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Abstract 

Wind forecasts are an important tool for electric system operators.  Proper use of wind power 
forecasts to make operating decisions must account for the uncertainty associated with the 
forecast. Data from different regions in the USA with forecasts made by different vendors show 
the forecast error distribution is strongly dependent on the forecast level of wind power.  At low 
wind forecast power, the forecasts tend to under-predict the actual wind power produced, 
whereas when the forecast is for high power, the forecast tends to over-predict the actual wind 
power.  Most of the work in this field neglects the influence of wind forecast levels on wind 
forecast uncertainty and analyzes wind forecast errors as a whole.  The few papers that account 
for this dependence, bin wind forecast data and fit parametric distributions to actual wind power 
in each bin.  In the latter case, different parameters and possibly different distributions are 
estimated for each data bin.  We present a method to model wind power forecast uncertainty as a 
single closed-form solution using a logit transformation of historical wind power forecast and 
actual wind power data.  Once transformed, the data become close to jointly normally 
distributed.  We show the process of calculating confidence intervals of wind power forecast 
errors using the jointly normally distributed logit transformed data.  This method has the 
advantage of fitting the entire dataset with five parameters while also providing the ability to 
make calculations conditioned on the value of the wind power forecast.    
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Symbols 

CIα  – Confidence interval at the level of α (0 to 100%) 

cov( ) – Covariance;  cov(A, B) = E[AB] – E[A]E[B], where E is the expectation value 

e  – Wind power forecast error  

F  – Wind power forecast  

F*  – Logit transformed wind forecast  

W  – Actual wind power  

W*  – Logit transformed actual wind power 

Zα  – Number of standard deviations from mean covering α data in a normal distribution 

f ( )  – Probability density function  

ρ  – Pearson’s correlation coefficient 

σ  – Standard deviation 

μ  – Mean 
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1 Introduction 
Wind power experienced substantial growth over the past decade in the U.S. and Europe.  
Installed capacity in the U.S. increased tenfold from 4.2 GW in 2001 to 47 GW in 2011 and now 
provides nearly 3% of total electrical energy [1].  European installed wind capacity increased 
fivefold in the same time period, from 17.3 GW to 94 GW, and produces over 6% of total 
electrical energy [2]. Since wind power is not fully dispatchable, wind forecasts are useful for 
planning and operations in electric power systems.     

Electric system operators rely on wind power forecasts for decision making.  For system 
operators, it is important not only that forecasts are accurate, but that the degree of inaccuracy is 
known.   Operating reserves must be procured in advance to cover the uncertainty of wind power 
forecasts (and load forecasts).  This not only applies to short term operation planning, but also to 
long term resource analysis.  Here we present a model for wind power forecast uncertainty 
dependent on the wind power forecast based on historical wind forecast errors. 

Broadly speaking, there are two approaches in the research literature to model wind forecast 
errors.  One method models all wind power forecast errors as having been drawn from a single 
population with some known parametric probability distribution.  Often a normal distribution is 
used under the assumption that the aggregation of many geographically diverse wind generators 
in a system justifies the application of the central limit theorem (e.g. [3], [4] and [5]).  In other 
work, forecast errors were fit with a Cauchy distribution [6], a hyperbolic distribution [7], and a 
doubly truncated normal distribution [8].   

Modeling all forecast errors with a single distribution makes the assumption that there is no 
dependence of forecast error on the forecast wind power level.  Lange [9] transformed wind 
speed forecast errors into wind power forecast errors using the nonlinear relation of wind power 
to wind speed, which produced a distribution of power forecast errors more sharply peaked than 
the distribution of wind speed forecast errors.  Power forecast errors were also shown to be 
skewed at the extreme values of the forecast range and symmetric near the center of the forecast 
range.   

The other broad approach to modeling wind forecast errors is to condition forecast error 
distributions on the expected level of wind power.  Neilsen et al. [10] determined wind power 
forecast confidence levels conditioned on the forecast wind power using quantile regression.  In 
[11-13] wind data were binned by the wind power forecast values with Beta distributions fit to 
the observed wind power values associated with each bin of power forecasts.  In [14] this method 
was extended to include the extreme value distribution.  In each case, separate distribution 
parameters were required for each bin.   

