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Abstract 
 
The U.S. Department of Energy has estimated that if the U.S. is to generate 20% of its 
electricity from wind, over 50 GW will be required from shallow offshore turbines. 
Hurricanes are a potential risk to these turbines. Turbine tower buckling has been 
observed in typhoons, but no offshore wind turbines have yet been built in the U.S. We 
present a probabilistic model to estimate the number of turbines that would be destroyed 
by hurricanes in an offshore wind farm.  We apply this model to estimate the risk to 
offshore wind farms in four representative locations in the Atlantic and Gulf Coastal 
waters of the U.S. In the most vulnerable areas now being actively considered by 
developers, nearly half the turbines in a farm are likely to be destroyed in a 20-year 
period. We show that adding a capability to yaw the turbine’s nacelle fast enough to 
follow the wind direction changes in a hurricane significantly reduces the risk the turbine 
will be destroyed. Reasonable mitigation measures – increasing the design reference wind 
load, ensuring that the nacelle can be turned into rapidly changing winds, and building 
most wind plants in the areas with lower risk – can greatly enhance the probability that 
offshore wind can help to meet the United States’ electricity needs.
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As a result of state renewable portfolio standards and federal tax incentives, there is 
growing interest and investment in renewable sources of electricity in the United States. 
Wind is the renewable resource with the largest installed-capacity growth in the last 5 
years, with U.S. wind power capacity increasing from 8.7 GW in 2005 to 33.5 GW 2009 
(1). All of this development has occurred onshore. U.S. offshore wind resources may also 
prove to be a significant contribution to increasing the supply of renewable, low-carbon 
electricity. The National Renewable Energy Laboratory (NREL) estimates that offshore 
wind resources can be as high as four times the U.S. electricity generating capacity in 
2010 (2). Although this estimate does not take into account siting, stakeholder, and 
regulatory constraints, it indicates that U.S. offshore wind resources are significant. 
Though no offshore wind projects have been developed in the U.S., there are 20 offshore 
wind projects in the planning process (with an estimated capacity of 2 GW) (2). The U.S. 
Department of Energy’s 2008 report, 20% Wind by 2030 (3) envisions 54 GW of shallow 
offshore wind capacity to optimize delivered generation and transmission costs. 
U.S. offshore resources are geographically distributed through the Atlantic, Pacific and 
Great Lake coasts. The most accessible shallow resources are located in the Atlantic and 
Gulf Coasts. Resources at depths shallower than 60 meters in the Atlantic coast, from 
Georgia to Maine, are estimated to be 920 GW; the estimate for these resources in the 
Gulf coast is 460 GW (4).  
Offshore wind turbines in these areas will be at risk from Atlantic hurricanes. Between 
1949 and 2006, 93 hurricanes struck the U.S. mainland according to the HURDAT 
database of the National Hurricane Center (5). In this 58-year period, only 15 years did 
not incur insured hurricane-related losses (3). The Texas region was affected by 35 
hurricane events, while the southeast region (including the coasts of Florida, where no 
offshore resources have been estimated (2)) had 32 events.  
Hurricane risks are quite variable, both geographically and temporally. Pielke et al. (4) 
note pronounced differences in the total hurricane damages (normalized to 2005) 
occurring each decade. Previous research has shown strong associations between North 
Atlantic hurricane activity and atmosphere-ocean variability on different timescales, 
including the multidecadal (6, 7). Atlantic hurricane data show that hurricane seasons 
with very high activity levels occur with some regularity; for instance, since 1950, there 
have been 25 years with three or more intense hurricanes (Saffir-Simpson Category 3 or 
higher). There were two 2-year periods with 13 intense hurricanes: 1950-1951 and 2004-
2005.  2004 and 2005 hurricanes were particularly damaging to the Florida and Gulf 
Coast regions (6 hurricanes made landfall in those areas in 2004 and 7 the following 
year).  

These hurricanes resulted in critical damages to energy infrastructure. Hurricane Katrina 
(2005), for example, was reported to have damaged 21 oil and gas producing platforms 
and completely destroyed 44 (8). Numerous drilling rigs and hydrocarbon pipelines were 
also damaged. Similarly, hurricanes have damaged powers systems. Liu et al (9), for 
example, reported that in 2003 Dominion Power had over 58,000 instances of the 
activation of  safety devices in the electrical system to isolate damages as a result of 
Hurricane Isabel. Although no offshore wind turbines have been built in the U.S., there is 
no reason to believe that this infrastructure would be exempt from hurricane damages.  
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In order to successfully develop sustainable offshore resources, the risk from hurricanes 
to offshore wind turbines needs to be analyzed and understood. Here we present a 
probabilistic model to estimate the number of turbines that would be destroyed by 
hurricanes in an offshore wind farm.  We apply this model to estimate the risk to offshore 
wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the 
U.S.: Galveston County, TX; Dare County, NC; Atlantic County, NJ; and Dukes County, 
MA. As of the of 2010, leases have been signed for wind farms off the coasts of 
Galveston (10) and Dukes County (11); projects off the coasts of New Jersey and North 
Carolina have been proposed (11). 

Results 
Wind Farm Risk from a Single Hurricane 
Wind turbines are vulnerable to hurricanes because the maximum wind speeds in those 
storms can exceed the design limits of wind turbines. Failure modes can include loss of 
blades and buckling of the supporting tower. In 2003, a wind farm of seven turbines in 
Okinawa, Japan was destroyed by typhoon Maemi (12) and several turbines in China 
were damaged by typhoon Dujuan (13). Here we consider only tower buckling, since 
blades are relatively easy to replace (although their loss can cause other structural 
damage). To illustrate the risk to a wind farm from hurricane force wind speeds, we 
calculate the expected number of turbines that buckle in a 50-turbine wind farm as a 
function of maximum sustained (10-minute mean) wind speed, assuming that turbines 
cannot yaw during the hurricane to track the wind direction (we later consider the case in 
which the nacelle can be yawed rapidly enough to track the wind direction of the 
hurricane). Figure 1 plots the median, 5th percentile, and 95th percentile of the number of 
turbine towers that buckle as a function of wind speed. The vertical dotted line shows the 
design reference wind speed for wind turbines in IEC Class 1 wind regimes, which 
includes the NREL 5-MW turbine we simulate, and nearly all offshore wind turbines 
currently in production. The IEC 61400-3 design standard for Class 1 wind regimes 
requires that a turbine survive a maximum 10-minute average wind speed with a 50-year 
return period of 50 m/s (97 knots) at hub height (14); we scale this wind speed from 80-m 
height to 10-m height assuming power-law wind shear with an exponent of 0.077 (15) 
because hurricane wind speeds are given for 10-meter height.  

Higher-category hurricanes will destroy a significant number of turbines. A Category 2 
hurricane (wind speeds of 45 m/s or higher) will buckle up to 17% of the turbines in a 
wind farm, and a Category 3 (wind speeds of 50 m/s or higher) will buckle up to 92%. 
The damage caused by Category 3, 4 and 5 hurricanes is important for offshore wind 
development in the U.S. because every state on the Gulf of Mexico coast and 9 of the 14 
states on the Atlantic Coast have been struck by a Category 3 or higher hurricane 
between 1856 and 2008 (16). Hurricane Ike in 2008, for example, had a maximum 
sustained wind speed of 95 knots (49 m/s) at 10-meter height (Category 2) when it passed 
over the meteorological tower erected by the developers of the Galveston Offshore Wind 
project. If a 50-turbine wind farm had been located off the coast of Galveston when 
hurricane Ike struck, our model predicts that Hurricane Ike would have had a 90% 
probability of buckling between 1 and 7 turbines, with a median of 4 towers. 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-11-03 www.cmu.edu/electricity 
  

DRAFT- Do not cite or distribute  5 

 

Figure 1: Cumulative distribution function of the expected number of turbine towers buckled by a single storm 
as a function of wind speed. This models a storm with a turbulence intensity of 14% in a 50-turbine wind farm 
of NREL 5-MW turbines (17)  that cannot yaw to track the wind. The dashed lines plot the 5th and 95th 
percentile values and the solid vertical line shows Vref, the design wind speed with a 50-year return period (14) 
scaled to 10-m height.   

