participating vehicle owner with a sensitivity analysis to understand the willingness to pay of the system 
operator. The output of the model includes the percent of vehicles participating in controlled charging, the 
charging schedule for each driving profile, the power plant generation schedule, and the number of additional 
plants to be built by fuel type.  

The constraints are typical for economic unit commitment and dispatch models with plug-in vehicles, but they 
are adapted to allow for additional binary variables to represent new power plant construction and a variable for 
the percentage of plug-in vehicles participating in the controlled charging program. The overall system must 
meet the existing non-vehicle load plus the vehicle load in every time step, while satisfying the RPS over the 
twenty days. In addition to meeting the load, the system must also provide sufficient spinning and non-spinning 
reserves, as defined in Appendix B, and meet the 15% reserve margin above peak load recommended by FERC. 
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Every power plant has its own set of operating constraints. The nuclear plants have a constant generation level. 
All fossil fuel plants have a maximum output capacity, ramp rate limitations, and minimum on and off times. 
The wind power plants have a generation potential at each time step based on the wind behavior modeled in the 
EWITS database. Wind curtailment is not explicitly penalized in the objective function, and anywhere from zero 
to of the full potential wind generation may be used in each time step, as long as the RPS is satisfied. Because the 
initial capacity of wind is the minimum number of wind plants that can generate enough wind energy over the 20 
day time period to meet the RPS, if the system operator chooses to curtail, additional wind capacity must be 
installed to make up for the lost energy, incurring additional capital costs. Vehicle charging levels may change 
within a single time step but must not exceed the power limit of the circuitry and must keep the battery between 
its minimum and maximum states of charge. Vehicles may only charge at home after the last trip of the day. 
Further, vehicles are driven in charge depleting mode (using electricity as the sole propulsions source) until the 
battery has reached its minimum state of charge, as assumed by Sioshansi and Denholm [10]. The full 
mathematical formulation of the mixed-integer linear optimization model is defined in Appendix B. 

3.  Results 

Controlled charging of electric vehicles reduces peak load and can reduce wind curtailment. A sample dispatch 
for the 20% RPS case is shown in Figure 2 below both with and without controlled charging in the Fixed 
Capacity Scenario (where the initial power plant fleet capacity is sufficient to meet all load). The figure show that 
controlled charging significantly lowers the peak demand in the first three periods and reduces wind curtailment 
and coal plant ramping. 
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Figure 2: Seasonal dispatch in the Fixed Capacity Scenario given 10% vehicle penetration and a 20% 
RPS for uncontrolled charging in the hourly model, controlled charging in the hourly model, and 
controlled charging in the fifteen minute model. 
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3.1   Cost Savings 

Our main results, summarized in Table 2, suggest that controlled charging can reduce system costs. Given a 10% 
penetration of electric vehicles of the total 9 million New York vehicles, controlled charging reduces power 
generation by $65-$100 million dollars a year compared to the uncontrolled charging scenario. Controlled vehicle 
charging allows for shifting generation to cheaper plants and to off-peak hours. As shown in Table 2, controlled 
charging is most valuable in the Capacity Expansion Scenario, as the controlled charging program offers the 
opportunity to change which types and how many new power plants are built in addition to influencing plant 
operation. In the Fixed Capacity Scenario with a stagnant non-vehicle load, the additional vehicle load can be 
accommodated without building any new capacity, as the New York system is already operating with more 
capacity than required by the 15% reserve margin.. In all cases, delayed charging is able to capture some, but not 
all, of the cost reductions offered by controlled charging. It is interesting to note that, regardless of the capacity 
scenario, when there is a 20% RPS, controlled charging offers slightly greater cost reduction compared to the 
same system without wind. However, these savings are much smaller than the savings associated with shifting 
vehicle load and eliminating the need for capacity expansion through controlled charging. A detailed breakdown 
of the costs for each payment level in each scenario can found in the Appendix C. 
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Table 2: Comparison of cost savings from controlled electric vehicle charging in the Fixed Capacity 
Scenario and Capacity Expansion Scenario for a 0% and 20% RPS, given different charging scenarios: 
Uncontrolled Charging, which uses the entire set of vehicles from the NHTS and begins as soon as the 
vehicle arrives home for the day; Delayed Charging, which also uses the entire set of vehicles from the 
NHTS and begins charging as late as possible before the vehicle leaves for the next day’s trip while still 
allowing for maximal charge; and Controlled Charging, which uses the set of 20 representative vehicles 
and optimally charges each vehicle as part of the dispatch optimization, given a $0 payment to vehicle 
owners for participation. The maximum savings are calculated as the difference between the 
Uncontrolled and Controlled Charging system costs. The system costs for each system without electric 
vehicles are given as a reference, and reduction in vehicle integration costs is found by dividing the 
difference in costs between uncontrolled charging vs. controlled charging with difference in costs 
between uncontrolled charging vs. no vehicles. 

