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List of Symbols 
Rmax(k) Max available upregulation capacity in kth interval (MW-h) 

R (k | Δ) Upregulation capacity in kth interval, given curtailment of Δ (MW-h) 

Δ Curtailment of wind farm power output below the possible power output (MW) 

LOL Lower operating limit: minimum curtailed power (p.u.) 

Pposs(t) Instantaneous possible power output of wind farm (MW) 

Pcurt(k | Δ ) Instantaneous curtailed power output of wind farm, given curtailment of Δ (MW) 

Pμ(k) Mean wind farm power in the kth interval (MW) 

PCOV(k) Coefficient of variation of wind farm power in the kth interval (MW) 

Eloss(k | Δ ) Energy production lost to curtailment in the kth interval (MWh) 

t Time (sec) 

T Duration of frequency-regulation dispatch intervals (sec) 

k Index of dispatch intervals 

AC(k | Δ ) Average (opportunity) cost of up-regulation capacity [MWh/MW-h]  

MC(k | Δ) Marginal (opportunity) cost of up-regulation capacity [MWh/MW-h] 

1. Introduction 

When large numbers of wind turbines are connected to the electrical grid, the rapid 
variability of wind power on short time scales can cause the grid frequency to deviate 
significantly from its nominal value [1, 2]. In the many regions where pumped hydroelectric 
storage is not available, the grid frequency is typically regulated by adjusting the power 
output of fast-ramping thermal generators, including gas turbines. Gas turbines can be 
expensive to operate and produce power less efficiently and with higher levels of NOx 
emissions when quickly varying their power output [3]. Other technologies are capable of 
compensating for the short-term variability of wind power, but they are either currently too 
expensive to be practical or cannot be scaled large enough to meet the rapidly-increasing 
penetration of wind power on the electrical power grid. Batteries and flywheels are 
technically well-suited to rapidly generating or absorbing power but commercially available 
units are too expensive at the moment on the scale needed for the penetrations of wind power 
expected in the next 10 – 20 years, although some promising systems are in the development 
phase. Hydroelectric power, and especially pumped hydro storage, is technically well-suited 
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to rapidly changing power output and is relatively inexpensive. However, little new pumped 
hydro storage is being developed in the United States. 

Denmark, Ireland, Great Britain, and Germany now include requirements in their 
national grid codes that wind farms be able to increase or decrease their power output to aid 
in regulating the grid frequency [4-7]. The active power output of a wind farm can be 
decreased by reducing the aerodynamic efficiency of the wind turbines or completely shutting 
down some turbines, but it is impossible to increase the output of a wind farm beyond the 
power level provided by the current wind velocity. Operating a wind farm at less than the 
currently available wind capacity (“curtailing”) creates a reserve of power that allows power 
output to be increased on demand. Prior research has demonstrated the technical feasibility of 
curtailing the power output of a wind farm to regulate the grid frequency [5, 8-10]. Those 
authors consider primary frequency regulation, in which a generator responds to frequency 
deviations in a few seconds. In this paper we consider secondary frequency regulation, in 
which the generator responds over tens of seconds or minutes to a dispatch signal from the 
grid operator. Other research has demonstrated the feasibility of curtailing a wind farm to 
reduce the variation in power output or limit power ramp rates [11-13]. Many modern wind 
farms already have most or all the equipment necessary to curtail for frequency regulation 
and many others can be retrofitted inexpensively. However, the revenue a wind farm foregoes 
due to curtailment may be greater than the cost of procuring the same frequency regulation 
from traditional sources such as gas turbines or hydroelectric power plants, or using an 
energy storage technology such as a battery to store a reserve of energy [9, 10]. Kirby et al. 
analyzed historical energy and regulation prices in Texas to show that wind would 
infrequently be able to supply regulation at competitive prices and uses a simple wind farm 
simulation to demonstrate the technical feasibility [14]. 

We calculate the cost and quantity available of frequency upregulation capacity from 
a curtailed wind farm as a function of wind conditions. Upregulation capacity is the ability of 
a generator to increase its active power output to increase the grid frequency. We also 
compare the cost of upregulation from a curtailed wind farm to market prices for upregulation 
capacity (typically set by gas turbines), though grid operation rules do not generally allow 
wind power to bid into the market for upregulation capacity (or other ancillary services). This 
comparison gives a first-order estimate of how often grid operators may call on wind turbines 
for secondary frequency regulation.  