Risk from Multiple Hurricanes 
We calculate the cumulative distribution function (CDF) for the number of turbines that 
buckle in 20 years for wind farms at four different locations, assuming that buckled 
turbines are not replaced after each storm. The distributions are modeled by a modified 
Phase-Type distribution described in the materials and methods section. Figure 2 shows 
the CDF for each location for two cases: turbines that can yaw to track wind direction 
(dashed line) and turbines that cannot yaw (solid line). The non-yawing case is a worst-
case scenario, but it is realistic for two reasons. First, wind turbines typically do not have 
backup power for yaw motors and hurricanes often cause widespread power outages. 
Wind turbine design standards such as the IEC 61400-3 (Design Load Case 6.2) require 
turbine designers to assume a yaw misalignment up to ±180º if no yaw backup power is 
available, though designers can assume the turbine points directly into the wind if six 
hours of backup power is available for the yaw and control systems (14). Second, wind 
direction in a hurricane may change faster than a wind turbine can yaw. The NREL 5-
MW turbine we model is designed to yaw at 0.3º/sec, but Schroeder, et al show that the 
wind direction of Hurricane Bob in 1991 changed 30º in approximately 60 seconds 
(0.5º/sec), as measured 55 km away from the center of the storm (18). The yawing case in 
Figure 2 illustrates how much the risk to a wind farm is reduced if the turbines can track 
the wind direction quickly and reliably as a hurricane passes.  
Galveston County is the riskiest location to build a wind farm of the four locations 
examined, followed by Dare County, NC. In contrast, Atlantic County, NJ and Dukes 
County, MA are significantly less risky. In Galveston County, there is a 16% probability 
that no turbines will buckle in 20 years and a 46% probability that more than half will 
buckle if the turbines cannot yaw; if they are able to yaw, there is a 83% probability that 
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none will buckle and a 7% probability that more than half will. In Dare County, NC, 
there is a 13% probability that no turbines will buckle in 20 years and a 33% probability 
that more than half will buckle if the turbines cannot yaw; if they are able to yaw, there is 
a 96% probability that none will buckle and much less than 1% probability that more than 
half will. In Atlantic County, NJ there is a 64% that no turbines will buckle in 20 years 
and a 4% probability that more than half will buckle. In Dukes County, MA, there is a 
61% probability that no turbines will buckle in 20 years and less than 1% probability that 
more than half will buckle. If the turbines in Atlantic and Dukes counties are able to 
quickly yaw even when grid power is out, there is more than a 99% probability that none 
will buckle in 20 years.  

The results in Figure 2 assume each hurricane has a turbulence intensity of 14%, where 
we define the turbulence intensity (TI) as the 10-minute standard deviation of wind speed 
divided by the 10-minute mean wind speed. The probability distributions in Figure 2 are 
sensitive to the chosen value of TI, especially for small numbers of turbines buckled. For 
example, the probabilities that no turbines are buckled in Galveston if the turbines are 
able to yaw are 76% and 89% for turbulence intensities of 12% and 16%, respectively. 
However, we believe a TI of 14% gives a low estimate of the number of turbines that 
buckle because much higher TI values are observed in hurricanes. Schroeder, et al 
recorded longitudinal (along-wind) turbulence intensities of 7 – 17% during the passage 
of Hurricane Bob in 1991 (18) and 12 – 42% during the passage of Hurricane Bonnie in 
1998 (19). 

 
Figure 2: Cumulative distribution of the number of turbines in a 50-turbine wind farm buckled in 20 years if 
buckled turbines are not replaced. Dashed lines plot the distribution for the case that turbines can yaw to track 
the wind direction, and solid lines plot the distribution for the case that turbines cannot yaw. 

If turbines are replaced after each storm, the cumulative probabilities for fewer than 35 
turbines buckling in 20 years is within four percentage points of the distributions without 
replacement shown in Figure 2. However, there is a possibility that more than 50 turbines 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Turbines Buckled in 20 Years

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

 

 

Galveston County, TX
Dare County, NC
Atlantic County, NJ
Dukes County, MA

  No yawing
  Active yawing



Carnegie Mellon Electricity Industry Center Working Paper CEIC-11-03 www.cmu.edu/electricity 
  

DRAFT- Do not cite or distribute  7 

will buckle in 20 years. For example, there is a 33% probability in Galveston County and 
22% probability in Dare County that more than 50 turbines will buckle if the turbines 
cannot yaw. The distributions with replacement are modeled as a compound Poisson 
distribution; the derivation of the distribution and a CDF plot of the results are given in 
the Supporting Information. 

Distribution of Damage by Hurricane Intensity 
The number of turbines that buckle in a wind farm during the farm’s 20-year life is a 
function of the frequency of hurricane occurrence and the intensity of the hurricanes that 
occur. Higher-intensity storms buckle more turbines, but occur less frequently. To assess 
which categories of hurricanes cause the most expected damage, we use Monte Carlo 
simulation to calculate the expected value of the number of turbines that buckle in 20 
years and the expected damage from each category of hurricane. The results are plotted in 
Figure 3. These results reflect damages averaged through 10,000 20-year periods—the 
results in any given 20-year period will be different, typically dominated by one or two 
hurricanes. 

Figure 3 indicates that Category 3, 4 and 5 hurricanes cause most of the expected damage 
at each location: 89% in Galveston County, 80% in Dare County, 75% in Atlantic 
County, and 71% in Dukes County. However, no Category 4 and 5 hurricanes have made 
landfall in Dare, Atlantic, or Dukes counties since record keeping began in 1850. 
Analyses of U.S. hurricanes prior to 1850 report four landfalls in North Carolina that may 
have been category 4 (in 1815, 1827, 1842 and 1846) (20, 21) and one in 1821 that was 
likely either category 4 or 5 (21). This historic record indicates that hurricanes of 
intensity 4 or higher should be possible in Dare County. Category 4 hurricanes also 
appear possible in Atlantic county with sufficiently warm sea-surface temperatures such 
as during late August. Hurricane model projections (20) indicate that the Great Colonial 
Hurricane of August 1635 most likely retained category 4 intensity until reaching 
southern New Jersey. However, storms of category 4 intensity in coastal Massachusetts 
may be physically impossible in present climate conditions. Generalized Extreme Value 
distributions (GEV) fit to the maximum sustained wind speeds of hurricanes in the 
regions around Dare, Atlantic, and Dukes counties predict probabilities of 4%, 2%, and 

2% , respectively, that a hurricane making landfall in those counties will be Category 4 or 
5.  
We test the sensitivity of our results in Figure 2 and Figure 3 to the occurrence of 
category 4 and 5 hurricanes by repeating the Monte Carlo simulation of 10,000 20-year 
periods but excluding periods that contain a category 4 or 5 hurricane. This analysis 
excludes 15% of total simulations for Dare County, 2% for Atlantic County, and 2% for 
Dukes County. The results for Dare County are the most sensitive to the occurrence of 
high-category hurricanes: the expected number of turbines that buckle in 20 years 
decreases from 19.3 to 13.4, the probability of no turbines buckling increases from 20% 
to 24% and the probability that less than half the turbines buckle increases from 68% to 
80% when Category 4 and 5 hurricanes are excluded. The results for Atlantic and Dukes 
counties are less sensitive to the occurrence of high-category hurricanes: the expected 
number of turbines that buckle falls from 3.8 to 3.1 in Atlantic County and from 3.4 to 
2.6 in Dukes County. In both Atlantic and Dukes counties, the probabilities of none of the 
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turbines and less than half the turbines buckling increase approximately two percentage 
points. Plots of the CDF of number of turbines bucked with higher-category hurricanes 
excluded are given in the Supporting Information. 
 