  

Fixed Capacity Scenario 
(Starting Capacity: 34,700 MW) 

Capacity Expansion Scenario 
(Starting Capacity: 27,500 MW) 

0% RPS 20% RPS 0% RPS 20% RPS 

A. System Costs with No Electric Vehicles 
(Reference) 

3.56 
$billion/year 

4.42 
$billion/year 

4.05 
$billion/year 

4.89 
$billion/year 

B. System Costs with Uncontrolled 
Charging 

3.69 
$billion/year 

4.53 
$billion/year 

4.20 
$billion/year 

5.04 
$billion/year 

C. System Costs with Delayed Charging 
3.65 

$billion/year 
4.49 

$billion/year 
4.18 

$billion/year 
4.98 

$billion/year 
D. System Costs with 100% Controlled 
Charging and $0 Payment to Vehicle 
Owners 

3.62 
$billion/year 

4.46 
$billion/year 

4.10 
$billion/year 

4.93 
$billion/year 

Maximum Cost Savings with Controlled 
Charging [B-D] 

65 $million/year 69 $million/year 97 $million/year 
110 

$million/year 
Operational Cost Savings %, Capital Cost 
Savings % 

100%, 0% 100%, 0% -27%, 127% 30%, 70% 

Reduction in Vehicle Integration Costs 
with Controlled Charging  
[(B-D)/(B-A)] 

54% 63% 66% 73% 

 

There are limitations to these results. On one hand, they may overestimate the value of controlled charging by 
assuming perfect knowledge of vehicle trips and wind generation. Avoiding incomplete charging of vehicles 
when vehicle trips and wind generation are uncertain may require safety margins that limit the flexibility of 
controlled charging. On the other hand, controlled charging may provide additional value to the grid when 
accounting for the forecasting error of the wind generation, as vehicle charging can be changed on time scales 
much faster than the ramping constraints of conventional power plants. Additionally, ignoring transmission 
constraints may over- or under-estimate this value depending on the difference between the distribution of 
electric vehicles and other flexible resources in congested areas of the grid. It is possible that controlled charging 
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of electric vehicles could provide additional value by mitigating transmission congestion, but they may be unable 
to absorb wind energy if separated from wind resources by congested areas of the grid. The results from this 
model do give a good estimate of the operational cost savings possible considering time scales greater than an 
hour. And because the cost reductions result largely from shifting peak load, they should remain relatively 
unchanged with more detailed models.  

We examined the sensitivity of the cost savings to several different important input assumptions, the first of 
which was the hourly time scale. We optimized grid operations over the same twenty-day period with a fifteen 
minute time scale using a modified version of the optimization model described further in Appendix B.  This 
model did not include the option of capacity expansion so that each day’s dispatch could be optimized 
sequentially.  This allowed for a manageable run times even with four times as many variables per day. Total 
system costs for a 10% vehicle penetration (with uncontrolled charging) were ~2% higher in the fifteen minute 
model given a 0% RPS and ~7% higher given a 20% RPS compared to the hourly model. Higher costs were 
expected especially in the high wind case because there is more total ramping to accommodate the shorter time 
scale examined. The cost reductions associated with controlled charging are slightly lower in the fifteen-minute 
model, as shown in Figure 3. The higher time resolution of the data leads to a lower peak demand in the 
uncontrolled charging case. This effect overwhelms any additional cost savings that might occur at fifteen-
minute time resolution due to additional flexibility and indicates that the cost reduction estimates at hourly 
resolution are optimistic. Both time resolutions produce similar trends between 0% and 20% RPS given the same 
initial generation capacity. These results suggest that the hourly time scale used in the base case is likely sufficient 
resolution -- it does not miss a major source of benefits from controlled charging. Although it is possible that 
even shorter time scales may allow for controlled charging to provide more benefit through participation in the 
regulation market, this requires more extensive communication infrastructure, and this market has been shown 
to saturate with a relatively small number of vehicles [7]. In addition, the fifteen minute load control framework 
is similar to many existing demand response programs that use one-way radio controlled switches and cycle loads 
roughly every 15 minutes [19]. 
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Figure 3: Annual cost savings due to controlled charging for different models given 0% and 20% 
renewable portfolio standards.  