We present data showing that forecast error distributions for the largest USA wind regions are 
dependent on forecast wind values, and present a method to model wind forecast errors 
conditioned on the forecast value by applying a logit (or logistic) transformation to the wind 
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forecast and actual wind power data. We find that the logit transformed variables can be 
reasonably modeled with a bivariate normal distribution, which is considerably easier to analyze 
than the original data.  This method fits a single model to the entire set of data, meaning that only 
one set of parameters must be estimated, and produces smooth results without discontinuities that 
arise between bins.   

Lau and McSharry [15] and Pinson [16] applied logit transformations to wind power time series 
to make them “more Gaussian” before fitting time series models for wind power forecasting.  
Both papers found that logit transformations of wind power data can be accurately modeled with 
normal distributions.  They then fit statistical time series models to the transformed data to 
generate short term wind power forecasts from 1 to 48 hours.  Here we utilize wind power 
forecasts independently generated by electric power system operators, show that these forecasts 
are also well described by the logit-normal model, and represent the observed and forecast wind 
power pairs as a bivariate logit-normal distribution in which the forecast error is implicitly 
included.  This allows a characterization of the forecast error over the range of time scales for 
which these forecasts are provided.   

This paper is organized as follows.  In section 2 we briefly describe the data used in this study.   
Section 3 contains some discussion on the dependence of wind forecast uncertainty to wind 
forecast values.  In section 4 we outline a method to model this uncertainty by applying a logit 
transformation to the wind forecast and wind power data.  Results are shown for day-ahead wind 
power forecasts at the ISO level.  We also present results using hour-ahead forecasts.  Section 5 
summarizes our conclusions. 

2 Wind data used  
We used wind forecast and actual wind power data from the Electric Reliability Council of 
Texas (ERCOT) and the Midwest Independent System Operator (MISO).  ERCOT’s territory 
covers most of the state of Texas while MISO covers most of the Midwestern portion of the U.S.   

The ERCOT data included hourly wind forecast values for 1 to 48 hour look-ahead times 
covering the years 2009 and 2010.  Included with the forecast data were hourly actual wind 
generation values and hourly estimates of what wind generation would have been if there were 
no curtailments.  When analyzing wind power uncertainty, we used the estimated values of 
uncurtailed wind power since wind curtailments are not considered in wind power forecasts.  
ERCOT curtailed an estimated 17% of wind generation in 2009 and 10% of wind generation in 
2010 [17, 18].   

The estimates of uncurtailed hourly wind generation data were made for ERCOT by AWS 
Truepower based on actual wind generation, meteorological data and curtailment instructions 
sent from ERCOT to individual wind farms.  The AWS analysis assumes that all curtailment 
instructions were followed and that wind turbine availability was known.  In reality, it is not 
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known how well wind farms followed curtailments instructions, and it was apparent that not all 
wind farms reported wind turbine availability status.  Whenever our analysis below refers to 
“uncurtailed wind power” the AWS estimate is meant. 

MISO day-ahead wind forecast and actual wind power data from February 2011 to May 2012 
were obtained from the MISO website [19].  MISO wind forecasts are produced by Energy and 
Meteo GmbH [20].  During this period, wind curtailments in MISO were estimated to be 2 to 6% 
each month [21] which create minor problems with our analysis as will be shown in the next 
section.  Further information on the data is presented in Appendix A. 

3 Wind power forecast error characteristics 
Wind power forecasts are provided for system operators of electric power networks in order to 
assist with decision making.  Look-ahead times range from 5 minutes to several days.  Wind 
forecasts for time periods up to 1 hour ahead provide information used in economic dispatch or 
real-time trading.  Longer look-ahead times assist system operators in unit commitment decisions 
and provide wind farm operators with information for day-ahead market bids.  

