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Abstract 

We compare the power output from a year of electricity generation data from a solar 
thermal plant, two solar PV arrays, and 20 ERCOT wind farms.  The analysis shows that 
solar photovoltaic electricity generation is approximately one hundred times more variable 
at frequencies on the order of 10-3 Hz than solar thermal electricity generation, and the 
variability of wind generation lies between solar PV and solar thermal.  We calculate the 
cost of variability of the different solar power sources and wind by using the costs of 
ancillary services and the energy required to compensate for its variability and 
intermittency, and the cost of variability per unit of displaced CO2 emissions. We show the 
costs of variability are highly dependent on both technology type and capacity factor.  
California emissions data were used to calculate the cost of variability per unit of displaced 
CO2 emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh.  The 
cost of variability for solar thermal generation is $5 per MWh, while that of wind 
generation in ERCOT was found to be on average $4 per MWh. Variability adds 
~$15/tonne CO2 to the cost of abatement for solar thermal power, and $33-$40 for PV. 
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1. Introduction 
The variability and intermittency of wind and solar electricity generators add to the cost of 
energy by creating greater demand for balancing energy services and other ancillary 
services.  As these sources begin to provide a large percent of the electricity supply, the 
relative costs of their variability may become important considerations in selection of 
technologies to meet renewables portfolio standards, in addition to their capital costs and 
environmental benefits.  

We quantify the differences in variability among three types of renewable electricity 
generation: solar thermal, solar photovoltaic (PV), and wind.  The power spectrum analysis 
in this paper follows the method used in Apt (2007) (1).  In addition, we demonstrate how 
these differences in power spectra translate into different costs of intermittency.  The 
analysis of the cost of variability uses a similar methodology to that of Katzenstein and Apt 
(2010) (2). 

Lavania et al. (2011) have examined solar variability in the frequency domain, and propose 
a method to reduce variability by interconnecting solar plants, but they use solar insolation 
data to estimate power output rather than actual solar array power output data (3).  
Gowrisankaran et al. (2011) present an economic model to calculate the cost of solar power 
intermittency in a grid with high levels of solar penetration (4).  They scale the power 
output of a 1.5 kW test solar facility in Tucson to simulate the solar power output.  Our 
research differs from previous work because we use real power output and price data from 
operational utility-scale plants to calculate the actual cost of variability of different energy 
technologies. 

We find that at frequencies greater than ~10-3 Hz (corresponding to times shorter than ~ 15 
minutes), solar thermal generation is less variable than generation from wind and solar PV.  
Using energy and ancillary service prices from California, the cost of variability of a solar 
thermal facility would be $5 per MWh.  This compares to a cost of variability at a solar PV 
facility of  $8-11 per MWh. Using the same 2010 California energy and ancillary service 
prices, we calculate the average cost of variability at 20 Electric Reliability Council of 
Texas (ERCOT) wind farms was $4 per MWh. Variability adds ~$15/tonne CO2 to the cost 
of abatement for solar thermal power, and $33-$40 for PV. 

1.1 Description of Technologies 

Solar photovoltaic technology uses energy from sunlight to create electricity by exciting 
electrons on a photovoltaic material such as silicon (5).  Solar thermal generation also uses 
the energy of the sun to create electricity, but instead of exciting electrons, reflecting 
mirrors focus sunlight on rows of tubes containing a working fluid.  The heated working 
fluid runs through a heat exchanger, creating steam to generate electricity. In contrast to 
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solar PV arrays, solar thermal facilities can ride through short periods of reduced insolation 
due to the inertia of the heat stored in the working fluid.  

2. Methodology and Data 
2.1 Data 

We obtained 1-minute energy data gathered over a full year from a 4.5 MW solar 
photovoltaic (PV) array near Springerville, Arizona (in 2005), and 5-minute energy data 
from Nevada Solar One (NSO), a 75 MW solar thermal generation facility near Boulder 
City, Nevada (in 2010).  We also use 1-minute energy data from a 20 MW+ class solar PV 
array, provided on the condition of anonymity.  We use 15-minute wind data from 20 
ERCOT wind farms from 2008. 