We also investigated the sensitivity of the results to changes in the parameters of the electric vehicle fleet. The 
potential cost savings from controlled charging is approximately linear with the penetration of electric vehicles, 
as shown in Figure 4. Regardless of the vehicle penetration, controlled charging is worth more in scenarios with 
high RPS and capacity expansion. In the Capacity Expansion Scenario with 20% RPS, the cost reduction is 
slightly higher than the linear trend at the 15% vehicle penetration because controlled charging prevents 
construction of an additional gas plant.  The Fixed Capacity Scenario with 20% RPS has a slightly higher cost 
reduction at 10% vehicle penetration than the linear trend because it has the most switching away from gas 
turbine generation. 
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Figure 4: Sensitivity of the maximum annual system cost savings possible through 100% controlled 
electric vehicle charging compared to uncontrolled charging for a range of vehicle penetrations from 
0% to 15% of a 9 million passenger vehicle fleet.  

Increasing the maximum charge rates has diminishing returns, as shown in Figure 5. Level 1 charging restricts 
the peak power that occurs with uncontrolled charging, so controlling the charging is much less valuable. In the 
uncontrolled charging scenarios, increasing to Level 3 charging from Level 2 charging only minimally increases 
the peak load because the total amount all vehicles can be charged is limited by battery size and total driving 
distance. As battery size increases, the vehicles are able to drive more miles per day on charge depleting mode. 
This increases the value of controlled charging to the system to a certain extent, as the uncontrolled peak load 
becomes more and more expensive. However, this benefit is limited because the more miles on charge depleting 
mode, the less flexibility there is to move charging to a later time as more of the hours need to be used. 
Examining a range of 5 kWh batteries to 24 kWh batteries, we see cost reductions differ from the base case by 
$1 to $35 million dollars per year depending on the scenario due to the competing effects discussed above.   
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Figure 5: Sensitivity of the maximum annual system cost savings possible through 100% controlled 
electric vehicle charging compared to uncontrolled charging for Level 1 (1.2 kW), Level 2 (7.4 kW), and 
Level 3 (30 kW) charging. Only Level 1 and 2 are likely to be used in residential settings in the 
foreseeable future. 

3.2   Capacity and Generation Mix 

Figure 6 summarizes plant capacity and generation results for four cases. In the Fixed Capacity Scenario with no 
RPS, controlled charging reduces generation from gas-combined cycle and oil/gas steam plants and increases 
generation from coal plants slightly, bringing coal plants to very high utilization levels. The lack of both the 
cheap energy from wind and its variability means that any coal capacity in cases with no RPS is utilized nearly 
continuously with very few startups and shutdowns.  Not surprisingly, in the Fixed Capacity Scenario under a 
20% RPS, controlled charging results in reduced generation from all fossil fuel plants types, replacing it with 
wind generation.  

In the Capacity Expansion Scenario, controlled charging results in reduced plant construction: when there is no 
RPS fewer gas combined cycle and coal plants are built, and for a 20% RPS, no additional coal plants are built 
because of the abundance of low cost and high variability wind.  Instead, most additional capacity is combined 
cycle gas.  Given controlled charging, far fewer combustion plants are built compared to the uncontrolled 
charging scenario, and in exchange a small number of gas turbine plants are built to meet reserve margin and 
ramping requirements.  These plants have higher operating costs than coal and combined cycle plants but have 
the lowest capital costs.  
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Controlled charging in the Capacity Expansion Scenario also shifts generation to allow for cheaper capacity 
expansion options. With no RPS, controlled charging slightly shifts the generation from coal to natural gas and 
oil. Under a 20% RPS, controlled charging reduces gas combined cycle generation and slightly increases oil/gas 
steam generation to allow for reduced construction of combined cycle plants.  

In both the Fixed Capacity Scenario and the Capacity Expansion Scenario, wind curtailment is reduced with 
controlled charging, but the curtailment that occurs even without controlled charging is a very small percentage 
of total wind generation, as seen by the slight difference in wind generation between the controlled and 
uncontrolled scenarios (Figure 6). Because plants have specified capacities and are added discretely until the wind 
generation potential is greater than the 20% of all load required by the RPS over the course of a year, a small 
amount of wind generation from the last plant added is extra and may be curtailed by the system operator while 
still meeting the RPS. Any larger amount of curtailment requires building additional wind plants. Curtailing the 
extreme peaks of wind production could help in reducing system costs by reducing the ramping and shut downs 
of conventional power plants. These cost reductions would have to exceed the capital costs of the new wind 
plants to make up for the energy lost in the curtailed peaks in order to meet the RPS. We find that regardless of 
the cost of controlled charging, it is never cost effective in the cases examined here to build extra wind plants in 
order to add flexibility to the system through the option of wind curtailment.   
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Figure 6: Comparison of capacity and generation data with and without controlled electric vehicle 
charging by generator type for each scenario. The following abbreviations are used for the generation 
types: W- Wind, CT – Gas Combustion Turbine, CC – Gas Combined Cycle, O/G – Oil/Gas Steam, C 
– Coal, N – Nuclear. Generation axis is scaled so that average capacity factor can be seen as percent of 
installed capacity bar filled with generation. Peak power production is calculated based on hourly data.  