Decision makers who rely on wind power forecasts must not only prepare for the amount of wind 
power expected in the grid, they must also prepare for the chance that the forecast is wrong.  
Wind forecast uncertainty here is characterized by the distribution of wind forecast errors.  We 
define wind forecast error (e) as the forecast value (F) minus the actual wind power (W) with all 
variables normalized by the installed wind capacity. 

𝑒 = 𝐹 −𝑊  (1) 

Modeling wind power uncertainty is challenging due both to the highly variable nature of wind 
speed over different time scales and to the non-linear and variable (for different turbines) 
transformation relating wind speed to wind power.  This causes wind power forecast errors to be 
non-Gaussian in general and have much different distributions at low wind forecast values than 
high forecast values [9].  Figure 1 (a) shows a scatter plot of uncurtailed wind power levels 
plotted against wind power forecasts for ERCOT during the years 2009 and 2010.  As indicated 
in the plot, points above the unit-slope line are under-forecast while points below the line are 
over-forecast.  Forecast errors are plotted against forecast levels of wind power in Figure 1 (b).  
Since wind power is subtracted from forecasts, positive errors represent over-forecasts and 
negative errors represent under-forecasts.  The three bottom plots in Figure 1 (c, d and e) show 
forecast error distributions at three different wind forecast levels.  As evident in the plot, error 
distributions are skewed left near the low end of the forecast range and skewed right for high 
wind forecasts.   
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Figure 1: ERCOT Estimated uncurtailed wind power (a) and wind forecast errors (b) plotted against 
forecast wind power.  Bottom plots show probability distributions of wind forecast errors corresponding to 
the three bins highlighted in the (b).  Forecast value ranges in the bottom plots are (c) 0.05 to 0.06, (d) 
0.45 to 0.46 and (e) 0.8 to 0.81.  All values are shown as ratios of installed wind capacity. 

 
Figure 2 shows the forecast bias calculated over the range of forecast values with a moving 
window of size 0.1 of the normalized wind power forecast.  Unlike the work in [11 – 14], we did 
not attempt to remove the conditional forecast bias in our analysis.  As a whole, the mean 
forecast error in the ERCOT data is 0.007 indicating the forecasts are unbiased, but when 
conditioned on the forecast value a bias emerges that is related to the forecast level of wind.  
When the predicted wind power is small, the actual power averages higher than the forecast, 
producing a negative bias.  For high wind power predictions the actual wind power averages 
lower than forecast producing a positive bias.  A similar bias pattern occurs in the MISO wind 
data and has been observed in wind forecasts for California [22] and Germany [12].  More 
discussion on the conditional bias is presented in Appendix C. 
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Figure 2: ERCOT forecast bias over the range of possible forecasts. 

4 Logit transformation of wind data 
 
4.1 Day-ahead wind power forecasts 
We applied logit transforms to data in order to obtain a dataset that can be modeled with a 
normal distribution.  Logit transforms are valid for data constrained between the values 0 and 1.  
Wind data normalized by installed wind capacity by definition must lie in the range from 0 to 1.  
Normalized wind data aggregated over an entire electric grid rarely register values equal to 0 or 1 
making these data likely candidates for analysis with logit transforms.  The underlying 
assumption in fitting logit transformed data to a normal distribution is that the forecast and wind 
power data fit a logit-normal distribution [23], as discussed in greater detail in Appendix B.  If 
we define normalized wind forecast and wind power data as F and W, the transformed variables, 
F* and W* are defined in Equation 2.  Once transformed, the variables can take values ranging 
from negative to positive infinity.   

𝐹∗ = ln � 𝐹
1−𝐹

�               𝑊∗ = ln � 𝑊
1−𝑊

�  (2) 

The transformed variables were fit to a normal distribution with a density function 

𝑓(𝑋∗) = 1
√2𝜋𝜎𝑋∗

𝑒𝑥𝑝 �− (𝑋∗−𝜇𝑋∗)2

2𝜎𝑋∗
2 �  (3) 

The symbols μx* and σx* are the mean and standard deviation of the transformed data.  Figure 3 
shows the distributions of F* and W* with a fitted normal distribution overlaid.  As the graphs 
show, the normal distribution fits the transformed data well. 
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Figure 3:  Relative frequency distributions (histogram bars) for the transformed wind power forecast (a) 
and wind power (b) in ERCOT with a fitted normal distribution (dashed line) overlaid. Analogous MISO 
data are shown in Figure 10. 