We use data from the California Independent Service Operator (CAISO) for up and down 
regulation (in the day-ahead, DAH, market) and energy prices.  The 2010 CAISO energy 
prices represent the Southern California Edison (SCE) utility area real time hourly 
averages.  We use the same price data for all simulations to eliminate the effects of price 
variations in different years and in different geographic regions.  The SCE data (Table 1) 
were chosen to represent a geographical area as close as possible to the solar generation 
facilities in the Southwest.  Figure 1 is a time series representation of the Springerville solar 
PV and NSO solar thermal data sets. 

Table 1.  Average price information for CAISO price data used in analysis 

Type of charge Average hourly price per MWh 
CAISO SCE Energy (2010) $42 

CAISO DAH Up Regulation (2010) $5.6 

CAISO DAH Down Regulation (2010) $5.0 
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Figure 1.  Solar thermal and solar PV data: (a) 2005 Tucson Electric Power (TEP) solar PV 
data; (b) One week of 2005 TEP solar PV data; (c) 2010 NSO solar thermal data (the data 
gaps near the beginning and end of the year represent times the plant was out of service); (d) 
One week of NSO solar thermal data. 

We obtained data from EPA’s Clean Air Markets Data and Maps website on hourly 
emissions and electricity production for each thermal generating unit greater than 25 MW 
capacity in California for 2010 (6).  These data allowed us to calculate the cost of 
variability per unit of displaced CO2 emissions. 

2.2 Cost of variability 

We calculate the cost of mitigating variability in the generation output by adding the costs 
of ancillary services and the energy costs required for the ISO to handle variability of the 
solar resource (2). The ancillary service cost includes the cost of providing up and down 
regulation for each hour of operation.  The energy term is the absolute value of deviation 
from the hourly prediction to reflect the cost to the ISO when the generator deviates from 
its forecasted production.  We average cost of variability in each hour of the year and 
normalize the average by the total annual energy produced by the generator.  Figure 2 is a 
graphical representation of the calculation; the ISO uses load following energy and up and 
down regulation to mitigate the effects of variability of the renewable generation.  An ISO 
would also use frequency response ancillary services to mitigate the very short-term (1-10 
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second) effects of variability, but that is outside the scope of this research because our 
datasets contain generation information down to only 1-minute or 5-minute granularity.  
Calculation of the cost of variability is per equations (1) and (2). 

 

Figure 2.  Utilities use load following and regulation services to compensate for variability in 
solar energy.  When the energy production, Sk, deviates from the hourly energy set point, qh, 
the ISO uses load following regulation to ramp down or supplement the system-wide 
generation (middle-right graph).  In addition, the ISO utilizes up and down regulation 
equivalent to the minimum and maximum deviation from qh, respectively (lower right graph). 

 

(1)
  

(2)           
 

   
 

 

Where: 

Ph   is the hourly price of energy 
Pup,h   is the hourly price of up regulation 
Pdn,h   is the hourly price of down regulation 
qh   is the amount of firm hourly energy forecasted 
Sk,h   is the actual subhourly production of energy in hour h 
εk = Sk - qh  is the difference between energy forecasted and produced 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-11-04    www.cmu.edu/electricity 

DRAFT. Do Not Cite or Quote 6 

n  is the number of energy production records per hour (60 for TEP, 12 for 
NSO, 4 for ERCOT wind, and 60 for the 20 MW+ PV array) 

 

We arrive at 

 

qh , the hourly energy forecast, by taking the mean of n energy records for an 
hour, h.  The second two terms in equation (1) represent the cost of up and down regulation 
for the hour.  The minimum and maximum terms directly inside the absolute value symbols 
are only active if the hourly energy forecast lies outside of the actual upper and lower 
bound of energy production for the hour.  That situation can occur only when using 
imperfect forecast data, since the perfect forecast qh always falls between the maximum and 
minimum energy level for the hour.  