4.  Conclusions 

In our test systems, controlled charging of electric vehicles reduces systems costs and reduces the impact of 
integrating the vehicles in to the electricity system by 50-70%, depending on the scenario. Cost reductions that 
result from employing controlled vehicle charging are estimated at $70-$100 million/year, given a 10% electric 
vehicle penetration, perfect information, no transmission constraints, and a 1-hour resolution. Larger cost 
reductions can be found in systems requiring capacity expansion because controlled charging reduces the need 
for new plant construction and provides flexibility in deciding which plants to build. Capacity expansion may be 
needed in systems where coal plants are forced to retire due to emissions regulations or when significant load 
growth is expected. When capacity expansion is needed together with substantial wind integration, controlled 
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charging may provide additional reductions in plant construction requirements; however, the effect of controlled 
charging on overall systems costs is not much greater in high-wind power systems compared to low wind 
systems. This suggests that system operators should not rely on controlled vehicle charging to significantly help 
reduce wind integration costs. This result holds when examining sub-hourly time resolution.  However, the 
potential of controlled charging in high wind penetration scenarios could vary when considering load and wind 
forecasting error and transmission constraints. Such considerations were not modeled here due to tractability 
issues. 

In most of our scenarios, at 10% electric vehicle penetration or higher, controlled charging provides enough 
system benefits to pay some vehicle-owners $100/vehicle/year to participate (see cost data in Appendix C). A 
payment of $100/vehicle/year may be attractive enough for some vehicles owners to participate in a controlled 
charging program with an average savings of up to 0.2 cents/kWh of charging, as long as the necessary 
equipment can be obtained by the vehicle owner or system operator at low cost. The cost benefits of controlled 
charging scale fairly linearly with the number of electric vehicles, so if the equipment costs per vehicle are low 
enough and the overhead costs of program are kept low, a controlled charging program could pay for itself even 
at low electric vehicle penetrations.  

Building additional wind plants beyond RPS requirements in order to allow curtailment and mitigate extreme 
generation fluctuation is not cost effective in our model. Although the energy lost by curtailing peaks is minimal 
and therefore requires little additional capacity to make up for it, the high capital cost of wind farms outweighs 
any benefit to the grid. 
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Appendix A: Selecting Representative Driving Profiles 

The capacity expansion, unit commitment, and dispatch model uses driving profiles to determine the state of 
charge of the plug-in vehicles in the model. Representative driving profiles are chosen from the 2009 National 
Highway Travel Survey (NHTS) data set, which contains data for one day of driving from approximately 900,000 
different passenger cars across the United States. These profiles include information for each vehicle on all trips 
taken during that day, including distance traveled, starting and stopping times, and starting and stopping 
locations, so that plug-in vehicle expected battery state of charge can be tracked throughout the day with a 
variety of different location-dependent charging schemes. Vehicles in the controlled charging program are 
allowed to charge when parked at home after the last trip of the day and must be fully charged (or charged as 
much as possible if complete charging during the time window is impossible with the modeled charging 
infrastructure) by the first trip of the day. Uncontrolled vehicles begin charging after arriving home for the last 
time that day and charge at the maximum rate until fully charged or leaving for the first trip of the next day. 
Each vehicle discharges its battery throughout the day based on the number of miles driven until the battery 
reaches its minimum state of charge. 

In order to create a tractable controlled charging model while maintaining a representative dynamic vehicle load 
for the power system, a sample of 20 profiles were selected and optimally weighted to best match the aggregate 
characteristics of the entire 900,000 profiles available in the NHTS of passenger cars. These aggregate 
characteristics were evaluated for each hour and included the average number of miles driven in that hour, the 
average cumulative number of miles driven until that hour, the percent of vehicles at home, and the percent of 
vehicles parked.  
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Figure A.1: Aggregate characteristics for all passenger vehicles in the NHTS dataset and best match 20 
optimally weighted vehicle profiles drawn from the NHTS dataset over 1 million random draws. The 
percent of vehicles at home dips during the day, and only a small percentage of the fleet is driving at 
any time. 