 
The transformed variables are plotted against each other in Figure 4.  The solid lines represent 
the contour of a bivariate normal distribution fit to the data.   

 

 
 

Figure 4: Logit transformed wind power data plotted against transformed wind forecast data.  The data 
shown here are transformations of the data displayed in Figure 1 (a).  Solid lines are contours of a fitted 
bivariate normal distribution with μF* = -0.74, μW* = -0.81, σF* = 1.55, σW* = 1.70 and ρ = 0.80  

 
We modeled the transformed variables as jointly normally distributed with the bivariate normal 
distribution: 

𝑓(𝐹∗,𝑊∗) = 1
2𝜋𝜎𝐹∗𝜎𝑊∗�1−𝜌2

𝑒𝑥𝑝 �− 1
2(1−𝜌2)

�(𝐹∗−𝜇𝐹∗)2

𝜎𝐹∗
2 + (𝑊∗−𝜇𝑊∗)2

𝜎𝑊∗2 − 2𝜌(𝐹∗−𝜇𝐹∗)(𝑊∗−𝜇𝑊∗)
𝜎𝐹∗𝜎𝑊∗

��  (4) 
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where  𝜌 =  𝑐𝑜𝑣(𝑊∗,𝐹∗)
𝜎𝑊∗𝜎𝐹∗

 (5) 

and cov( , ) is the covariance. 

Using the fitted normal distribution provides a convenient way to model wind forecast errors.  
For a particular forecast value, the transformed wind power is modeled with a normal 
distribution with the conditional probability density defined by.  

𝑓(𝑊∗|𝐹∗) = 1
√2𝜋𝜎𝑊∗|𝐹∗

𝑒𝑥𝑝 �−
(𝑊∗−𝜇𝑊∗|𝐹∗)2

2𝜎𝑊∗|𝐹∗
2 �  (6) 

where  𝜇𝑊∗|𝐹∗ = 𝜇𝑊∗ + 𝜌𝜎𝑊∗

𝜎𝐹∗
(𝐹∗ − 𝜇𝐹∗) (7) 

 𝜎𝑊∗|𝐹∗ = 𝜎𝑊∗�1 − 𝜌2 (8) 

Given a wind power forecast value, a decision maker is interested in knowing a particular 
confidence interval for the expected wind power.   A confidence interval of 95% ranges from the 
2.5th percentile to the 97.5th percentile calculated from the inverse of the cumulative distribution 
function (CDF).  In the case of a normal distribution, this calculation simplifies to a function of 
the conditional mean and standard deviation.  The end values of a given confidence interval are 
calculated by  

 𝐶𝐼𝛼{𝑊∗|𝐹∗} = �𝐂𝐃𝐅𝑊∗|𝐹∗
−1 �1−α

2
� , 𝐂𝐃𝐅𝑊∗|𝐹∗

−1 �1+α
2
�� (9)  

 = [𝜇𝑊∗|𝐹∗ − 𝑍𝛼  𝜎𝑊∗|𝐹∗ , 𝜇𝑊∗|𝐹∗ + 𝑍𝛼 𝜎𝑊∗|𝐹∗] (10) 

The symbol α ranges between 0 and 1 and indicates the desired confidence interval level (i.e. 
0.95 for a 95% confidence interval).  The value of Zα in Equation 10 is selected from standard 
normal distribution tables to produce a particular confidence interval, CIα.  Table 2 shows 
selected values of Zα for desired confidence intervals. 

Table 1: Z values for selected confidence intervals (CI). 

α 70% 80% 85% 90% 95% 
Zα  1.047 1.282 1.440 1.645 1.960 

 
 
Figure 5 shows the 95% normal distribution confidence interval of actual wind power in the 
transformed space conditioned on the forecast wind power.  The solid line is the mean of W* as a 
function of F*, and the region within the dashed lines represents 1.96 standard deviations from 
the mean which contains 95% of the W* values assuming a bivariate normal distribution.   
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Figure 5: Transformed ERCOT data with conditional mean for W* and 95% confidence interval of W* as a 
function of F*. 
 