 
Figure 3: The expected number of turbines that buckle in a 50-turbine wind farm over 20 years for each 
location, subdivided by hurricane category. 

Discussion 
The 2008 DOE report (3) estimates that 54 GW of shallow offshore wind capacity will be 
required to bring the U.S. to 20% wind, and locates most of that capacity off the Gulf and 
East coasts. We find that hurricanes pose a significant risk to wind turbines off the U.S. 
Gulf and East coasts, even if they are designed to the most stringent current standard 
(IEC Class 1 winds). Now is an appropriate moment to consider mitigation strategies that 
can be incorporated to reduce risk to the grid and to operators, before large-scale offshore 
wind development is undertaken in the United States. 

Engineered solutions can mitigate the risk of wind turbine damage as a result of 
hurricanes in the Eastern United States. Typically, wind turbines are designed based on 
engineering design codes for northern Europe and the North Sea, where nearly all the 
offshore and coastal wind turbines have been built. These codes specify maximum 
sustained wind speeds with a 50-year return period of 42.5 – 51.4 m/s (83 – 100 knots), 
lower than high intensity hurricanes (22). Asian countries have been interested in 
designing structurally stronger wind turbines that can survive typhoon-force winds (23). 
These authors have proposed changes in the characteristic values for the IEC 61400-3 
design standard that would apply to turbines in areas exposed to tropical cyclones. 
Garciano, et al (24), also analyze data from the Philippines and propose increasing the 
design reference wind speed at hub height with a 50-year return period from 50 m/s to 58 
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m/s. Tarp-Johansen, Clausen, and others also analyze data from the Philippines and 
propose the design reference wind speed at hub height with a 50-year return period 
should be increased from 50 m/s to 67 m/s and the load safety factor should be increased 
from 1.35 to 1.7 to maintain the same level of reliability (13). Tarp-Johansen and Clausen 
estimate that the changes they propose to the design requirements increase the cost of 
each turbine 20 – 30% compared to conventional turbines (25). We have also 
demonstrated that wind turbines that have external power available to yaw can very 
substantially reduce the risk of being destroyed. Installing lead-acid batteries to allow a 
turbine to yaw without external power would add $70,000 - $100,000 to the price of a 
turbine and 4,000 - 7,000 kg to its weight, assuming 6 hours of backup power for yaw 
motors that draw 30 kW of power (26). In addition, the current yaw rate is 0.3 degrees 
per second. Further work is needed to determine the yaw rate appropriate for hurricanes. 
Backup power, robust wind direction indicators, and active controls may be cost-effective 
to reduce risk to the turbine.  

There is ample warning of hurricanes, and supplemental generation reserves can be 
brought on line to cover for the wind plants that will be shut down for months to years 
that it may take to rebuild buckled towers. However, system operators must make it 
economical for the owners of such spare generation to stay in business even in years with 
no hurricane damage, and suitable capacity payment mechanisms will be required. 
The probability of hurricane landfalls is not geographically uniform. Figure 4 plots the 
offshore wind resources within water shallower than 60 meters (2) and the annual rate of 
hurricane landfalls for states in the Eastern U.S. since 1900 (27).   Information for 
Florida, Alabama, and Mississippi is not included in Figure 4. Though these states have 
moderate to high hurricane occurrence rates (0.44, 0.14, and 0.10 year-1 respectively), 
there are no offshore wind resource estimates available for them. The specific results 
shown in this paper are thus not representative of all the risk of hurricanes to all possible 
offshore wind farm locations. It is clear, however, that analysis of the type presented here 
should be performed as part of the wind farm siting analysis. 
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Figure 4: Resource vs. Hurricane Occurrence Rate λ  [year-1] 

 
Our analysis also assumed that historic wind speeds and historic rates of hurricanes 
occurrence are representative of future conditions. This may not be the case if climate 
change were to affect hurricane intensity or frequency. Detection of climate change 
effects on hurricanes is complicated by the very high sensitivity of hurricanes to 
variations in atmosphere-ocean conditions on multiple timescales, including the 
multidecadal (28); and by the short period over which hurricane observations are 
considered reliable (28, 29). Current high-resolution modeling studies project a relatively 
small increase in Atlantic hurricane intensity with increased global temperatures due to 
an increase in available thermal energy. These models also identify a possible decrease in 
Atlantic hurricane frequency, which may be attributable to the stabilization of the upper 
atmosphere (30). According to these projections, an increase in intensity due to climate 
change may not be noticeable for the next few decades (30-32). In line with this, Pielke et 
al. (33) report that no trends in normalized damages can be detected. On the other hand, a 
recent observational study (34) finds that there has been an increase in the intensity of the 
most intense hurricanes. Wind farm developers will invest and operate under the current 
uncertainties on the future development of Atlantic hurricane activity. The method 
developed here will support the decision process of wind turbine investors in hurricane-
prone areas. Sensitivity analysis on models like the one presented here can allow 
investors and regulators to see how distribution parameters affect the risk. 

There is a very substantial risk that Category 3 and higher hurricanes can destroy half or 
more of the turbines at some locations. By knowing the risks before building multiple 
GW of offshore wind plants, we can avoid precipitous policy decisions after the first big 
storm buckles a few turbines. Reasonable mitigation measures – increasing the design 
reference wind load, ensuring that the nacelle can be turned into the wind, and building 
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most wind plants in the areas with lower risk – can greatly enhance the probability that 
offshore wind can help to meet the United States’ electricity needs. 

Materials and Methods 
We model the distribution of the number of wind turbines buckled by hurricanes for two 
cases:  (1) turbines are not replaced for the life of the wind farm, and (2) turbines are 
replaced after each hurricane. For each case, we calculate the distributions using two 
methods: an analytical probability distribution presented here and a Monte Carlo 
simulation discussed in the Supporting Information. All the analyses presented here 
model a wind farm of 50 NREL 5-MW wind turbines (17) for 20 years. We believe our 
results under-estimate the probability of loss because we model only buckling of the 
tower base but ignore damage to other components. Our results may also under-estimate 
the probability of tower buckling because we analyze the onshore version of the NREL 5-
MW turbine, which has a simpler foundation structure and is not subjected to wave loads. 

Analytical Distribution: Turbines Buckled without Replacement 
We model Yno rep, the number of turbines that buckle in T years without replacement as a 
modified Phase-Type distribution with six parameters: Yno rep ~ PH(λ, µ, σ, ξ, α, β). 
Figure 2 plots the results calculated with this method. 