20 vehicle profiles were randomly selected from the NHTS data set; the characteristics of the resulting fleet were 
compared to those of the full NHTS data set using the distance metric below; and this process was repeated one 
million times, retaining only the set of 20 that minimizes the distance metric. 
 

distance metric = ��∆ℎ𝑡
2 + ∆𝑝𝑡2 + ∆𝑜𝑡2 + ∆𝑑𝑡

2 + �
∆𝑎𝑡

max𝑡 (𝑎𝑡)
�
2

+ �
∆𝑐𝑡

max𝑡 (𝑐𝑡)
�
2

� 
𝑡

 

where ∆ℎt and ∆𝑝 t are the difference in the percent of drivers in the sample vs. the full data set at home and 
parked at time step t, respectively, and ∆𝑎t and ∆𝑐t are the difference in average miles and cumulative miles, 
respectively, at time step t. The distance terms are normalized so that all six terms will be of comparable scale. 
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Each of the 20 vehicles was weighted by a variable wi, i∈{1,2,…,20}, wi∈[0,1], Σiwi=1; wi was optimized to 
minimize the distance metric above. This process was repeated 1 million times and the best match optimally 
weighted profile of 20 vehicles was retained. The weighted sample can be thought of as a case where some 
selected vehicle profiles are representative of a larger portion of the full NHTS dataset than others. 

As shown in Figure A.1, the final sample of 20 weighted profiles does not perfectly match the aggregate 
characteristics of all passenger vehicles. However, it much more closely matches the aggregate data than 20 
randomly chosen profiles and according to the distance metric shown below, it is just as close as 200 randomly 
chosen profiles and allows for a feasible computation time. While we track day-to-day differences in wind and 
load, we assume that vehicle travel patterns are the same every day (due to lack of data on daily variability). 
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Appendix B: Optimization Model 

Hourly Model 

The main optimization model includes capacity expansion and unit commitment, minimizing new plant 
construction costs and the cost of plant operations, in addition to the payment made to plug-in hybrid vehicle 
owners in exchange for having their vehicles participate in the controlled charging program.  

The model contains the following sets of plants, vehicles, and time steps: 

Ρ is the set of all plants, which are partitioned into wind plants WΡ and conventional plants CΡ , so that 

C WΡ ∪Ρ = Ρ  and C WΡ ∩Ρ =∅ . Conventional plants are similarly partitioned into existing plants 

that are fixed and new plants that the optimizer may choose to build: NEW EXT
C C CΡ ∪Ρ = Ρ . All wind 

plants are assumed to be new and are built in order of capacity factor to meet the RPS.  

NEW NEW
GT CΡ ⊆ Ρ and EXT EXT

GT CΡ ⊆ Ρ indicate the gas turbine power plants. 

Ε is the set of all plug-in vehicles. 

Τ is the set of all time steps. AM
jΤ ⊆ Τ contains the time steps at which plug-in vehicle j must be fully 

charged (or charged as much as possible) each day. AM
jΤ is taken as the start of the first trip of the day 

for each vehicle profile.  

The formulation is as follows: 

Minimize the cost of annualized capital investments, payments to vehicle owners, and the operating costs in each time 
step: 

( )
W C

NEW
C

BLD BLDC BLD BLDW EV EV SUC SDC F G
CTRL

Payments to 
PHEV OwnersNew Plant Construction Cost of Plant Ope

EV

rations

minimize y y x x x x
itn n w w it it i

w P t i
i

n

c c c n c h
∈ ∈Τ ∈Ρ∈Ρ

 
+ + + + + 

 
∑ ∑ ∑ ∑
 
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Symbol Description Domain Units 
Ex jt  

Sum of usable energy remaining in all vehicles in controlled 
charging program of type j in time step t +  MWh 

EV
CTRLx  Percentage of plug-in vehicles in the controlled charging 

program 
[0,100] % 

EVx jt  
Sum of power to charge all vehicles in controlled charging 

program of type j in time step t +  MW 

Gx it  Power generated in time step t by plant i  
+  MW 

SDx it  
Shut-down variable for the minimum on/off constraints 
for plant i at time t. Formulation forces this to 1 (plant 

shutting down) or 0 (plant not shutting down) 

[0,1] NA 

SDCx it  Shut-downs for plant i in time step t 
+  NA 

NSRx it  Non-spinning reserve power for plant i in time step t 
+  MW 

SRx it  Spinning reserve power for plant i in time step t 
+  MW 

SUx it  
Start-up variable for the minimum on/off constraints for 

plant i at time t. Formulation forces this to 1 (plant starting 
up) or 0 (plant not starting up) 

[0,1] NA 

SUCx it  Start-up cost for plant i in time step t 
+  NA 

Wx t  Total wind generation taken in time step t 
+  MW 

BLDCyi  Binary decision =1 if plant i is built, 0 otherwise {0,1} NA 

BLDWyw  Binary decision =1 if wind plant i is built, 0 otherwise {0,1} NA 

ONyit  Binary decision =1 if plant i is on at time i, 0 otherwise {0,1} NA 

 

Subject to: 

System Constraints 

Balancing Load and Generation 

C

W G EV EV EV UCTRL
CTRLx x x (1 x )t it jt t

j
t

i
L n v t

∈Ρ ∈Ε

+ = + + − ∀ ∈Τ∑ ∑  

 