A confidence interval in the transformed space is converted to the confidence interval in the 
original data space using Equation 11 for each variable.  The result is displayed as solid lines in  
Figure 6.   

𝐹 = 1
1+𝑒−𝐹∗

               𝑊 = 1
1+𝑒−𝑊∗  (11) 

 
Once a confidence interval is determined for the observed wind power given a wind forecast, we 
can determine a confidence level for wind forecast errors by subtracting the confidence interval 
values of wind power from the wind forecast values.  Figure7 shows a range of confidence 
intervals for actual wind power based on the day-ahead wind forecast and the confidence levels 
of wind forecast errors.  As shown in Figure 7 (b), the confidence intervals are generally 
asymmetric and not centered on zero. 
 

 
 
Figure 6: Ninety-five percent confidence interval for estimated uncurtailed ERCOT wind power in the 
original space plotted as a function of the day-ahead forecast level of wind power. 
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Figure 7: ERCOT wind power confidence levels (left plot) based on wind forecast level and wind error 
confidence levels (right plot) based on wind forecast level. 

 
We plotted 95, 90 and 80% confidence intervals of wind forecast errors using the logit transform 
and compared these to the same confidence intervals calculated with a moving window of width 
0.1 in Figure 8.  Fitting a bivariate normal distribution to the logit transform provides a good 
closed-form representation of the wind forecast errors requiring a fit of only 5 parameters; μF*,  
μW*, σF*, σW* and ρ.  In comparison, fitting a Beta distribution to 50 bins of wind data requires the 
estimation of 100 parameters (2 parameters for each bin) as was done in [11]. 

 
 

Figure 8: Confidence intervals conditioned on ERCOT wind forecast level.  Solid lines are calculated 
using the logit transformation, and dashed lines are calculated by binning data according to the forecasts. 

Figures 2-8 were created using day-ahead wind forecasts and estimated uncurtailed wind power 
data from ERCOT.  We also modeled wind forecast errors with MISO wind data.  The MISO 
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data did not contain wind curtailment estimates so we used observed wind power with wind 
forecasts.  As mentioned earlier, curtailments in MISO ranged from 2 to 6% of total wind energy 
generated, depending on the month.  We feel that these levels of wind curtailments are low 
enough to provide meaningful results.  A system operator analyzing wind forecast errors would 
likely have uncurtailed wind generation estimates available, and would be able to model the 
forecast errors more accurately.   

Figure 9 (a) shows the actual wind power against the day-ahead forecast wind power for each 
hour of the sample period with all data normalized by the wind capacity.  Note that wind power 
levels in MISO rarely reach 80% of installed capacity.  This may be due to the fact that wind 
farms in MISO are distributed over a much wider and more geographically diverse region than 
ERCOT wind farms.  Figure 9 (b) displays the same data after applying the logit transformation.   

 

 

 
Figure 9: (a) Actual wind power in MISO plotted against the day-ahead forecast values and (b) the logit 
transformation of the same data.  A contour (solid lines) of the fitted bivariate normal distribution is plotted 
over the data in (b) with μF* = -0.82, μW* = -0.89, σF* = 1.05, σW* = 1.18 and ρ = 0.92 
 
In order to evaluate how normally distributed the transformed data are, the relative frequency 
distributions of the transformed data are displayed in Figure 10.  
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Figure 10: Relative frequency distributions (histogram bars) for the transformed wind power forecast (a) 
and wind power (b) in ERCOT with a fitted normal distribution (dashed line) overlaid. 
 
The transformed actual wind power (W*) distribution is skewed left.  One likely reason for this 
skewness is the effect of wind curtailments on the data.  Since wind power in MISO rarely 
exceeds 80% of installed capacity, verification of confidence intervals was impossible for 
forecasts near a normalized value of 1.  Figure 11 shows the 95% confidence envelope for MISO 
wind errors calculated with the logit transformation (solid lines) and a moving window of width 
0.1 (dashed lines).   