The method of curtailing a wind farm we consider in this research does not reduce the 
variability of the wind farm power output. We control the wind farm to maintain a constant 
difference Δ between the possible power Pposs and curtailed power Pcurt outputs, which 
provides only a reserve of power that the grid operator can use to regulate the supply of 
power to match demand. There is an alternative curtailment scheme that would reduce the 
variability of wind power by curtailing the wind farm output to a low fixed amount, but we 
do not consider it here because the cost would be extremely high and there is still active 
debate about how much cost wind power variability imposes on a grid operator [15, 16]. 

2. Model 

We calculate the amount of upregulation capacity a curtailed wind farm can produce 
and its cost by simulating the operation of a 100-MW wind farm. The wind farm produces 
upregulation capacity by curtailing its power output a fixed amount below the power possible 
in given wind conditions; this creates a reserve of power than can be dispatched on demand. 
The wind farm we model consists of twenty 5-MW pitch-regulated turbines that receive 
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power setpoint commends from a closed-loop wind farm controller that regulates the 
aggregate power output of the wind farm. The turbines are driven by wind speed data that is a 
hybrid of measured low-frequency wind speed data and simulated high-frequency turbulence. 
We analyze the curtailed power output of the wind farm, relative to its uncurtailed output, to 
calculate how much upregulation capacity it can produce and at what cost. 

We create 60 days of wind speed data sampled at 5 Hz for three locations in central 
North America listed in Table 1. We use the method developed by Rose and Apt to create the 
wind speed data as a hybrid of measured 10-minute data and simulated high-frequency 
turbulence [17]. This method simulates high-frequency turbulence to “interpolate” between 
empirical data while maintaining the statistical properties of the empirical data. In this 
research, the empirical data is 10-minute mean and standard deviation of the wind speed 
measured at 50-meter height at three locations listed in Table 1. We randomly draw 60 days 
of data from each year and each location; 15 days from each season where possible. The 
high-frequency turbulence is simulated using Veers’ method with the Kaimal spectrum 
recommended by the IEC wind turbine design standard [18, 19]. We create wind-speed time 
series for each turbine location in the wind farm. The wind speed time series for each turbine 
location have identical mean wind speeds, but the turbulences are related to each other by the 
lateral coherence relation proposed by Sørensen et al. [20]. We use only the lateral coherence 
relation because all the turbines are arranged in a straight line perpendicular to the wind. 

We use the hybrid wind speed data to dynamically simulate the power output of each 
turbine in a 20-turbine wind farm. Dynamically simulating individual turbines is an 
improvement on steady-state turbine models that relate power output to wind speed with a 
simple power curve, or aggregate farm models that lump the entire farm into a single 
equivalent turbine [20-22]. Each turbine is a pitch-regulated 5-MW turbine with a 126-meter 
rotor designed by the National Renewable Energy Laboratory [23]. The turbine rotor is large 
enough that it has a smoothing effect on the wind turbulence at higher frequencies; we model 
this smoothing effect with the wind turbine admittance function Fwt(f ) proposed by Sørensen 
et al. [20]. The turbines in the wind farm are spaced 5 rotor diameters apart (630 m) in a line 
perpendicular to the wind direction; the wind direction is constant.  

The wind farm simulations are run using the SimWindFarm toolbox (version 0.8) for 
Matlab, developed as part of the Aeolus project [24]. The active power output of the wind 
farm is curtailed by a closed-loop controller that reduces the power setpoint for each turbine 
so the aggregate actual power output is a fixed number of megawatts below the possible 
power output; the Danish grid code refers to this control scheme as “Delta production 
constraint”, where Δ is the fixed difference between the possible and actual power outputs 
[25]. Individual turbines are not curtailed equally—each turbine is curtailed proportional to 
its available power [26]. We do not allow the wind farm controller to command any wind 
turbine to curtail below its lower operating limit (LOL) of 20% of its rated power, though a 
turbine’s power output may go below that limit when the wind speed is low. 

We simulate the power output of the wind farm for levels of curtailment 0 ≤ Δ ≤ 30 
MW with identical wind inputs; the power output is sampled at 1 Hz. To limit the number of 
simulations, we increase curtailment in one-megawatt steps up to 10 MW, two-megawatt 
steps up to 20 MW, and five-megawatt steps up to 30 MW. We repeat the simulations of all 
curtailment levels with 60 days of hybrid wind speed data described above. To generalize the 
results of these experiments, we repeat the simulations with five wind speed data sets of 60 
days each, listed in Table 1: three sets of wind speed measurements from a wind farm site in 
west Texas in 2007, 2008, and 2009, a set of measurements from a site in the northern Great 
Plains of the U.S. in 2008, and a set of measurements from a site in Ontario, Canada in 2008. 
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Table 1: Empirical wind speed data used to simulate wind farm power  

Location Period Mean wind 
speed 

Wind turbulence 
intensity (TI) 

Wind farm 
capacity factor  

West Texas 29 Mar. – 8 Dec. 2007 

21 Dec. 2007 – 14 Dec. 2008 

25 Dec. 2008 – 1 Sept. 2009 

6.8 m/s 

7.2 m/s 

7.5 m/s 

13% 

13% 

13% 

29% 

33% 

35% 

Northern Great 
Plains (U.S.) 