Wind generation must meet RPS standard 

C

R SW GP Wx x xt t it
t t i

E
∈Ρ

 
≥ + 

 
∑ ∑ ∑
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Required total reserves (spinning plus non-spinning)  

( )
C C

NSR SR TR W G W Wx x x x xit it t it t
i t i

R R t
∈Ρ ∈Ρ

 
+ ≥ + + ∀ ∈Τ 

 
∑ ∑ ∑

 

Required spinning reserves 

( )
C C

SR SR W G W Wx x x xit t it t
i t i

R R t
∈Ρ ∈Ρ

 
≥ + + ∀ ∈Τ 

 
∑ ∑ ∑

 

Plant Operating Constraints 

Wind generation must be less than or equal to potential wind generation 

W

W BLDWx yt w
w

wtp t
∈Ρ

≤ ∀ ∈Τ∑
 

Conventional plants generation limits 

The capacity of plants that are on can be used for generation and spinning reserves. 

G SR O
C

Nx x y ,iit it it k i t+ ≤ ∀ ∈Ρ ∀ ∈Τ  

Non-spinning reserve comes only from plants that are off but can start quickly, i.e. gas turbines  

NSR BLDC ON NEW
GTx (y y ) ,iit it it k i t≤ − ∀ ∈Ρ ∀ ∈Τ  

New plants can only be on if they are built. 

ON BLDC NEW
Cy y ,nt n n t≤ ∀ ∈Ρ ∀ ∈Τ  

Plants have to operate above minimum generation  

G ON
Cx y ,it i itm i t≥ ∀ ∈Ρ ∈Τ  

Ramp rate limits for a plant already in operation. If in the process of starting up or shutting down, the plant goes to min 
gen. The time requirement for ramping up to and down from min gen is built into the minimum on and off times. Spinning 
reserves have to be possible to reach in the time step. These reserves are only used when there is too little generation, so 
they are not included when considering ramping down. 
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G DWN ON ON ON G
( 1) ( ) ( 1) C( )x y (y y ) x ,i t i i t i i t i t itr s m i t− −− − − ≤ ∀ ∈Ρ ∈Τ  
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Vehicle Constraints 

Vehicle charge rate is limited by charging level, the number of vehicles controlled, and the portion of the hour the vehicle is 
at home 

EV EV EV
CTRLx x ,jt j jt jl p w n j t≤ ∀ ∈Ε ∈Τ  

The energy stored in the vehicle batteries must stay within the battery limits 

LO EV EV E HI EV EV
CTRL CTRLx x x ,j j j jt j j jb b w n b b w n j t≤ ≤ ∀ ∈Ε ∈Τ  

The energy stored in the batteries of each vehicle profile depends on how much energy they had in the last period, the 
charging, and the discharging due to driving 

E E EV EV EV
( 1) CTRL

ELECx x x x ,jt j t jt jt js d w n j tη−= + − ∀ ∈Ε ∈Τ
 

Net battery energy requirement at the beginning of the first trip of the day 

E AM EV EV AM
CTRLx x ,jt j jb b w n j t T≥ ∀ ∈Ε ∈  
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Fifteen Minute Model 

For the fifteen minute model, most of the constraints remain the same, but everything regarding capacity 
expansion is cut out of the objective function and constraints. Additionally, instead of executing the full twenty 
day period at once, we optimize over a 48 hour window, save the first 24 hours of data as the optimal operation 
for that day, move the window forward 24 hours and run another 48 hour optimization.  This is repeated until 
optimal operation has been found for all 20 days. This shorter optimization window allows for a greater time 
resolution in the data while retaining similar run times. The new objective function used for each 48 hour period 
is shown below. By removing the payment to vehicle owners from the objective function, we assume a 

$0/vehicle/year payment in all cases and separately dictate EV
CTRLx as 1 or 0. For the sensitivity analysis, we are 

only interested in the extremes of all vehicles being controlled or none to understand the largest possible cost 
savings.  

Minimize the cost operating costs in each time step: 

( )
C

48

SUC SDC F G

Cost of Plant Operations

minimize x x x
itit it i

it
ic h

∈Ρ∈Τ

 
+ + 

 
∑ ∑


 

No additional plants are provided to be built so the constraint requiring plants to be built in order to be turned 
on is dropped. The RPS requirement is also dropped because it can only be used across all time periods at once. 
Instead, we assume that the RPS functions simply as a requirement to build sufficient wind capacity so that 20% 
of the energy could be generated by wind. The model uses the same set of wind farms as used in the hourly 
model with the 20% RPS standard. Because of the low marginal cost of wind, most of this wind energy will be 
utilized without a hard constraint. Constraints are added to hold the unit commitment variables constant through 
a single hour so that plants can only be turned off or turned on each the hour while generation levels are free to 
change every fifteen minutes.  
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Model Parameters 
Symbol Description Base Value Sensitivity 