Simulating the cost of variability using energy forecast data would give more information 
about the realistic costs of intermittency of solar thermal and PV.  We were unable to 
obtain actual forecast data for the two solar generators in our analysis, so we simulated 
forecast data using National Renewable Energy Laboratory’s System Advisor Model 
(SAM) in order to more closely simulate utility operations.  We include the analysis of 
SAM forecast data in the supporting information.  

Katzenstein and Apt’s method is similar, but instead of using the average for the hourly 
energy set point, they create an objective function to minimize the intermittency cost with 
the energy set point as a variable.  Comparing their method to ours, we find similar results 
and have chosen to use the average energy method to reduce computation times.   

We assume that the solar plants are price takers, in that they are not large enough to 
influence the market price for electricity.  We also assume that the balancing energy price is 
equivalent to the market average hourly energy price.  

2.3 Cost of Variability and Emissions Displacement 

One goal of utilizing solar energy for electricity is reducing carbon dioxide emissions.  We 
first calculate the cost of solar variability on a per megawatt-hour basis.  We also calculate 
the cost of solar variability per unit of avoided emissions. 

We define avoided emissions, Eavoided, as the difference between the emissions displaced by 
using solar, Edisplaced, and the emissions created, Eancillary, from ancillary services that 
support the solar power provider.  Edisplaced represents the avoided emissions due to 
displacing marginal generating units with must-take solar electricity generation.  Eancillary 
represents the additional emissions created because of reserve, balancing, and frequency 
support for the solar resource. 

(3)     Eavoided = Edisplaced - Eancillary 
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In any given hour, the cost of avoided emissions is equivalent to the cost of variability 
divided by the mass of avoided emissions.  

(4)   Costavoided_emissions = Variability Cost/Eavoided 

For this calculation we assume perfect forecasts of solar energy, so the up and down 
balancing energy component of Eancillary cancels out.   CAISO also pays for spinning 
reserve, generating units that are running and emitting CO2 but not providing power to the 
grid, to balance intermittent resources.  However, calculating the emissions due to ancillary 
services is outside the scope of this research.  This calculation is meant to be a best-case 
scenario of variability cost per emissions avoided, but one that treats solar thermal, PV, and 
wind in the same way.   

We calculate Edisplaced for each hour of the year based on the emissions of the marginal 
generating units and the quantity of power being supplied by the solar generating facility.  
For each hour, we assume that the most recently switched on unit or units will be displaced 
by power from a solar or wind generator.  If more than one unit is dispatched in the same 
hour, we calculate the average emissions factor of these units.  We do not construct a 
dispatch model, but rather use the observed hourly plant dispatch for California in 2010 per 
EPA’s Clean Air Markets data (6).  If the solar or wind power generation for that hour 
surpasses the power production of the marginal unit(s), we identify the next most recently 
turned on unit until the sum of marginal power surpasses the solar power generated.  Figure 
3 illustrates how the 1st, 2nd, etc. marginal units are defined. 

 

Figure 3. Power output of individual generating units over time.  Our notation of “1st 
marginal unit” indicates the last unit to be dispatched; the 2nd marginal unit is the next-to-
last, and so forth. 
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Equation 5 below calculates the marginal emissions factor in any given hour. 

(5)   MEF(h) =Σi MUemissions(i)/Σi MUpower(i)  

Where: 

MEF(h)  is the marginal emissions factor in hour h 

i   is the number of relevant marginal units operating in hour h 

MUemissions  is the CO2 emissions rate of marginal unit i in hour h 

MUpower  is the power output of marginal unit i in hour h 

3. Results 
3.1 Power Spectral Analysis 

We follow the method of Apt (2007) to calculate the power spectra of a solar thermal plant, 
a solar PV array, and a wind plant (1).   Graphing multiple power sources together and 
normalizing the spectra at a frequency corresponding to a range near 24 hours reveals a 
difference in the variability of each source at high frequencies (Figure 4).   