2 Jan. – 17 Dec. 2008 8.0 m/s 10% 41% 

Ontario (Canada) 29 Dec. 2007 – 20 Dec. 2008 6.7 m/s 12% 28% 

3. Analysis 

We calculate the amount of upregulation capacity that a curtailed wind farm can 
provide by retrospectively analyzing the wind farm simulations described in Section 2. The 
upregulation capacity R(k | Δ) that a wind farm can supply for given curtailment Δ in the kth 
dispatch interval of length T is the smallest difference between the uncurtailed (“possible”) 
power at time Pposs(t) and curtailed power at time Pcurt(t): 

 (1) 

for t in the kth interval: kT ≤ t ≤ (k+1)T. 
An example of data for this calculation are shown in Fig. 1 for a dispatch interval of T 

= 300 seconds and a curtailment of Δ = 5 MW. During most of the dispatch interval, the 
curtailed power Pcurt(t | Δ = 5) (green line) closely tracks the desired curtailment Pref(t) - Δ 
(dashed line), as shown at point A. However, Pcurt(t) (green line) is sometimes not curtailed as 
much as desired, as shown at point B. In this case illustrated by point B, the power output of 
several of the turbines in the wind farm reached the lower operating limit (LOL = 0.2 p.u.) 
and could not curtail further. The amount of available upregulation capacity R(k | Δ = 5) for 
the interval, shown as the shaded area, is limited by the smallest difference between Pposs(t) 
and Pcurt(t | Δ = 5) in that interval. Upregulation capacity R is always less than or equal to the 
curtailment Δ. We measure upregulation capacity in megawatts hours (MW-h), which is 
different from the unit of energy “megawatt hours (MWh)”. 

We analyze dispatch intervals T of 60 minutes and 15 minutes. Most power systems 
with markets for frequency regulation use a dispatch interval of 60 minutes, which means 
market participants bid an amount of regulation capacity they can sustain for the full 60 
minutes. We test a dispatch interval of 15 minutes to determine whether a curtailed wind farm 
can better compete over shorter intervals. 
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Fig. 1 Method for calculating the available regulation capacity. In this example, the 100 MW-capacity wind 
farm is curtailed by Δ = 5 MW (point A), but the available regulation capacity R(k | Δ) is 3.9 MW (point B), 
which is the largest curtailment that can be maintained through the entire dispatch interval T, i.e. the smallest 
difference between the uncurtailed and curtailed power outputs of the wind farm 

The upregulation capacity available in a given dispatch interval, calculated in (1) 
cannot be known in advance without perfect forecasting of future wind conditions. Perfect 
foresight is an unrealistic assumption, but it sets an upper bound on the amount of regulation 
capacity available and the opportunity cost, in terms of energy production lost, to produce it. 
The results in Section 4.1 relax this assumption slightly—there we assume perfect forecasting 
of only the mean and standard deviation of wind speed in a given dispatch interval, rather 
than perfect forecasting of the wind speed at every moment. 

We calculate the cost of upregulation capacity from a curtailed wind farm by 
retrospectively analyzing the wind farm simulations described in Section 2. The average cost 
of upregulation capacity AC(k | Δ) in the kth dispatch interval with curtailment Δ is the energy 
generation lost in that interval due to curtailment Eloss(k | Δ) divided by the quantity of 
upregulation capacity provided during that interval R(k | Δ): 

 (2) 

where Eloss is measured in MWh and AC is measured in MW-h/MWh. We calculate the 
marginal cost of upregulation capacity MC(k | Δ) as the additional upregulation capacity 
divided by the additional energy loss resulting from curtailing one more step. The steps are 
not always one megawatt; to limit the number of simulations, we increase curtailment in one-
megawatt steps up to 10 MW, two-megawatt steps up to 20 MW, and five-megawatt steps up 
to 30 MW. The average power was often not high enough to simulate curtailment up to 30 
MW-- only approximately 20% of the 1-hour intervals we examined produced enough power 
to curtail by 30 MW. 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-12-05 www.cmu.edu/electricity 

DRAFT. Do Not Cite or Quote  6 

4. Results 

We present three results: estimates of the maximum regulation capacity available in 
given conditions, the cost of regulation capacity in terms of unproduced energy, and the cost 
premium for curtailment-derived regulation capacity compared to the market price. 