Hurricane	
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  particular	
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The maximum 10-minute sustained wind speed of each hurricane at 10-meter height is 
modeled as a Generalized Extreme Value (GEV) distribution with a location parameter µ, a 
scale parameter σ, and a shape parameter ξ fitted to historical hurricane data. The 
probability density function for W, the maximum sustained wind speed, evaluated at 
particular value w is:	
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The probability that a single wind turbine is buckled by a 10-minute sustained hub-height 
wind speed u is modeled using a Log-Logistic function with a scale parameter α and a 
shape parameter β. The function is fitted to the results of simulations of stresses on a 
particular turbine design given a yaw direction relative to the wind, a wind turbulence 
intensity, and a sustained wind speed u. The Log-Logistic function is given by: 
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The number of turbines buckled by a single hurricane in a wind farm of n turbines is 
modeled as a Beta Binomial distribution with parameters αB and βB. We derive the Beta 
Binomial distribution by fitting a Beta distribution with parameters αB and βB to the 
probability of buckling as a function of wind speed weighted by the probability of 
occurrence of each wind speed (a convolution of D and W) with a nonlinear least-squares 
fit. The wind speeds W are scaled to turbine hub height using the table of scaling values 
for hurricanes given by Franklin, et al. (15). Fitting the distribution simplifies the model 
by replacing the convolution of D and W, which together have five parameters, with a 
Beta distribution that has only two parameters. The Beta distribution gives the 
distribution of buckling probabilities for a single turbine given a hurricane with random 
(GEV) maximum wind speed. The corresponding Beta Binomial distribution with the 
same parameter values αB and βB gives the probability that X, the number of turbines that 
buckle out of n total, equals a particular value x: 
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where B( ) is the Beta function.  

The cumulative distribution of the number of turbines buckled in T or fewer years 
without replacement, Yno rep, is modeled as a modified Phase-Type distribution: 

 

€ 

Pr(Ynorep ≤ y |τ ≤ T) = π exp TΤ(y,n)( )e   [5] 

 

where π  is a row vector of initial state probabilities, T is a matrix of jump intensities for 
the transitions between states, and e is a column vector of ones. A Phase-Type 
distribution gives the distribution of times τ to reach the absorbing state of a Markov 
jump process (35, 36). In this application, each jump (state transition) represents a 
hurricane occurrence, each state represents a unique number or turbines buckled, and the 
absorbing state is when all n turbines in the wind farm have buckled. We modify the 
Phase-Type distribution to calculate the distribution of the number of turbines buckled 
Yno rep in a fixed time T by iteratively redefining the absorbing state to include cases 
where less than n turbines are bucked, as shown in Figure 5. 
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Figure 5: The Markov Chain used to calculate the probability that the number of turbines buckled is less than 
or equal to y. We define the absorbing state as all the states where Yno rep ≥  y+1. 

 
This redefinition of the absorbing state makes the sizes of the vectors π  and e a function 
of y and makes both the size and values of the matrix T a function of y. To calculate the 
probability that y or fewer turbines buckle, we define the absorbing state to include an 
integer number of turbines buckled from y+1 to n. There are y+1 total states; the y+1st 
state is the absorbing state. The term π  in [5] is a y+1 element row vector of initial state 
probabilities; in this application π  = [1 0 … 0] because the distribution begins in state 1 
(no turbines buckled). The term e is a column vector of ones: [1 1 … 1]T. The term T is a 
(y+1) X (y+1) matrix of jump intensities, where the jump intensity Tij(y,n) from the ith 
state to the jth state is the product of λ, the rate of hurricane occurrence, and pij, the 
probability a hurricane causing a transition from state i to state j by buckling turbines. 
The off-diagonal elements of T(y,n) in the ith row and jth are calculated by: 
 

€ 

Τij (y,n) = λBetaBinomial(n − i +1,n − j +1;αB ,βB ) j ≥ i    [6] 

and the diagonal elements are calculated by: 

€ 

Τii(y,n) = − ti(y,n) + Τij (y,n)
j> i

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟   [7] 

where t is the jump intensity for a hurricane that jumps directly to the absorbing state (i.e. 
destroys all remaining turbines): 
 

€ 

ti(y,n) = λ BetaBinomial(n,n −m;αB ,βB )
m=0

n−y−1

∑   [8]
 

 
The off-diagonal elements of T do not sum to 1 along a row because some hurricanes do 
not cause a state transition (i.e. some hurricanes do not buckle any turbines). 
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Analytical Distribution: Turbines Buckled with Replacement 
We model Yrep, the number of turbines that buckle in T years with replacement as a 
compound Poisson distribution with six parameters: Yrep ~ Compound Possion(λ, µ, σ, ξ, 
α, β). The compound Poisson distribution is a convolution of the Poisson distribution 
given in [1] for the number of hurricanes that occur in T years  and the Beta Binomial 
distribution given in [4] for number of turbines buckled by each hurricane. No analytical 
expression exists for the PDF or CDF of a Compound Poisson distribution that contains a 
Beta Binomial distribution. We use Panjer’s Recursion (37, 38), an iterative method, to 
approximate the PDF. The details are given in Supporting Information. 

Application to Specific Locations 
The rate of hurricane occurrence parameter λ for the Poisson distribution given in [1] is 
calculated as the number of hurricanes to make landfall in each county between 1900 and 
2007 (16), divided by the length of the time period. The calculated values for the 
locations we investigate are given in Table 1. The parameters for the Generalized 
Extreme Value distribution given in [2] are fit to historical data for the maximum 10-
minute sustained wind speed at 10-meter height for all hurricanes to pass through the 
geographic ranges of interest (described in the fourth column of Table 1) between 1851 
and 2008.  

 
Table 1: Distribution Parameters for Poisson and Generalized Extreme Value Distributions. 

 Rate of hurricane 
occurrence 

[events/year] 

Max. Sustained 
hurricane wind speed: 
GEV distribution 
[knots] 

Geographic range 
of hurricanes 
modeled (lat/long) 

Galveston 
County, TX 

λ = 0.19 µ = 78.7, σ = 12.1, ξ = 
0.251 

25.5ºN - 30ºN 
92ºW – 99ºW 

Dare County, NC λ = 0.21 µ = 77.6, σ = 11.9, ξ = -
0.0366 

32º - 36.5ºN 
 71º - 81ºW 

Atlantic County, 
NJ 

λ = 0.047 µ = 77.2, σ = 10.6, ξ = -
0.0544 

36º - 41ºN 

71º - 77.5ºW 

Dukes County, 
MA 

λ = 0.075 µ = 73.2, σ = 6.99, ξ = -
0.139 

40.3º - 42ºN 

66º - 74.5ºW 

The parameters for the Log-Logistic function given in [3] are fit to probabilities of 
turbine tower buckling calculated by comparing the results of simulations of the 5-MW 
Offshore wind turbine designed by the U.S. National Renewable Energy Laboratory (17) 
to the stochastic resistance to buckling proposed by Sørensen, et al (39). The fitted 
parameters for different levels of wind turbulence intensity and for turbines that can and 
cannot yaw to track wind direction are given in Table 2. More extensive details are given 
in the Supporting Information. 
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Table 2: Parameters for Log-Logistic Distribution 

Turbulence intensity Pointed into wind (active 
yawing) 

Pointed perpendicular to 
wind (not yawing) 

16% (Class A) α = 5.18 , β = 0.051 α = 4.83, β = 0.045 

14% (Class B) α = 5.24 , β = 0.047 α = 4.84 , β = 0.064 

12% (Class C) α = 5.29 , β = 0.032 α = 4.84 , β = 0.059 
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2	
  

Risk	
  From	
  Multiple	
  Hurricanes	
  with	
  Replacement	
  
In	
  the	
  main	
  body	
  of	
  the	
  paper,	
  Figure	
  2	
  present	
  CDF	
  plots	
  for	
  the	
  number	
  of	
  turbines	
  
destroyed	
  in	
  20	
  years	
  if	
  buckled	
  turbines	
  are	
  not	
  replaced.	
  Here	
  we	
  present	
  similar	
  results	
  
for	
  the	
  case	
  that	
  buckled	
  turbines	
  are	
  replaced	
  after	
  each	
  storm.	
  Figure	
  S1	
  plots	
  the	
  CDF	
  for	
  
each	
  location	
  for	
  two	
  cases:	
  turbines	
  that	
  can	
  yaw	
  to	
  track	
  wind	
  direction	
  (dashed	
  lines)	
  
and	
  turbines	
  that	
  cannot	
  yaw	
  (solid	
  lines).	
  