The power spectral analysis shows that solar photovoltaic electricity generation has 
approximately one hundred times larger amplitude of variations at frequencies near 10-3 Hz 
than solar thermal electricity generation (this frequency corresponds to ~ 15 minutes).  
Electricity from wind farms is intermediate between solar PV and solar thermal in terms of 
variability in this frequency range.  High variability at high frequencies creates the need for 
more ancillary energy services to avoid quality problems or interruptions in electricity 
service to customers. 

Both types of solar generation exhibit strong peaks corresponding to a 24-hour period and 
its higher harmonics, as expected from the cessation of generation each night.  Wind power 
exhibits this property to a lesser extent (in the continental US, wind tends to have a diurnal 
variation, blowing more strongly at night). 

The power spectra are similar for the three generation types at frequencies lower than 
~4x10-5 Hz (corresponding to periods greater than six hours).   
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Figure 4.  Power spectra of solar PV, wind, and solar thermal generation facilities. The 
spectra have been normalized to one at a frequency corresponding to approximately 24 hours. 
All spectra are computed using 16-segment averaging. The strong diurnal peaks of solar 
power, and weaker one for wind power (along with their higher harmonics) are evident. 
There is very little difference between the 5 MW Springerville PV spectrum and that of the 
much larger PV array. The highest frequency in the spectra is governed by the Nyquist 
frequency for the temporal resolution of each data set (1 minute for the PV data, 5 for the 
solar thermal data, and 15 for the wind data). 

3.2 Cost of Variability of Solar Thermal and PV 

The average cost of variability of the Springerville PV plant using hypothetical perfect 
forecasts and 2010 CAISO prices is $11.0/MWh.  For the 20 MW+ class PV array, the 
average cost of variability is $7.9/MWh.  The difference in the variability cost of the two 
PV plants may be due to their capacity factors: 19% for Springerville and 25% for the 
larger array. For the Nevada Solar One (NSO) thermal plant, the average cost of variability 
is $5.2/MWh (23% capacity factor, but as noted previously, solar thermal plants have a 
significant thermal inertia that smoothes their power output).  Using Katzenstein and Apt’s 
optimization method the cost of variability for the NSO plant is $4.7/MWh (within 6% of 
our method using the average qh).  The perfect forecast result confirms the hypothesis that 
the cost of variability for the solar thermal plant ought to be less than that of the solar PV 
plant since the solar thermal plant’s thermal inertia allows it to continue to produce 
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electricity during cloudy periods.  As a comparison, the average cost of variability of 20 
ERCOT wind farms using the same price data is $4.3/MWh.  The highest cost of variability 
of an individual wind farm was $6.2/MWh and the lowest was $3.5/MWh.  While most 
wind farms had lower variability costs than the solar thermal plant, the wind farms had 
consistently higher capacity factors, which we found to be a predictor of lower variability 
cost. 

The average price of power in the southern CAISO region in 2010 was $42/MWh. 
Variability cost as a percentage of the price of power varies significantly across power 
sources (Table 2).  The average cost of variability per megawatt of installed capacity (Table 
2) follows from the variability characteristics observed in Figure 4.  We think the 
disparities between costs of variability per megawatt and the observed variability 
characteristics in Figure 4 result from differences in the capacity factors among different 
plants. 

Table 2.  Cost of variability of solar PV and solar thermal and the average price of electricity 
in the CAISO zone or region 

Average price per 
MWh power=$42 

Solar thermal 
(NSO) 

ERCOT 
wind 

Solar PV 
(Springerville, AZ)  

Solar PV (20 
MW+ class) 

Cost of variability 
per MWh 

$5.2 $4.3 $11.0 $7.9 

Cost of variability 
per MW capacity 

$1.2 $1.4 $2.2 $2.0 

Variability cost as a 
percent of total cost 
of power 

11.9% 10.2% 26.5% 18.9% 

Capacity factor (or 
average capacity 
factor) 

23% 34% 19% 25% 

 

The majority of the cost of variability consists of charges for balancing energy for both the 
solar thermal and solar PV plants (Table 3).  The average energy costs in 2010 were higher 
than the average regulation costs by nearly a factor of ten (Table 1). 