4.1 Maximum Available Regulation Capacity 

The maximum upregulation capacity available from curtailing a wind farm in the kth 
interval Rmax(k) is a nearly-perfect linear function of the minimum power wind farm power 
sampled at 1 Hz in that interval based on our definition of upregulation capacity R in (1). 
However, the minimum power in a interval is difficult to predict, so instead we assume it can 
be estimated from the mean Pμ(k) and standard deviation Pσ(k) of wind farm power and we 
model Rmax(k) with a linear function of Pμ(k) and Pσ(k) given in (3).  

 (3) 

The model in (3) is fit to simulated wind power data using quantile regression, which 
determines the plane below which of τ% of the Rmax values lie for a given quantile 0 ≤ τ ≤ 1 
[27]. A separate model is fitted for each quantile τ, so the values of parameters a0, a1, and a2 
shown in Table 2 are functions of τ. For example, we estimate a 95% probability that Rmax(k) 
< -18.4 + 0.926Pμ(k) - 0.940Pσ(k) for a 15-minute dispatch interval. We do not include an 
interaction term Pμ* Pσ in the model given in (3) because the coefficient is not statistically 
significant for lower quantiles (0.05 and 0.25) for 15-minute intervals and most of the fitted 
quantiles (0.05, 0.5, 0.75, and 0.95) for 60-minute intervals. We use quantile regression to fit 
the model instead of ordinary least squares (OLS) because our data are not well-suited to 
OLS regression-- the residuals have longer tails than a normal distribution and are 
heteroskedastic, which result in poor estimates of the confidence intervals of the fitted 
parameters. For comparison, Table 2 lists parameters for two models fitted with OLS 
regression: the first model identical to (3) and the second model adds an interaction term Pμ* 
Pσ. The quantile regression model is fitted using the “quantreg” package (version 4.97) [28] 
in the R statistical software and the OLS regression is fitted using the “lm” function of R 
(version 3.0.0) [29]. 
Table 2: Regression coefficients for max regulation capacity Rmax in (3) fitted using quantile regression. For 
comparison, coefficients fitted with OLS regression for the same model and a model with a statistically-
significant interaction term (Pμ* Pσ.) are shown in the two right-most columns labeled “OLS”. Standard errors 
calculated with bootstrapping methods are shown in parenthesis. All coefficients are significant at a 99% level.  
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Statistic Quantile OLS 

 0.05 0.25 0.5 0.75 0.95 

15-minute intervals (n = 1964)   

Constant 
(a0) 

-17.8 

(0.22) 
-18.2 

(0.16) 
-18.3 

(0.13) 
-18.3 

(0.12) 
-18.4 

(0.15) 
-17.9 

(0.14) 

-18.9 

(0.21) 

Pμ coeff. 
(a1) 

0.870 

(0.0094) 
0.893 

(0.0064) 
0.904 

(0.0055) 
0.912 

(0.0039) 
0.926 

(0.0055) 
0.890 

(0.0042) 

0.912 

(0.0055) 

Pσ coeff. 
(a2) 

-1.62 

(0.054) 
-1.39 

(0.037) 
-1.21 

(0.032) 
-1.07 

(0.017) 
-0.940 

(0.033) 
-1.22 

(0.016) 

-0.936 

(0.0470) 

Pμ* Pσ 
coeff. 

      
0.00583 

(0.00092) 

60-minute intervals (n = 422)   

Constant 
(a0) 

-14.5 

(1.4) 
-15.9 

(0.62) 
-16.1 

(0.51) 
-16.2 

(0.53) 
-16.9 

(0.70) 
-15.0 

(0.47) 

-19.0 

(0.83) 

Pμ coeff. 
(a1) 

0.677 

(0.059) 
0.747 

(0.023) 
0.774 

(0.016) 
0.791 

(0.024) 
0.835 

(0.02) 
0.743 

(0.014) 

0.823 

(0.019) 

Pσ coeff. 
(a2) 

-1.23 

(0.15) 
-1.13 

(0.09471) 
-1.03 

(0.04554) 
-0.966 

(0.08668) 
-0.882 

(0.04690) 
-1.03 

(0.042) 

-0.477 

(0.10) 

Pμ* Pσ 
coeff. 