 

Figure 11: Wind forecast errors in MISO plotted against wind forecast values with 95% confidence 
intervals.  Solid lines are calculated using the logit transformation, and dashed lines are calculated with a 
moving window of width 0.1.     
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 𝐹(𝑡) =  𝑊(𝑡 − 1) (12) 

As in the previous section, we used the estimated uncurtailed values for wind power in ERCOT.  
Figure 12 (a) shows the actual wind power values plotted against the hour-ahead forecast wind 
power values.  Hour-ahead wind forecast error confidence intervals are shown in Figure 12 (b) 
where dashed lines show intervals calculated with a moving window of width 0.1 and solid lines 
are derived from a logit transformation.  Figure 13 shows the same plots for the MISO data. 

 

 

 
Figure 12: ERCOT estimated uncurtailed wind power plotted against the hour-ahead persistence 
forecasts (a), and confidence intervals for wind forecast errors (b). Solid lines are calculated using the 
logit transformation, and dashed lines are calculated with a moving window. 

 

 

 
Figure 13: MISO wind power plotted against the hour-ahead persistence forecasts (a), and confidence 
intervals for wind forecast errors (b). Solid lines are calculated using the logit transformation, and dashed 
lines are calculated with a moving window. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Hour-ahead Wind Power Forecast (F)

E
st

im
at

ed
 W

in
d 

P
ow

er
 (W

)

ERCOT Hour-ahead Wind Forecast and Estimated Wind Power

(a)

0 0.2 0.4 0.6 0.8 1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Hour-ahead Wind Power Forecast

Fo
re

ca
st

 E
rro

r C
on

fid
en

ce
 In

te
rv

al

Wind Forecast Error Confidence Intervals

 

 

(b)

95% CI
90%
80%

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Hour-ahead Wind Power Forecast (F)

A
ct

ua
l W

in
d 

P
ow

er
 (W

)

MISO Hour-ahead Wind Forecast and Actual Wind Power

(a)

0 0.2 0.4 0.6 0.8 1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Hour-ahead Wind Power Forecast

Fo
re

ca
st

 E
rro

r C
on

fid
en

ce
 In

te
rv

al

Wind Forecast Error Confidence Intervals

 

 

(b)

95% CI
90%
80%



Carnegie Mellon Electricity Industry Center Working Paper CEIC-12-06                 www.cmu.edu/electricity 

DRAFT: DO NOT CITE OR QUOTE  15 
 

The agreement between confidence intervals calculated with logit transforms and the moving 
window are similar to that obtained with the day-ahead forecast data.  The scale of the vertical 
axis is smaller in Figures 12 (b) and 13 (b) than in the figures for the day-ahead results.  Once 
again, verification of confidence intervals was impossible for forecasts near a normalized value 
of 1 with the MISO data since the maximum wind power observed was around 0.8.  While the 
agreement between confidence intervals calculated with the logit transformation model and the 
moving window is not perfect, it is reasonably close.  A logit transformation model is shown to 
be an effective tool to estimate uncertainty in wind power forecasts.   

5 Conclusion 
Observed wind power forecast error distributions are highly dependent on the forecast level of 
wind power. At low wind forecast power, the forecasts over-predict the actual wind power 
produced, whereas when the forecast is for high power, the forecast tends to under-predict the 
actual wind power.  

Thus, forecast errors modeled with a single distribution do not provide adequate information for 
system operators.  We presented a method to analyze wind forecast errors with a logit 
transformation.  Transforming wind data with a logit transform in this manner is a 
straightforward method to determine the amount of uncertainty associated with wind forecasts 
using historical data.  The advantage of this method is that transformed data can be accurately 
modeled with a bivariate normal distribution.  This greatly simplifies the analysis since one set of 
parameters is estimated instead of multiple parameters for different forecast levels.  Calculations 
of confidence intervals with this method use a model fit to the entire dataset while providing the 
ability to condition wind uncertainty on the wind forecast value for a given time period.  We 
applied the logit transform to hourly data, but there is no reason that this method should not work 
well with different time scales.   