In	
  this	
  scenario,	
  damaged	
  turbines	
  are	
  replaced	
  after	
  each	
  storm	
  so	
  there	
  is	
  no	
  limit	
  to	
  the	
  
maximum	
  number	
  of	
  turbines	
  that	
  buckle.	
  There	
  is	
  a	
  23%	
  probability	
  that	
  more	
  than	
  50	
  
turbines	
  will	
  buckle	
  in	
  Galveston	
  County	
  and	
  a	
  12%	
  probability	
  that	
  more	
  than	
  50	
  will	
  
buckle	
  in	
  Dare	
  County.	
  

	
  
Figure S1: Cumulative distribution of the number of turbines in a 50-turbine wind farm buckled in 20 years if buckled 
turbines are replaced after each storm if they buckle. Dashed lines plot the distribution for the case that turbines can yaw 
to track the wind direction, and solid lines plot the distribution for the case that turbines cannot yaw. 

Risk	
  From	
  Multiple	
  Hurricanes,	
  Cat.	
  4	
  and	
  5	
  Hurricanes	
  Excluded	
  
To	
  illustrate	
  the	
  effect	
  of	
  excluding	
  category	
  4	
  and	
  5	
  hurricanes	
  for	
  Dare,	
  Atlantic,	
  and	
  
Dukes	
  counties,	
  we	
  plot	
  the	
  CDF	
  of	
  the	
  number	
  of	
  turbines	
  damaged	
  with	
  and	
  without	
  
those	
  higher-­‐category	
  hurricanes.	
  The	
  results	
  for	
  the	
  case	
  that	
  turbines	
  cannot	
  yaw	
  to	
  track	
  
the	
  wind	
  direction	
  are	
  shown	
  in	
  Figure	
  S2,	
  where	
  solid	
  lines	
  plot	
  the	
  results	
  for	
  all	
  
hurricanes	
  and	
  dotted	
  lines	
  plot	
  the	
  results	
  excluding	
  category	
  4	
  and	
  5	
  turbines.	
  Similarly,	
  	
  
the	
  results	
  for	
  the	
  case	
  that	
  turbines	
  can	
  actively	
  yaw	
  are	
  shown	
  in	
  Figure	
  S3,	
  where	
  solid	
  
lines	
  plot	
  the	
  results	
  for	
  all	
  hurricanes	
  and	
  dotted	
  lines	
  plot	
  the	
  results	
  excluding	
  category	
  
4	
  and	
  5	
  turbines.	
  	
  

0 25 50 75 100 125 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Turbines Buckled in 20 Years

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

 

 

Galveston County, TX
Dare County, NC
Atlantic County, NJ
Dukes County, MA

  No yawing
  Active Yawing



Carnegie	
  Mellon	
  Electricity	
  Industry	
  Center	
  Working	
  Paper	
  CEIC-­‐11-­‐03	
   www.cmu.edu/electricity	
  
	
  

DRAFT	
  –	
  Do	
  not	
  cite	
  or	
  distribute	
  
	
  

3	
  

	
  

	
  
Figure S2: CDF of the number of turbines buckled in 20 years without replacement; turbines cannot yaw to track the 
wind. Solid lines plot the distribution including all hurricanes, and dotted lines plot the distribution with category 4 and 5 
hurricanes excluded. 

	
  
Figure S3: CDF of the number of turbines buckled in 20 years without replacement; turbines can actively yaw to track 
the wind. Solid lines plot the distribution including all hurricanes, and dotted lines plot the distribution with category 4 
and 5 hurricanes excluded. 
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Analytical	
  Distribution:	
  Turbines	
  Buckled	
  with	
  Replacement	
  
As described in the main document, we use a Compound Poisson distribution to model Yrep, 

the total number of turbines destroyed in T years in a wind farm of n turbines if turbines are 
immediately replaced after they are destroyed by a hurricane. The Compound Poisson 
distribution is a function of six parameters: λT, µ, σ, ξ, α, and β.  
 
 Yrep ~ Compound Poisson(λT, µ, σ, ξ, α, β) [A1]  
 
No analytical expression exists for the PDF or CDF of a Compound Poisson distribution that 
contains a Beta Binomial distribution. We use Panjer’s Recursion (1, 2), an iterative method, to 
compute the exact pdf: 

 

 

€ 

Pr(Yrep = y) = gy = a +
bj
y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ f jgy− j

j=1

y

∑  [A2] 

where 

 

€ 

f j =
Pr(Xi = j) j ≤ n

0 j > n

⎧ 
⎨ 
⎩  [A3] 

 
The value of fj is zero for j > n in equation A2 because the Beta Binomial distribution for the 
number of turbines damaged in the ith hurricane Xi is not defined for x > n, i.e. the number of 
turbines damaged in one hurricane cannot be larger than the number of turbines in the wind farm. 
Panjer defines a and b for a Poisson distribution (1). 

a = 0 
b = λT 

 
The initial value of f is: 

 

€ 

f0 = Pr(Xi = 0) =
n

0

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
B 0 +αB , n − 0 + βB( )

B αB , βB( )
=
B αB , n + βB( )
B αB , βB( )

 [A4] 

 
and the initial value g0, from (3), gives the probability that no turbines are buckled by hurricanes 
in T years as the probability that no hurricanes occur (H = 0) plus the probability that a positive 
number of hurricanes occur but cause no damage: 

 

 

€ 

g0 = Pr(H = 0) + Pr(Y = 0 |H > 0)

=
(λT)0

0!
e−λT + Pr(X = 0)( )i Pr(H = i)

i=1

∞

∑

= e−λT +
n

0

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
B(0 +αB , n − 0 + β)

B(α, β)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i

i=1

∞

∑ (λT)i

i!
e−λT

= e−λT +
B(αB , n −β)
B(α, β)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i

i=1

∞

∑ (λT)i

i!
e−λT

 [A5] 
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where B(α, β) is the Beta function: 

 

€ 

B(α,β) =
Γ(α −1)Γ(β −1)
Γ(α + β −1)

=
(α −1)!(β −1)!
(α + β −1)!

 [A6] 

and Γ() is the Gamma function. 