     
 -0.0100 

(0.0017) 

 

The a1 coefficient in Table 2 shows that Rmax increases 0.68 - 0.83 MW when the 
mean power in a 60-minute dispatch interval increases by 1 MW and by 0.87 - 0.93 MW for a 
15-minute dispatch interval. The a2 coefficient shows that the expected value of Rmax 
decreases as the standard deviation of the wind farm power increases. For example, if the 
standard deviation increases by 1 MW, Rmax decreases by 1.23 - 0.88 MW for a 60-minute 
interval and 1.62 - 0.94 MW for a 15-minute interval.  

These results assume perfect forecasting of the mean and standard deviation of wind 
farm power for a given interval. This is important because upregulation capacity must 
typically be bid into the market hours or a full day ahead. If future wind conditions cannot be 
forecast with perfect accuracy, the wind farm must bid less upregulation capacity into the 
market than it could theoretically produce or risk being unable to meet its commitment. 
However, we show in Section 4.2  (below) that a wind farm should bid less than the Rmax 
because the costs rise steeply as the upregulation capacity approaches its maximum. 

The model parameters listed in Table 2 are fit to measurements derived from the 
power output of the 100-MW wind farm described in Section 2 simulated with wind speed 
data from west Texas in 2008 described in Table 1. The dependent variable, maximum 
upregulation capacity in the kth interval Rmax(k), is calculated as the maximum of (1) in that 
interval over the range of simulated curtailments  MW. The independent variables 
Pμ and Pσ are the mean and standard deviation of wind farm power sampled at 1 Hz in the 
given interval. We exclude intervals with minimum power less the LOL (20 MW) because 
the R(k) is zero for those intervals and exclude intervals with minimum power greater the 
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sum of the LOL and the largest simulated curtailment (20+30 = 50 MW) because R(k) is 
constant for those intervals. For the 60 days of west Texas 2008 wind speed data, these 
exclusions yield 1964 15-minute intervals or 422 60-minute intervals. We present a table of 
summary statistics for these “training” data in the online supporting information. 

We validate the fitted models in Table 2 with two tests described by Vaz et al.: a 
correct classification test and a rank correlation test [30]. For both tests, we validate our 
model, which is fitted to west Texas 2008 data, against three of the data sets described in 
Table 1: west Texas 2007, northern Great Plains 2008, and Ontario 2008. Tables of summary 
statistics for these “validation” data are presented in the online supporting information. 

The correct classification test computes the fraction of observed Rmax values that are 
less than the  values predicted by the model in (3) for a given quantile τ, a quantity that 
Vaz et al. call the “correct classification statistic” (CCS) [30]. For example, a successful 
model of the 75th percentile (τ = 0.75) would predict values that are greater than 
approximately 75% of the Rmax values in a validation data set. We consider a model for a 
given quantile τ successful if the 95% confidence interval around the CCS contains τ. The 
95% confidence intervals (CI) of the CCS are calculated from 1000 bootstrap resamples of 
the validation data sets (with replacement). The calculated CCS and their 95% CI for all 
quantiles, validation data sets, and interval lengths are given in the online supporting 
information.  

The models in Table 2 are successful for the west Texas 2007 data: the desired 
quantiles τ are within the CCS values for all quantiles and time intervals except 5th percentile 
for 15-min intervals. The models have mixed success with the Ontario 2008 data: the desired 
quantiles are within the CI for most quantiles in 60-minute intervals but none of the higher 
quantiles in 15-minute intervals. The models have poor success with the northern Great 
Plains 2008 data: the desired quantiles are consistently higher than the CI for the CCS values, 
which means our models predict lower maximum available regulation capacity than is 
observed. For example, only 84.5 – 88.0% of the observed Rmax values are less than the 
predicted 95th percentile value in the northern Great Plains 2008 data for 15-minute intervals. 

The second validation test calculates Spearman’s rank correlation coefficient rs, which 
estimates the correlation between the rank of the predicted  values and the observed Rmax 

values. The coefficient rs is calculated by separately putting the  and Rmax values in rank 
order and calculating Peasrson’s correlation coefficient between the ranks. An rs value of 1 
indicates that the two variables are related by a monotonically-increasing function. We 
estimate the 95% confidence interval (CI) for the rs values from 1000 bootstrap resamples of 
the validation data sets (with replacement). Spearman’s rank correlation coefficient is better-
suited to quantile regression than Pearson’s correlation coefficient because Spearman’s does 
not assume a linear relationship between the two variables. We consider a model to be more 
successful according to this rank correlation test if value of rs for a given validation data set is 
closer to 1 and statistically significant [30]. 