Values 
Units 

jb  Battery capacity of vehicle j 16 5, 24 kWh 

AMb
 

Battery charge requirement in the morning 100/max possible* - % 

HI
jb  

Battery higher limit for vehicle j 100 - % 

LO
jb  

Battery lower limit for vehicle j 30 - % 

BLD
nc  Capital cost of each new plant i EIA 2011 Reference Case  - $/year 

EVc  Payment to vehicle owner for participation in 
controlled charging program 

$0 $100, 
$200, $300 

$/vehicle/yr 

F
ic  Fuel cost of plant i EIA 2011 Reference Case - $/Btu 

jtd  Distance driven by each vehicle of type j in 
time t 

NHTS Sample - Miles 

RPSE  RPS energy requirement 10% 0%, 20% % 

if  Minimum time off for plant i WECC - # time steps 

ih  Heat rate for plant i Ventyx - Btu/MWh 

ik  Size of each plant i Ventyx - MW 

tL  Non-vehicle load at time t NYISO - MW 

jl  Charge limit of vehicle j 9.6 1.2, 30 kW 

im  Minimum generation for plant i Ventyx - % 

EVn  
Number of plug-in vehicles total 10% 1%, 15% % of total vehicles 

io  Minimum time on for plant i WECC - # time steps 

wtp  Wind power potential at time t from each 
wind plant 

EWITS data - MW 

jtp  Percent of time step vehicle type j is home NHTS sample  - % 

SRR  Spinning reserve requirement  3% - % 

TRR  Total reserve requirement 6% - % 

WR  Extra spinning reserves based on a percentage 
of the wind power at time t 

5% - % 

DWN
ir  Ramp down rate for plant i  Ventyx - MW/hr 

UP
ir  Ramp up rate for plant i  Ventyx - MW/hr 

s
 Length of time step 1 0.25 hr 

UCTRL
tv

 
Charging power to all uncontrolled electric 

vehicles at time t 
NHTS database - MW 

jw  Weighting factor for vehicles that are of type j NHTS sample  - % 

ELECη  
Efficiency of vehicle in electric mode .3 - kWh/mile 

   *Vehicles which cannot be charged completely during their longest period at home are always charged for that entire time period. 
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Appendix C: Additional Results 

C.1 Detailed Cost Breakdown 

Table C.1: Costs given a 0% RPS and 10% vehicle penetration with different levels of payment to 
electric vehicles for controlled charging in the Fixed Capacity Scenario. Overnight new capital costs 
include the cost of building wind capacity in order to meet the RPS as well as any additional plants. 
Annualized new capital costs represent the cost each year given the lifetime of each plant (50 years for 
coal, 30 years for gas, and 20 years for wind) and a 5% discount rate. Annualized new system costs are 
the sum of the annualized new capital costs, annual vehicle program costs, and annual operating costs. 

Vehicle 
Payment 

($/vehicle/year)  

Percent 
Controlled 

(%) 

Overnight 
New 

Capital 
Cost 

(billion $) 

Annualized 
New 

Capital 
Costs 

(billion $) 

Annual 
Vehicle 
Program 

Costs 
(million 

$) 

Annual 
Operating 

Costs 
(billion $) 

Annualized 
New 

System 
Costs 

(billion $) 

0 100% 4.5 0.29 0 3.3 3.6 

100 48% 4.5 0.29 43 3.4 3.7 

200 0% 4.5 0.29 0 3.4 3.7 

 

Table C.2: Costs given a 20% RPS and 10% vehicle penetration with different levels of payment to 
electric vehicles for controlled charging in the Fixed Capacity Scenario.  

Vehicle 
Payment 

($/vehicle/year)  

Percent 
Controlled 

(%) 

Overnight 
New 

Capital 
Cost 

(billion $) 

Annualized 
New 

Capital 
Costs 

(billion $) 

Annual 
Vehicle 
Program 

Costs 
(million 

$) 

Annual 
Operating 

Costs 
(billion $) 

Annualized 
New 

System 
Costs 

(billion $) 

0 100% 25 2.0 0 2.5 4.5 

100 0% 25 2.0 0 2.5 4.5 
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Table C.3: Costs given a 0% RPS and 10% vehicle penetration with different levels of payment to 
electric vehicles for controlled charging in the Capacity Expansion Scenario. 