Monte	
  Carlo	
  Distribution:	
  Turbines	
  Buckled	
  with	
  Replacement	
  
To check the Compound Poisson distribution described above, we use Monte Carlo simulations 
to calculate Yrep, the distribution of the total number of turbines buckled in T years in a wind farm 
of n turbines if turbines are replaced after each hurricane. We simulate 10,000 20-year periods 
using the same distributions used in the Compound Poisson distribution: H for the frequency of 
hurricane occurrence, W for the maximum sustained wind speed, and D for the probability of 
buckling as a function of wind speed. 
For each simulated 20-year period in a given location, we calculate the total number of turbines 
that buckle according to the following procedure:	
  

1. Draw number of hurricanes from Poisson distribution H described in Hurricane Frequency. 
2. Draw maximum sustained wind speed for each hurricane from Generalized Extreme Value 

distribution W described in Hurricane Intensity (W. 
3. Scale maximum sustained wind speed to hub height (4) and calculate probability of a single 

turbine buckling at that wind speed using the Log-Logistic damage function described in 
Wind Turbine Damage Function (D). 

4. Calculate the number of turbines buckled in each hurricane using a Binomial distribution 
with the probability of buckling calculated in step 3 and n turbines. 

	
  
A	
  comparison	
  of	
  the	
  distributions	
  calculated	
  with	
  the	
  compound	
  Poisson	
  distribution	
  and	
  
the	
  Monte	
  Carlo	
  simulation	
  is	
  shown	
  in	
  Figure	
  S4.	
  
	
  

	
  
Figure S4: A comparison of the cumulative probability distributions of number of turbines buckled in 20 years for the 
case where turbines are replaced after each storm if they buckle. Results calculated with Monte Carlo simulation are 
plotted as dashed lines and results calculated with a compound Poisson distribution are plotted as solid lines. 
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Monte	
  Carlo	
  Distribution:	
  Turbines	
  Buckled	
  without	
  Replacement	
  
To check the Phase-Type distribution described in the main paper, we use Monte Carlo 
simulations to calculate Yno rep, the distribution of the total number of turbines buckled in T years 
in a wind farm of n turbines if turbines are not replaced after they are destroyed. We simulate 
10,000 20-year periods using the same distributions used in the Phase-Type distribution: H for 
the frequency of hurricane occurrence, W for the maximum sustained wind speed, and D for the 
probability of buckling as a function of wind speed. 
For each simulated 20-year period in a given location, we calculate the total number of turbines 
buckled according to the following procedure:	
  

1. Draw number of hurricanes from Poisson distribution H described in Hurricane Frequency. 
2. Draw maximum sustained wind speed for each hurricane from Generalized Extreme Value 

distribution W described in Hurricane Intensity (W. 
3. Scale maximum sustained wind speed to hub height (4) and calculate probability of a single 

turbine buckling at that wind speed using the Log-Logistic damage function described in 
Wind Turbine Damage Function (D). 

4. Calculate the number of remaining turbines buckled in each hurricane using a Binomial 
distribution with the probability of buckling calculated in step 3 and the number of turbines 
remaining after all the previous hurricanes. 
 

A	
  comparison	
  of	
  the	
  distributions	
  calculated	
  with	
  the	
  Phase-­‐Type	
  distribution	
  given	
  in	
  the	
  
main	
  paper	
  and	
  the	
  Monte	
  Carlo	
  simulation	
  described	
  above	
  is	
  shown	
  in	
  Figure	
  S5.	
  

	
  
Figure S5: A comparison of the cumulative probability distributions of number of turbines buckled in 20 years for the 
case where turbines are not replaced if they buckle. Results calculated with Monte Carlo simulation are plotted as dashed 
lines and results calculated with a Phase-Type distribution are plotted as solid lines. 

Hurricane	
  Frequency	
  (H)	
  
We	
  fit	
  a	
  Poisson	
  distribution	
  to	
  the	
  rate	
  of	
  hurricane	
  occurrence	
  in	
  a	
  particular	
  county	
  by	
  
dividing	
  the	
  number	
  of	
  hurricanes	
  to	
  make	
  landfall	
  in	
  that	
  county	
  from	
  1900	
  to	
  2006	
  by	
  the	
  
number	
  of	
  years	
  (5).	
  Table	
  1	
  in	
  the	
  main	
  document	
  lists	
  the	
  resulting	
  rate	
  of	
  hurricane	
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occurrence	
  values	
  λ	
  for	
  the	
  four	
  counties	
  we	
  examine.	
  This	
  method	
  of	
  calculating	
  the	
  rate	
  
of	
  hurricane	
  occurrence	
  assumes	
  that	
  the	
  rate	
  is	
  constant	
  and	
  equal	
  to	
  the	
  average	
  rate.	
  
However,	
  previous	
  research	
  has	
  shown	
  strong	
  associations	
  between	
  North	
  Atlantic	
  
hurricane	
  activity	
  and	
  atmosphere-­‐ocean	
  variability	
  on	
  different	
  timescales,	
  including	
  the	
  
multidecadal	
  (6,	
  7).	
  	
  

Hurricane	
  Intensity	
  (W)	
  
We	
  fit	
  a	
  Generalized	
  Extreme	
  Value	
  distribution	
  (GEV)	
  to	
  the	
  maximum	
  10-­‐minute	
  
sustained	
  wind	
  speed	
  at	
  10-­‐meter	
  height	
  of	
  hurricanes	
  that	
  pass	
  through	
  a	
  region	
  around	
  
the	
  counties	
  we	
  examine.	
  Table	
  2	
  in	
  the	
  main	
  paper	
  gives	
  the	
  parameters	
  of	
  the	
  fitted	
  GEV	
  
distributions	
  for	
  each	
  location	
  and	
  the	
  latitude	
  and	
  longitude	
  limits	
  of	
  the	
  regions	
  around	
  
those	
  locations.	
  Figure	
  S6	
  compares	
  the	
  empirical	
  and	
  fitted	
  CDFs	
  for	
  the	
  maximum	
  
sustained	
  wind	
  speed	
  at	
  each	
  location.	
  
 

	
  
Figure S6: Comparison of empirical CDFs for maximum hurricane wind speed in the regions we examine and the GEV 
distributions fitted to those data. 

Wind	
  Turbine	
  Damage	
  Function	
  (D)	
  
We	
  fit	
  a	
  Log-­‐Logistic	
  distribution	
  to	
  the	
  probability	
  of	
  a	
  wind	
  turbine	
  tower	
  buckling	
  as	
  a	
  
function	
  of	
  10-­‐minute	
  sustained	
  wind	
  speed	
  at	
  hub	
  height.	
  The	
  probability	
  of	
  the	
  turbine	
  
tower	
  buckling	
  at	
  a	
  given	
  wind	
  speed	
  is	
  calculated	
  by	
  simulating	
  tower	
  bending	
  moments	
  
of	
  a	
  5-­‐MW	
  NREL	
  turbine	
  and	
  comparing	
  them	
  to	
  the	
  stochastic	
  resistance	
  to	
  buckling	
  of	
  the	
  
turbine	
  tower.	
  In	
  our	
  analysis,	
  we	
  model	
  the	
  5-­‐MW	
  wind	
  turbine	
  design	
  created	
  by	
  the	
  U.S.	
  
National	
  Renewable	
  Energy	
  Laboratory	
  (NREL)	
  for	
  two	
  load	
  cases	
  (active	
  yawing	
  and	
  not	
  
yawing)	
  and	
  three	
  turbulence	
  intensity	
  values	
  (12%,	
  14%,	
  and	
  16%).	
  Turbulence	
  intensity	
  
I	
  is	
  calculated	
  as	
  the	
  quotient	
  of	
  the	
  10-­‐minute	
  mean	
  wind	
  speed	
  u	
  and	
  the	
  10-­‐minute	
  
standard	
  deviation	
  σ:	
  I	
  =	
  u10	
  min/σ10	
  min.	
  	