Table 3.  Cost of variability breakdown between energy and regulation charges 

 Energy costs Regulation costs 
TEP Solar PV 69% 31% 
20 MW+ Solar PV 65% 35% 
NSO Solar Thermal 69% 31% 
Wind (average) 73% 27% 
 

Based on sub-array data from the 20 MW+ class PV array, we conclude that the size of an 
array does not have a major influence on its cost of variability per unit of energy delivered.  
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To illustrate, the average cost of variability of a sub-array with one-sixth the capacity of the 
full sized array was $8.2/MWh, compared to $7.9/MWh for the full sized array.   

If the power output data from the renewable plants is averaged over long time intervals, the 
apparent variability and resulting computed ancillary service cost will be reduced. We find 
that interval between power measurements has some effect on the measured cost of 
variability, but does not change conclusions drawn from the results using 5 and 15 minute 
averages compared to 1 minute data (Table 4).  We also note that the measured cost of 
variability can vary significantly year-to-year (Table 5).  

 

Table 4.  TEP Solar PV cost of variability using 1-, 5-, and 15-minute intervals 

 TEP Solar PV $/MWh 
1-minute 11.0 
5-minute 9.7 
15-minute 7.8 
 

Table 5.  Cost of variability is sensitive to the price differences over multiple years 

$/MWh CA 2005 prices CA 2010 prices 

20 MW+ PV 9.8 7.9 
TEP Solar PV 12.6 11.0 
NSO Solar Thermal 5.9 5.2 

Wind (average) 5.0 4.3 
 

3.3 Cost of Variability and CO2 Displacement  

One of the goals of an RPS is to reduce CO2 emissions by replacing fossil fuel generation 
with renewable energy.  By calculating the marginal emissions factors during each hour 
using the method described in Section 2.3, we can calculate the cost of variability in terms 
of emissions avoided.  We note that this measurement is only part of the total cost of 
emissions avoided when considering renewable energy.  Table 6 contains the average MEF 
and average cost of variability per ton CO2 displaced for each generating unit. 
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Table 6.  Average marginal emissions factors and cost of variability per unit emissions 

Facility Average marginal emissions 
factor (tons CO2/MWh) 

Average cost of variability per ton 
CO2 

20 MW+ Solar PV  0.56 $33 

TEP Solar PV 0.47 $40 
Wind (average) 0.51 $25 
NSO Solar Thermal 0.48 $15 

 

As a comparison, Dobesova et al. report the cost of abatement using wind power for the 
2002 Texas RPS to be $56 per ton CO2 ($70 per ton CO2 in 2011 dollars), not including 
any costs of intermittency or variability (7).  Our result suggests that variability may 
increase the true cost of CO2 abatement using wind power by a third.   

3.4.  Policy Implications and Discussion 

We show through a power spectral analysis of observed data that solar thermal generation 
is less variable than either wind or solar PV at periods of less than approximately three 
hours (frequencies greater than ~10-4 Hz).  We also use time-domain data for PV, wind, and 
solar thermal to estimate the cost of variability. All calculations of the cost of variability 
used the same data for energy and ancillary service prices. We find that the cost of 
variability is greatest for solar PV generation at $11.0 per MWh.  The cost of variability for 
solar thermal generation is $5.2 per MWh, while that of wind generation in ERCOT was 
found to be $4.3 per MWh.  Variability adds $15/tonne CO2 to the cost of abatement for 
solar thermal power, and $33-$40 for PV. 

The Federal Energy Regulatory Commission (FERC) proposes in its Docket “Integration of 
Variable Energy Resources” to charge renewable energy resources a per-unit rate for 
regulation services related to the variability of generation (8).  If the Docket is adopted, the 
rate would be the same across all types of generation, and utilities could use the common 
rate structure already in place under Schedule 3, which contains the rules governing 
variability of load in a service area.  FERC envisions that individual transmission utilities 
can apply to charge different rates as long as they “demonstrate that the per-unit cost of 
regulation reserve capacity is somehow different when such capacity is utilized to address 
system variability associated with generator resources” (8).   