According the rank correlation test, the models in Table 2 fit the validation data well. 
The rs values range from 0.925 to 0.986 and all are statistically significant. Models for 15-
min intervals fit better (have higher rs values) than models for 60-min intervals. The rs values 
for all data sets and quantiles of 15-minute periods are similar to each other, and the rs values 
for all data sets and quantiles of 60-minute periods are similar to each other. A table of the rs 
values and their 95% CI for all validation data sets, quantiles, and time intervals is given in 
the online supporting information.  
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4.2 Cost of Curtailing for Regulation Capacity 

The average and marginal costs of curtailing a wind farm for frequency regulation as 
a function of regulation capacity are calculated with (2) and the results are shown in Fig. 2 for 
15-minute and 60-minute dispatch intervals. We calculate the average cost (AC) as the 
opportunity cost, i.e. the amount of energy production (in MWh) lost to produce 1 MW-h of 
steady regulation capacity. The marginal cost (MC) is the opportunity cost of additional 
regulation capacity R produced by curtailing the wind farm one additional megawatt. Fig. 2 
plots cost curves for three representative ranges of Rmax: 5 MW, 10 MW, and 15 MW. The 
circles denote the median cost and the error bars show the 5th and 95th percentile costs. 

We find several trends in the cost of regulation capacity from a curtailed wind farm. 
First, the cost of regulation capacity is lower in intervals with larger maximum available 
regulation capacity Rmax. Second, the cost is high for quantities of regulation capacity near 
zero or near Rmax. Third, costs are slightly lower for shorter dispatch intervals, e.g. 15-minute 
intervals vs. 60-minute intervals. These trends are consistent for wind power simulated with 
wind data from the three sites listed in Table 1. 

The cost of regulation capacity is lower in intervals with larger Rmax, as shown in Fig. 
2. The cost curves representing intervals with smaller Rmax (e.g. 5 MW) have higher costs for 
all levels of regulation capacity then the curves representing intervals with larger Rmax (e.g. 
15 MW). For example, minimum median AC for 60-minute dispatch intervals in Fig. 2c is 
1.51 MWh/MW-h when Rmax = 5 MW, 1.11 MWh/MW-h when Rmax = 10 MW, and 1.06 
MWh/MW-h when Rmax = 15 MW.  

Similarly, the marginal cost MC decreases as Rmax increases. For example, the 
minimum median MC for a 60-minute dispatch interval in Fig. 2d is 1.31 MWh/MW-h when 
Rmax = 5 MW, 1.03 MWh/MW-h when Rmax = 10 MW, and 1.00 MWh/MW-h when Rmax = 
15 MW. 

The cost of regulation capacity is high for quantities of regulation capacity R near 
zero or near Rmax. The high cost of regulation capacity near zero (R ≤  1 MW) can be seen on 
the left side of the AC curves in Fig. 2a and 2c. For example, Fig. 2c shows the median AC of 
1 MW of regulation capacity is 1.39 MWh/MW-h but the median AC of 2 MW is 1.18 
MWh/MW-h in a 60-minute dispatch interval with Rmax = 10 MW. 
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Fig. 2 The average cost (a, c) and marginal costs (b, d) of regulation capacity for 15-minute (a, b) and 60-minute 
(c, d) dispatch intervals. Each line represents cost data for dispatch intervals with maximum available regulation 
capacity in a certain interval described in the figure key. Circles denote the median and error bars show the 5th 
and 95th percentile costs. These results are calculated for a 100-MW wind farm simulated with wind speed data 
from west Texas in 2008 

The opportunity cost when R is near zero can be reduced by curtailing a few turbines 
more deeply instead of curtailing all turbines in the wind farm equally. For example, if all 
turbines are curtailed equally, the median AC of R = 1 MW is 1.48 MWh/MW-h for a 15-min 
dispatch interval with Rmax = 5 MW. If only half the turbines in the wind farm are curtailed, 
the median AC is 1.12 MWh/MW-h and if a quarter of the turbines are curtailed, the median 
AC is 1.00 MWh/MW-h. However, concentrating the curtailment on a few turbines reduces 
the maximum available regulation capacity; for example, concentrating the curtailment on 
25% of the turbines reduces Rmax by a factor of four. 