  
We	
  calculate	
  separate	
  damage	
  functions	
  for	
  the	
  “active	
  yawing”	
  and	
  “not	
  yawing”	
  load	
  
cases	
  because	
  those	
  are	
  the	
  best-­‐	
  and	
  worst-­‐case	
  wind	
  load	
  conditions	
  for	
  an	
  idling	
  wind	
  
turbine.	
  The	
  active-­‐yawing	
  case	
  assumes	
  the	
  grid	
  power	
  is	
  available	
  to	
  the	
  turbine	
  or	
  the	
  
turbine	
  has	
  a	
  backup	
  power	
  source	
  for	
  the	
  yaw	
  motors	
  and	
  control	
  system;	
  the	
  not-­‐yawing	
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case	
  assumes	
  the	
  turbine	
  does	
  not	
  have	
  a	
  backup	
  power	
  source	
  and	
  grid	
  power	
  has	
  been	
  
lost,	
  a	
  typical	
  occurrence	
  in	
  hurricanes	
  (8).	
  The	
  current	
  design	
  standards	
  for	
  wind	
  turbines	
  
given	
  by	
  the	
  IEC	
  (9)	
  and	
  Germanischer-­‐Lloyd	
  (10)	
  require	
  that	
  an	
  idling	
  wind	
  turbine	
  be	
  
able	
  to	
  survive	
  10-­‐minute	
  sustained	
  wind	
  with	
  50-­‐year	
  recurrence	
  period	
  (load	
  case	
  6.2).	
  If	
  
backup	
  power	
  is	
  not	
  available	
  for	
  the	
  yaw	
  and	
  control	
  systems,	
  the	
  IEC	
  standard	
  requires	
  
the	
  turbine	
  must	
  be	
  able	
  to	
  survive	
  a	
  yaw	
  misalignment	
  of	
  ±180º	
  and	
  the	
  Germanischer-­‐
Lloyd	
  standard	
  specifies	
  ±30º.	
  The	
  “active	
  yawing”	
  case	
  we	
  simulate	
  assumes	
  backup	
  
power	
  for	
  the	
  yaw	
  system,	
  and	
  the	
  “not	
  yawing”	
  case	
  assumes	
  a	
  yaw	
  misalignment	
  of	
  90º.	
  
The	
  probability	
  of	
  buckling	
  as	
  a	
  function	
  of	
  wind	
  speed	
  for	
  each	
  turbulence	
  intensity	
  value	
  
and	
  yawing/not	
  yawing	
  are	
  plotted	
  in	
  Figure	
  7.	
  

	
  
Figure 7: Comparison of the probability of buckling as a function of wind speed (damage function). TI = turbulence 
intensity.	
  

Bending	
  moment	
  simulation	
  

We	
  calculate	
  a	
  range	
  of	
  maximum	
  tower	
  bending	
  moments	
  by	
  simulating	
  the	
  mechanical	
  
loads	
  on	
  an	
  NREL	
  5-­‐MW	
  turbine	
  (11)	
  for	
  mean	
  hub-­‐height	
  wind	
  speeds	
  from	
  40	
  to	
  110	
  m/s	
  
(78	
  –	
  214	
  knots).	
  These	
  wind	
  speeds	
  are	
  significantly	
  higher	
  than	
  the	
  wind	
  speeds	
  at	
  which	
  
wind	
  turbines	
  shut	
  down	
  to	
  avoid	
  damage	
  (typically	
  25	
  m/s),	
  so	
  the	
  simulations	
  assume	
  
the	
  turbine	
  is	
  idling	
  with	
  its	
  blades	
  feathered	
  to	
  90º.	
  To	
  simplify	
  the	
  simulations,	
  we	
  
simulate	
  the	
  land-­‐based	
  version	
  of	
  the	
  NREL	
  5-­‐MW	
  turbine	
  instead	
  of	
  the	
  offshore	
  version	
  
so	
  we	
  don’t	
  need	
  to	
  model	
  the	
  effects	
  of	
  waves;	
  as	
  a	
  result,	
  the	
  damage	
  function	
  we	
  derive	
  
should	
  under-­‐predict	
  the	
  probability	
  of	
  an	
  offshore	
  turbine	
  buckling	
  at	
  a	
  given	
  wind	
  speed.	
  	
  
For	
  each	
  mean	
  wind	
  speed	
  u	
  (in	
  1	
  m/s	
  increments),	
  we	
  run	
  10	
  10-­‐minute	
  dynamic	
  
simulations	
  of	
  the	
  wind	
  turbine	
  using	
  FAST	
  version	
  7.00.01a-­‐bjj	
  (12).	
  We	
  use	
  TurbSim	
  
version	
  1.50	
  (13)	
  to	
  generate	
  a	
  three-­‐dimensional	
  wind	
  field	
  with	
  a	
  different	
  random	
  seed	
  
for	
  each	
  simulation.	
  The	
  turbulent	
  wind	
  fields	
  are	
  generated	
  using	
  the	
  Normal	
  Turbulence	
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Model	
  (NTM)	
  given	
  in	
  the	
  IEC	
  61400-­‐3	
  standard	
  (9).	
  That	
  IEC	
  standard	
  specifies	
  that	
  the	
  
Extreme	
  Wind	
  speed	
  Model	
  (EWM)	
  should	
  be	
  used	
  to	
  test	
  the	
  effect	
  of	
  extreme	
  winds	
  on	
  an	
  
idling	
  turbine	
  (load	
  case	
  6.2),	
  but	
  we	
  use	
  the	
  NTM	
  instead	
  because	
  it	
  generates	
  wind	
  time	
  
series	
  with	
  larger	
  standard	
  deviations.	
  Schroeder,	
  et	
  al	
  found	
  the	
  longitudinal	
  turbulence	
  
intensity	
  of	
  wind	
  speed	
  ranges	
  from	
  7	
  –	
  17%	
  during	
  the	
  passage	
  of	
  Hurricane	
  Bob	
  in	
  1991	
  
(14)	
  and	
  12	
  –	
  42%	
  in	
  the	
  passage	
  of	
  Hurricane	
  Bonnie	
  in	
  1998	
  (15).	
  We	
  test	
  the	
  sensitivity	
  
of	
  our	
  results	
  to	
  different	
  turbulence	
  intensities	
  by	
  calculating	
  separate	
  damage	
  functions	
  
for	
  turbulence	
  intensities	
  of	
  12%,	
  14%,	
  and	
  16%.	
  	
  
We	
  analyze	
  the	
  FAST	
  simulation	
  results	
  by	
  calculating	
  the	
  magnitude	
  of	
  the	
  tower	
  bending	
  
moment	
  and	
  finding	
  its	
  maximum	
  value.	
  FAST	
  calculates	
  the	
  x-­‐component	
  (TwrBsMxt)	
  
and	
  y-­‐component	
  (TwrBsMyt)	
  of	
  the	
  bending	
  moment	
  at	
  the	
  tower	
  base.	
  We	
  calculate	
  the	
  
magnitude	
  as	
    

€ 

M = TwrBsMxt2 + TwrBsMyt2 and	
  choose	
  the	
  maximum	
  value	
  from	
  each	
  
simulation.	
  