Electric grid system operators can use this model in their respective decision making analysis.  
Proper confidence intervals of wind forecast errors for a given forecast level of wind power is 
essential for decision making.  Uncertainty associated with wind power and load forecasts 
determine the amount of reserve requirements for reliable grid operation.  
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Appendix A  
 
Table A.1 provides details on the ERCOT and MISO data used in this study.  Figure A.1 shows 
the frequency distributions of the estimated uncurtailed wind power in ERCOT, actual wind 
power in ERCOT and actual wind power in MISO over the respective time periods from Table 
A.1. 

Table A.1: Summary statistics for the ERCOT and MISO wind data used in this study. 

 ERCOT MISO 
Time Period Dec 2008 – Dec 2010 Feb 2011 – May 2012 
Average Load 35 GW 61 GW 
Maximum Load 66 GW 104 GW 
Installed Wind Capacity 8.325 – 9.53 GW 9.125 – 10.79 GW 
Actual Wind Capacity Factor 0.28 0.33 
Uncurtailed Wind Capacity Factor 0.35 N/A 
Ratio of actual wind energy to load 0.069 0.055 
Ratio of uncurtailed wind energy to load 0.087 N/A 

 

  
Figure A.1: Frequency distributions of (a) uncurtailed hourly wind power in ERCOT (b) actual hourly wind 
power in ERCOT and (c) actual hourly wind power in MISO. 
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Figure A.2: Frequency distribution (histogram bars) of wind power forecast errors in ERCOT (a) and 
MISO (b) with a fitted normal distribution (dashed line) overlaid. 

Figure A.2 shows the distribution of wind forecast errors in ERCOT and MISO for the respective 
time periods in our data.  The figures above indicate that the forecasts are unbiased on the whole 
for both regions.  As is well-known [6], normal distributions are not well suited for modeling 
wind forecast errors.   MISO day-ahead wind forecasts tend to be more accurate than ERCOT 
(although the wind capacity is similar in both regions).  This may be due to the much larger 
territory covered by MISO.  Large geographic diversity tends to reduce total forecast errors if 
forecast errors from sub-regions are weakly correlated [24, 25].  

 
Appendix B 
 
Previously, we showed that the logit transformations of the wind power forecast and actual wind 
power data fit a normal distribution reasonably well.  If the logit transformation of a variable is 
normally distributed, N(μ, σ2), then the variable itself is distributed logit-normal, LN(μ, σ2).  For 
the wind forecast (F) and wind power (W), the logit transformations are  
 

𝐹∗ = ln � 𝐹
1−𝐹

�               𝑊∗ = ln � 𝑊
1−𝑊

�  (B.1) 

Each of the transformed variables is normally distributed with a probability density  
 

𝑓(𝑋∗) = 1
√2𝜋𝜎𝑋∗

𝑒𝑥𝑝 �− (𝑋∗−𝜇𝑋∗)2

2𝜎𝑋∗
2 �  (B.2) 

 
The symbols μx* and σx* represent the mean and standard deviation of the transformed variables.   
The original variables are logit-normal distributed with a probability density  
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𝑓(𝑋) = 1

√2𝜋𝜎𝑋𝑋(1−𝑋) 𝑒𝑥𝑝 �−
(𝑋∗−𝜇𝑋)2

2𝜎𝑋
2 �  (B.3) 

The symbols have the same definitions as in Equation A.2.  Given that the logit transformed 
variables are jointly normal, the variables F and W are jointly logit-normal distributed with 
probability density defined as 

  

𝑓(𝐹,𝑊) = 1
2𝜋𝜎𝐹𝜎𝑊�1−𝜌2𝐹(1−𝐹)𝑊(1−𝑊)

𝑒𝑥𝑝 �− 1
2(1−𝜌2)

�(𝐹∗−𝜇𝐹)2

𝜎𝐹
2 + (𝑊∗−𝜇𝑊)2

𝜎𝑊
2 − 2𝜌(𝐹∗−𝜇𝐹)(𝑊∗−𝜇𝑊)

𝜎𝐹𝜎𝑊
��  

 (B.4) 

Figure A.3 shows the distribution of F and W from the ERCOT data with a fitted logit-normal 
distribution overlaid.   