The high cost of regulation capacity near the maximum can be seen on the right side 
of the AC curves in Fig. 2s and 2c and the MC curves in Fig. 2b and 2d. As R approaches 
Rmax, the average and marginal costs increase sharply. For example, Fig. 2d shows the 
marginal cost of increasing R from 8 to 9 MW is 1.58 MWh/MW-h and the marginal cost of 
increasing R from 9 to 10 MW is 2.80 MWh/MW-h in a 60-min interval with Rmax = 10 MW. 
The cost increases sharply as R approaches Rmax because individual wind turbines reach the 
lower operating limit (LOL) of their power output. When turbines reach their LOL, even for a 
short time, that limits the available regulation capacity R for the entire interval, as described 
in equation (1). However, energy loss Eloss is cumulative over the entire interval, so it is not 
affected much when turbines briefly reach their LOL. Thus the cost of regulation capacity, 
calculated with equation (2) increases sharply when the denominator R decreases (because 
turbines reach their LOL) but the numerator Eloss changes very little. 

The results in Fig. 2 exclude data where the actual regulation capacity is very close to 
the maximum available regulation capacity (Rmax – R < 0.1 MW) because the costs approach 
infinity. Excluding those points significantly reduces the 95th percentile cost but changes the 
median MC very little. In addition to excluding those points, we also exclude dispatch 
intervals when the mean wind farm power is outside the linear range (Pμ(k) < 21 MW or  
Pμ(k) > 50 MW) and dispatch intervals when the maximum available upregulation capacity is 
near zero (Rmax(k) < 0.5 MW).   
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The cost of regulation capacity decreases for shorter dispatch intervals, though the 
difference becomes smaller as Rmax increases. For example, the results in Fig. 2a and C show 
that the median AC of 10 MW of regulation capacity is 1.03 MWh/MW-h for a 15-minute 
dispatch interval and 1.04 for a 60-minute dispatch interval when Rmax = 15 MW.  

The results in Fig. 2 are calculated for wind speed data from west Texas in 2008, but 
results calculated for the other locations and other intervals listed in Table 1 show the same 
trends. Results calculated for the Great Plains wind data show lower average and marginal 
costs than the other sites; we believe the costs are lower because the a wind farm at the Great 
Plains site has a significantly higher capacity factor than the other two sites—41%, as 
compared to 33% for the west Texas site in 2008 and 28% for the Ontario site. 

4.3 Cost-Effectiveness of Curtailing for Frequency Regulation 

Curtailing a wind farm can very rarely provide frequency regulation for less than the 
market price of regulation. We compare the minimum AC in each 1-hour dispatch interval to 
the market price of upregulation (MCPCU = “Market-Clearing Price of Capacity – Up”) in 
the corresponding dispatch interval in the ERCOT (Texas) market [31]. The cost of 
upregulation capacity from a curtailed wind farm in a given interval is the minimum AC in 
that interval multiplied by the opportunity cost of a megawatt of wind power production. We 
plot the results in Fig. 3 as a cumulative distribution (CDF) of premiums that must be paid for 
regulation capacity from a curtailed wind farm, above the market price. The results are 
sensitive to the market price of upregulation and to the opportunity cost of curtailment. 

Negative cost premiums in Fig. 3 correspond to intervals when wind farm curtailment 
produces upregulation capacity for less the market price. The cost of curtailment-derived 
upregulation capacity is less than the market price in approximately 1% of the 1440 1-hour 
dispatch intervals studied in 2008, and approximately 0% of the dispatch intervals in 2007 
and 2009. If the grid operator is willing to pay a premium up to $50/MW-h, the wind farm 
can provide regulation capacity in 8% of the 1-hour dispatch intervals in 2007, 15% in 2008, 
and 5% in 2009. These results assume an opportunity cost for curtailing the wind farm of 
$62/MWh, made up of a wholesale energy price of $40/MWh, the federal Production Tax 
Credit (PTC) of $21/MWh, and a Renewable Energy Certificate (REC) price of $1/ MWh 
estimated by Wiser and Bollinger [32]. To examine the sensitivity of the results to the 
opportunity cost, we plot in Fig. 4 the percentage of 1-hour dispatch intervals when 
upregulation capacity from a curtailed wind farm costs less than the market price against the 
opportunity cost of curtailment. These results show that a wind farm with a lower opportunity 
cost will be competitive in the upregulation capacity market more often than a wind farm 
with higher opportunity costs. 
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Fig. 3 A CDF of the cost premium for regulation capacity from a curtailed wind farm, as compared to ERCOT 
market prices for upregulation. The curtailed wind farm can provide upregulation at less than the market price in 
fewer than 1% of the 1440 1-hour intervals studied. We assume an opportunity cost for curtailing the wind farm 
of $62/MWh. 

In practice, a wind farm operator may bid less than the full opportunity cost for 
upregulation capacity because he or she would receive payments for extra energy produced 
when that upregulation capacity is dispatched, sometimes called upregulation energy. Most 
other players in the upregulation capacity market already bid prices based on expectations of 
the amount of upregulation energy that will be dispatched. 