Based on our results, we note that a flat rate under the Docket’s Schedule 10 would 
advantage certain variable generators at the expense of others.  However, since we have 
shown that cost of variability depends on both the type of generation and the capacity factor 
of the individual generating unit, FERC does well not to mandate specific rates for different 
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technologies.  One principle that the Docket mentions is “cost causation,” or fairly 
determining a rate based on evidence that the rate is based on real costs.  Using our 
methods and data from individual variable energy resources, utilities should work with 
generators to determine a fair rate for variability.  We conclude that FERC Schedule 10 
allows for this type of calculation and utilities can avoid creating market biases by 
calculating real costs of variability. 

Renewable energy generators with lower variability costs require fewer ancillary services 
for support.  Ancillary services often are supplied by gas-fired plants that can ramp up and 
down quickly.  However the quick ramping of the current generation of these plants can 
increase emissions of NOx, a criteria air pollutant (9).  ISOs and those implementing solar 
power generation mandates can use the method described here to compare unpriced costs of 
variable and intermittent electricity generating technologies.  FERC acknowledged the 
extra costs created by variable generation in Schedule 10, and advises utilities to charge 
generators a per-unit rate according to Schedule 3 (8).  We suggest that utilities and 
generators examine the actual costs of variability before settling on a single per-unit rate. 
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Supporting Information 
Running the simulation with forecast data illustrates how the cost of variability can change without 
a perfect forecast.  Here we present a method by which forecast data could be used to develop a 
likely range for the cost of variability.  Because commercial forecast data were not available, we use 
NREL’s System Advisor Model (SAM) as a proxy.  

We simulate a forecast of the two data sets using NREL’s SAM.  SAM takes inputs from different 
types of renewable energy facilities and climate data, and uses that to simulate the outputs of a 
typical year of operation.  However, SAM is meant to give developers and researchers a general 
idea of typical outputs of a prospective power plant, and not to make precise forecasts of actual 
annual output.  Because of that, the hourly energy output data from the SAM tool was much less 
accurate than data that could be produced by today’s forecasting techniques. The climate input data, 
including typical meteorological year (TMY) files or individual year files from 1998-2005, comes 
from NREL’s Solar Prospector (1).  We used individual year data from 1998-2005 to simulate a 
forecast for each location, and then averaged the forecasted electricity outputs.   

The figures below show a comparison of the SAM output and the actual output for NSO and 
Springerville.  The SAM outputs were normalized so that the total energy produced in the year is 
equivalent for the actual output and the SAM forecast.  The SAM forecast for NSO was shifted one 
hour behind to match the actual NSO output.  The mean error between the SAM forecast and the 
actual production of NSO is 8.2 MW, or 10.9% of its capacity.  For TEP, it is 0.32 MW, or 6.4% of 
its capacity.   
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Figure S5.  Comparison of actual and forecast NSO hourly electricity generation data 

 

Figure S6.  Comparison of actual and forecast TEP hourly electricity generation data 

Using SAM to simulate an average year of operation, the cost of variability for the thermal and PV 
plants were $24/MWh and $23/MWh, respectively (Table S1).  

Table S7.  Cost of variability of solar PV and solar thermal and the average price of electricity 
in the CAISO zone or region 

 Nevada Solar One 

Solar thermal 

Springerville, AZ  

Solar PV 

Cost per MWh $5.2 $11.0 

Cost per MWh using forecast 
simulation (normalized) 

$24.0 $23.0 

 

We note that the large difference between the perfect information cost of variability and forecast 
cost of variability, especially for solar thermal, is likely larger than it would be using actual forecast 
data.  Real forecast data of solar PV and solar thermal facilities will be necessary to determine the 
real cost of variability of each technology.  We think that the solar thermal variability and 
intermittency costs are likely to be lower than those of PV when real forecast data are used, and that 
SAM energy output estimates are less accurate for solar thermal than they are for PV.  

(1)  NREL Solar Prospector Map. http://maps.nrel.gov/prospector (accessed August 6, 2011). 
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