 

 
 

Figure B.1: Distributions of wind power and wind power forecasts from ERCOT with logit-normal 
distributions overlaid. 

 
Appendix C  
As shown in section 3, wind power forecasts exhibit a bias that varies thorough the range of 
forecast values.  At low wind power forecasts the bias is negative while high wind power 
forecasts have a positive bias.  We calculated the mean value of the forecast error conditioned on 
the forecast value for the ERCOT day-ahead wind power forecasts in the following manner with 
E[·] denoting the expectation operation. 

 
 E[𝑒|𝐹] = E[(𝐹 −𝑊)|𝐹] = 𝐹 − E[𝑊|𝐹] (C.1) 
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For a given forecast, the bias is the forecast minus the expectation of W conditioned on the 
forecast value.  The expectation is determined with the logit-normal distribution as 
 

E[𝑊|𝐹] = ∫ 1
√2𝜋𝜎𝑊|𝐹𝑊(1−𝑊) 𝑒𝑥𝑝 �−

(𝑊∗−𝜇𝑊|𝐹)2

2𝜎𝑊|𝐹
2 �𝑊𝑑𝑊1

0   (C.2) 

 
 Since there are no closed form solutions for the moments of the logit-normal distribution the 
expected value must be obtained with numerical integration.  We used the quad function in 
Matlab, which implements Simpson’s rule, to evaluate the integral in Equation A.6 over the 
range of possible values for F.  Figure C.1 shows the expected values W conditioned on F and 
the expected error conditioned on F.  In each plot the solid lines were calculated with the logit-
normal model, and the dashed lines were calculated using a moving window of width 0.1.   

 
 

Figure C.1: Mean wind power conditioned on the wind power forecast (a) and mean forecast error 
conditioned on the wind power forecast (b).  Solid lines were calculated directly with binned data, and 
dashed lines were calculated using the logit-normal distribution. 

 

In order to examine the effect of a forecast algorithm that accounts for the observed forecast bias, 
we subtracted the bias values calculated with the logit-normal model in Figure A.4 (b) from the 
ERCOT day-ahead forecasts to remove the conditional bias in the data.  Figure A.5 shows the 
day-ahead wind power forecast distributions in ERCOT with the original data and the unbiased 
forecasts.  The plot of original error distribution is the same as in Figure 2 in the main text.  
Errors from the original data have a mean value of 0.007 and variance of 0.02.  Errors calculated 
from the unbiased forecasts have a mean value of -0.005 and variance of 0.019.   

Removing the conditional bias in the forecasts mean that low forecasts are increased and high 
forecasts are decreased.  As Figure B.1 (b) shows, most forecasts are near 0.2 as a ratio of the 
wind capacity.  Therefore, most errors resulting from the unbiased forecasts are slightly 
increased compared with the errors from the biased forecasts.  The resulting unbiased forecast 
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error distribution in Figure C.2 (b) is skewed, but retains an overall mean near zero and a 
variance comparable to the biased errors.    

 

 
Figure C.2: Wind forecast error distributions from ERCOT with original data (a) and with the conditional 
bias removed from the forecasts. 

 

Figure C.3 shows the forecast errors plotted against the forecast values with the original ERCOT 
data and with the data adjusted to remove the bias.  In the adjusted case the upward trend in the 
forecast errors is reduced.   

 

 
Figure C.3: Wind forecast error distributions from ERCOT with original data (a) and with the conditional 
bias removed from the forecasts. 
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C.4 shows the conditional bias remaining in the forecast errors after adjusting the forecast data to 
remove the modeled bias.  Residual bias was calculated with a moving window of width 0.1.  
When compared to the bias calculated for forecast bins in Figure C.1 (b), one can see that the 
conditional bias is mostly eliminated.  

 
 

Figure C.4: Bias calculated with binned forecast data after removing the conditional bias calculated with 
the logit-normal distribution; compare with Figure C.1 (b). 
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