We	
  were	
  warned	
  that	
  FAST	
  simulations	
  might	
  be	
  unstable	
  for	
  large	
  yaw	
  mis-­‐alignments	
  
(16)	
  and	
  we	
  found	
  the	
  maximum	
  tower	
  bending	
  moments	
  in	
  some	
  simulations	
  of	
  the	
  not-­‐
yawing	
  case	
  (90º	
  wind	
  direction)	
  were	
  much	
  higher	
  (several	
  orders	
  of	
  magnitude)	
  than	
  the	
  
rest	
  of	
  the	
  simulation	
  results.	
  To	
  exclude	
  these	
  anomalous	
  results,	
  we	
  fit	
  a	
  line	
  to	
  the	
  
maximum	
  bending	
  moment	
  as	
  a	
  function	
  of	
  10-­‐minute	
  mean	
  wind	
  speed	
  using	
  a	
  robust	
  
linear	
  least-­‐squares	
  with	
  bi-­‐square	
  weights	
  and	
  exclude	
  any	
  data	
  points	
  more	
  than	
  1.5	
  
times	
  or	
  less	
  than	
  0.5	
  times	
  the	
  best-­‐fit	
  line.	
  The	
  data	
  and	
  the	
  exclusion	
  limits	
  are	
  
illustrated	
  in	
  Figure	
  S8.	
  This	
  method	
  does	
  not	
  exclude	
  any	
  model	
  results	
  from	
  the	
  active-­‐
yawing	
  case	
  (0º)	
  wind,	
  which	
  we	
  expected	
  because	
  the	
  FAST	
  simulation	
  is	
  believed	
  to	
  be	
  
reliable	
  for	
  small	
  yaw	
  misalignments.	
  	
  	
  

	
  
Figure S8: The method for excluding anomalous simulation results for maximum tower bending moment. The red line is 
a robust linear best-fit to the data and the green dashed lines are 0.5 and 1.5 times the best-fit line. Data outside the green 
dashed lines are excluded. 
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Calculation	
  of	
  buckling	
  probability	
  
Given	
  the	
  maximum	
  tower	
  bending	
  moments	
  M	
  calculated	
  above,	
  we	
  calculate	
  the	
  
probability	
  of	
  a	
  turbine	
  tower	
  buckling	
  by	
  comparing	
  the	
  simulated	
  bending	
  moments	
  to	
  a	
  
random	
  variable	
  for	
  the	
  resistance	
  of	
  a	
  tower	
  to	
  buckling.	
  	
  
For	
  each	
  combination	
  of	
  mean	
  wind	
  speed	
  u,	
  turbulence	
  intensity	
  I,	
  and	
  yaw	
  status	
  A,	
  we	
  
create	
  1000	
  bending	
  moment	
  values	
  by	
  repeatedly	
  sampling	
  the	
  simulation	
  results	
  with	
  
equal	
  probability.	
  If	
  no	
  anomalous	
  values	
  were	
  excluded,	
  there	
  are	
  10	
  simulation	
  values	
  to	
  
sample	
  from;	
  there	
  are	
  fewer	
  if	
  some	
  were	
  excluded.	
  
We	
  create	
  1000	
  resistance	
  to	
  buckling	
  values	
  by	
  sampling	
  from	
  Mcr,	
  the	
  resistance	
  to	
  
buckling	
  of	
  a	
  thin-­‐walled	
  cylinder	
  (17):	
  

	
  

€ 

Mcr = 1
6 1− 0.84

D
t

Xy,ssFy

XE ,ssE

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D3 − (D− 2t)3( )Xy,ssXcrFy 	
   [A7]	
  

with	
  the	
  parameters	
  given	
  in	
  Table	
  S1:	
  
Table S1: Parameters of resistance to buckling at the base of a NREL 5-MW turbine tower. LN = log-normal distribution, 
COV = coefficient of variance. Adapted from [Søresnen 2005] 

Variable	
   Description	
   Distribution	
  
Type	
  

Expected	
  Value	
   COV	
  

D	
   Tower	
  diameter	
  (base)	
   -­‐	
   6	
  m	
   -­‐	
  
t	
   Tower	
  thickness	
  (base)	
   -­‐	
   0.027	
  m	
   -­‐	
  
E	
   Young’s	
  modulus	
   -­‐	
   210	
  GPa	
   -­‐	
  
Fy	
   Yield	
  stress	
   LN	
   1	
   0.05	
  
Xy,ss	
   Model	
  uncertainties	
  

due	
  to	
  scale	
  effects:	
  
yield	
  stress	
  

LN	
   1	
   0.05	
  

XE,ss	
   Model	
  uncertainties	
  
due	
  to	
  scale	
  effects:	
  
Young’s	
  modulus	
  

LN	
   1	
   0.02	
  

Xcr	
   Critical	
  load	
  capacity	
   LN	
   1	
   0.10	
  
	
  
The	
  damage	
  function	
  D	
  is	
  calculated	
  by	
  comparing	
  all	
  the	
  sampled	
  bending	
  moment	
  values	
  
to	
  the	
  sampled	
  resistance-­‐to-­‐buckling	
  values	
  to	
  find	
  the	
  probability	
  of	
  buckling	
  for	
  each	
  10-­‐
minute	
  mean	
  wind	
  speed	
  u,	
  turbulence	
  intensity	
  I,	
  and	
  yaw	
  status	
  A:	
  
	
  

€ 

D(u; I,A) = Pr Mcr ≤ M(u; I,A)( ) 	
   [A7]	
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Nomenclature	
  
T = time period to investigate 
n = number of turbines in the wind farm 
u = 10-min avg. hub-height wind speed 
 
λ = rate parameter for occurrence of hurricanes 
µ = location parameter for distribution of wind speed in a hurricane 
σ= scale parameter for distribution of wind speed in a hurricane 
ξ = shape parameter for distribution of wind speed in a hurricane 
α = scale parameter for the log-logistic distribution of the probability of a turbine buckling at a 
10-minute average wind speed u 
β = shape parameter for the log-logistic distribution of the probability of a turbine buckling at a 
10-minute average wind speed u 
αB,  βB = parameters of the Beta Binomial distribution for the distribution of turbines buckled in 

a single hurricane (parameters are derived by fitting a Beta distribution to the damage 
function weighted by the probability of occurrence of wind speed) 

 
W = random variable for the maximum sustained (10-minute) wind speed of a hurricane 
w = a wind speed drawn from W 
D = random variable for the probability of turbine damage for a given wind speed w 
d = a damage probability drawn from D 
X = random variable for the number of turbines damaged in 1 hurricane 
x = a number of damaged turbines drawn from X 
H = random variable for the number of hurricanes in T years 
h = a number of hurricanes drawn from H 
Yrep = random variable for the number of turbines damaged in T years, with replacement 
Yno rep = random variable for the number of turbines damaged in T years, no replacement 
y = a number of turbines damaged drawn from Y 
 
a = constant for alternative description of the Poisson distribution used in Panjer recursion from 
(18)  
b = constant for alternative description of the Poisson distribution used in Panjer recursion from 
(18) 
 
T = transition matrix for phase-type distributions 
τ = the time to destroy all turbines (or reach an absorbing state) if turbines are not replaced 
 
z = number of Monte Carlo simulations 
 
T = matrix of state transition intensities. The values Tij are the probabilities of transition from 
state i to state j. There are n+1 states, where the n+1 state is the absorbing state 
t =  
π= starting probabilities for each state 
k =  number of turbines in absorbing state 
m = just an index for summation 
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