The results in Fig. 3 and Fig. 4 are calculated for wind speed data from west Texas in 
2008, but results calculated for the other locations and other intervals listed in Table 1 show 
the same trends. We compare regulation capacity costs calculated with wind speed data from 
the other sites listed in Table 1 to regulation capacity market prices from Texas, so the results 
do not account for any correlation between regulation market prices and wind conditions. 
Regulation capacity costs calculated with Great Plains wind data are approximately half of 
costs calculated with wind data from the other two sites, though they are still only 
competitive with the market price in 3.5% of the intervals studied. We believe the costs are 
lower because the a wind farm at the Great Plains site has a significantly higher capacity 
factor than the other two sites—41%, as compared to 33% for the west Texas site in 2008 and 
28% for the Ontario site. 
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Fig. 4 Cost-effectiveness of wind farm curtailment for upregulation as a function of opportunity cost of 
curtailment. As the opportunity cost of curtailment increases, upregulation from curtailment is cheaper than the 
market price for curtailment in fewer 1-hour dispatch intervals 

The results in Fig. 3 and Fig. 4 exclude dispatch intervals when the mean wind farm 
power is outside the linear range (Pμ(k) < 21 MW or  Pμ(k) > 50 MW) and dispatch intervals 
when the maximum available upregulation capacity is near zero (Rmax(k) < 0.5 MW). Those 
results also exclude points where the actual regulation capacity is very close to the maximum 
available regulation capacity (Rmax – R < 0.1 MW) because the costs approach infinity.  

These results are best-case scenarios based on the assumption of perfect forecasting. 
The results are likely to be similar even with imperfect forecasting because Fig. 2 shows that 
the cost of upregulation capacity does not diverge much from the minimum when the wind 
farm is not curtailed by the optimum amount. However, the cost of upregulation capacity 
from a curtailed wind farm is rarely competitive with Texas market prices. 

5. Conclusions 

A curtailed wind farm can rarely provide frequency upregulation at a cost lower than 
the present U.S. regulation market price, even if wind conditions can be forecast with perfect 
accuracy. We find that even with the high prices for upregulation capacity seen in the Texas 
(ERCOT) market in 2008, a curtailed wind farm with average opportunity costs could 
produce upregulation capacity at a cost less than the market price only 1% of the time. In 
other years with lower market prices for upregulation capacity, a curtailed wind farm would 
almost never be competitive. Curtailing a wind farm for frequency upregulation may be 
worthwhile in electrical grids where fast-ramping conventional generators are very expensive 
such as Hawaii, where diesel generators produce most of the regulation. 

Several factors put wind farms at a disadvantage in a competitive market for 
upregulation capacity. First, the structure of some government subsidies for wind energy 
increase the opportunity cost of unproduced energy. When wind turbines are subsidized 
based on energy production, a curtailed wind farm loses both the revenue and the subsidy for 
unproduced energy. Second, thermal generators have lower opportunity costs for unproduced 
energy because their lost revenue is partially offset by fuel savings. Wind turbines have no 
significant variable costs, so they receive no offsetting savings for curtailment. 
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However, it is reasonable for grid operators to require that wind farms install the 
capability to curtail for frequency regulation. Curtailing a wind farm has a high operating 
cost, the opportunity cost of unproduced energy, but a very low capital cost. For grid 
operators, requiring delta curtailment capability from wind farms creates an emergency 
source of frequency regulation that may become more useful as wind power penetration 
increases. Wind farm owners already accept the requirement to be able to curtail for 
frequency regulation as a cost of connecting to the grid in some places. 

If it is necessary to curtail a wind farm to provide upregulation capacity, there are 
several ways to minimize the cost. First, wind farms should be curtailed to approximately half 
of the maximum available upregulation capacity, as shown in Fig. 2. If a wind farm is 
required to provide a small quantity of regulation capacity, it is better to deeply curtail a few 
of the turbines than evenly spread the curtailment over all the turbines. Some grid codes, such 
as those for E.On (Germany) and EirGrid (Ireland) require wind farms to curtail by a few 
percent of their rated power to create reserve power for frequency regulation [5, 7]. Curtailing 
only a few turbines in each wind farm to meet these requirements would increase the amount 
of reserve power for a given curtailment and decrease the variability of the size of the 
reserve. Second, wind farms with low opportunity costs should be curtailed first. Wind farms 
that sell power on low-price long-term contracts or farms that no longer receive production 
subsidies are the most likely candidates. 
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