Vehicle 
Payment 

($/vehicle/year)  

Percent 
Controlled 

(%) 

Overnight 
New 

Capital 
Cost 

(billion $) 

Annualized 
New 

Capital 
Costs 

(billion $) 

Annual 
Vehicle 
Program 

Costs 
(million 

$) 

Annual 
Operating 

Costs 
(billion $) 

Annualized 
New 

System 
Costs 

(billion $) 

0 100% 10 0.65 0 3.5 4.1 
100 37% 11 0.74 0.03 3.4 4.2 
200 7.2% 12 0.77 0.01 3.4 4.2 
300 0% 12 0.8 0 3.4 4.2 

 

Table C.4: Costs given a 20% RPS and 10% vehicle penetration with different levels of payment to 
electric vehicles for controlled charging in the Capacity Expansion Scenario. 

Vehicle 
Payment 

($/vehicle/year)  

Percent 
Controlled 

(%) 

Overnight 
Capital 
Cost 

(billion $) 

Annualized 
New 

Capital 
Costs 

(billion $) 

Annual 
Vehicle 
Program 

Costs 
(million 

$) 

Annual 
Operating 

Costs 
(billion $) 

Annualized 
New 

System 
Costs 

(billion $) 

0 100% 30 2.3 0 2.6 4.9 

100 94% 30 2.3 0.085 2.6 5.0 

200 0% 31 2.4 0 2.6 5.0 

C.2 Generation Mix 

The generation mix remains fairly similar between the hourly and fifteen minute model. The most noticeable 
differences are the increased use of oil/gas steam turbines and combustion turbines with the fifteen minute 
model, and a corresponding decrease in the use of combined cycle plants. Wind energy is also used less with the 
fifteen minute model because we dropped the hard RPS energy constraint in order to performing each day’s 
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optimization separately to save computation time with larger number of time steps. Using the same wind 
capacity as in the Fixed Capacity Scenario hourly model, the fifteen minute model had only 19% wind by energy.  

 

Figure C.1: Comparison of resulting generation mixes between the hourly and fifteen minute model. 

C.3 Capacity Factors 

In the Fixed Capacity Scenario, combined cycle plants have a lower capacity factor when charging is controlled. 
All conventional power plants except for nuclear which is held at 100% of its capacity at all times have a lower 
capacity factor under 20% RPS compared to a 0% RPS.  
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Table C.5: Capacity factor for each generation type given a 0% RPS and 10% vehicle penetration with 
different levels of payment to electric vehicles for controlled charging in the Fixed Capacity Scenario. 

Vehicle 
Payment 

($/vehicle/year) 

Percent 
Controlled 

(%) 
Nuclear Coal 

Oil/gas 
steam 

Gas 
combined 

cycle 

Gas 
combustion 

turbine 

0 100% 100% 98% 7% 73% 12% 

100 48% 100% 97% 7% 73% 12% 

200 0% 100% 97% 8% 74% 12% 

 

Table C.6: Capacity factor for each generation type given a 20% RPS and 10% vehicle penetration with 
different levels of payment to electric vehicles for controlled charging in the Fixed Capacity Scenario. 

Vehicle 
Payment 

($/vehicle/year) 

Percent 
Controlled 

(%) 
Nuclear Coal 

Oil/gas 
steam 

Gas 
combined 

cycle 

Gas 
combustion 

turbine 
Wind 

0 100% 100% 81% 4.4% 47% 6.5% 36% 

100 0% 100% 82% 4.9% 48% 6.6% 36% 

In low initial capacity scenarios combined cycle plants have a higher capacity factor with controlled charging as 
the controlled charging allowed for fewer combined cycle plants to be built. 
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Table C.7: Capacity factor for each generation type given a 0% RPS and 10% vehicle penetration with 
different levels of payment to electric vehicles for controlled charging in the Capacity Expansion 
Scenario. 

Vehicle 
Payment 

($/vehicle/year) 

Percent 
Controlled 

(%) 
Nuclear Coal 

Oil/gas 
steam 

Gas 
combined 

cycle 

Gas 
combustion 

turbine 

0 100% 100% 97% 7.0% 54% 2.8% 

100 37% 100% 96% 7.0% 50% 2.3% 

200 7.2% 100% 96% 6.2% 49% 2.4% 

300 0% 100% 96% 6.1% 49% 2.4% 

 

Table C.8: Capacity factor for each generation type given a 20% RPS and 10% vehicle penetration with 
different levels of payment to electric vehicles for controlled charging in the Capacity Expansion 
Scenario. 

Vehicle 
Payment 

($/vehicle/year) 

Percent 
Controlled 

(%) 
Nuclear Coal 

Oil/gas 
steam 

Gas 
combined 

cycle 

Gas 
combustion 

turbine 
Wind 

0 100% 100% 86% 5.3% 38% 2.2% 36% 

100 94% 100% 85% 5.1% 39% 2.0% 36% 

200 0% 100% 85% 4.4% 36% 1.2% 36% 
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