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Abstract 
 
The U.S. Department of Energy has estimated that if the U.S. is to generate 20% of its 
electricity from wind, over 50 GW will be required from shallow offshore turbines. 
Hurricanes are a potential risk to these turbines. Turbine tower buckling has been 
observed in typhoons, but no offshore wind turbines have yet been built in the U.S. We 
present a probabilistic model to estimate the number of turbines that would be destroyed 
by hurricanes in an offshore wind farm.  We apply this model to estimate the risk to 
offshore wind farms in four representative locations in the Atlantic and Gulf Coastal 
waters of the U.S. In the most vulnerable areas now being actively considered by 
developers, nearly half the turbines in a farm are likely to be destroyed in a 20-year 
period. We show that adding a capability to yaw the turbine’s nacelle fast enough to 
follow the wind direction changes in a hurricane significantly reduces the risk the turbine 
will be destroyed. Reasonable mitigation measures – increasing the design reference wind 
load, ensuring that the nacelle can be turned into rapidly changing winds, and building 
most wind plants in the areas with lower risk – can greatly enhance the probability that 
offshore wind can help to meet the United States’ electricity needs.
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As a result of state renewable portfolio standards and federal tax incentives, there is 
growing interest and investment in renewable sources of electricity in the United States. 
Wind is the renewable resource with the largest installed-capacity growth in the last 5 
years, with U.S. wind power capacity increasing from 8.7 GW in 2005 to 33.5 GW 2009 
(1). All of this development has occurred onshore. U.S. offshore wind resources may also 
prove to be a significant contribution to increasing the supply of renewable, low-carbon 
electricity. The National Renewable Energy Laboratory (NREL) estimates that offshore 
wind resources can be as high as four times the U.S. electricity generating capacity in 
2010 (2). Although this estimate does not take into account siting, stakeholder, and 
regulatory constraints, it indicates that U.S. offshore wind resources are significant. 
Though no offshore wind projects have been developed in the U.S., there are 20 offshore 
wind projects in the planning process (with an estimated capacity of 2 GW) (2). The U.S. 
Department of Energy’s 2008 report, 20% Wind by 2030 (3) envisions 54 GW of shallow 
offshore wind capacity to optimize delivered generation and transmission costs. 
U.S. offshore resources are geographically distributed through the Atlantic, Pacific and 
Great Lake coasts. The most accessible shallow resources are located in the Atlantic and 
Gulf Coasts. Resources at depths shallower than 60 meters in the Atlantic coast, from 
Georgia to Maine, are estimated to be 920 GW; the estimate for these resources in the 
Gulf coast is 460 GW (4).  
Offshore wind turbines in these areas will be at risk from Atlantic hurricanes. Between 
1949 and 2006, 93 hurricanes struck the U.S. mainland according to the HURDAT 
database of the National Hurricane Center (5). In this 58-year period, only 15 years did 
not incur insured hurricane-related losses (3). The Texas region was affected by 35 
hurricane events, while the southeast region (including the coasts of Florida, where no 
offshore resources have been estimated (2)) had 32 events.  
Hurricane risks are quite variable, both geographically and temporally. Pielke et al. (4) 
note pronounced differences in the total hurricane damages (normalized to 2005) 
occurring each decade. Previous research has shown strong associations between North 
Atlantic hurricane activity and atmosphere-ocean variability on different timescales, 
including the multidecadal (6, 7). Atlantic hurricane data show that hurricane seasons 
with very high activity levels occur with some regularity; for instance, since 1950, there 
have been 25 years with three or more intense hurricanes (Saffir-Simpson Category 3 or 
higher). There were two 2-year periods with 13 intense hurricanes: 1950-1951 and 2004-
2005.  2004 and 2005 hurricanes were particularly damaging to the Florida and Gulf 
Coast regions (6 hurricanes made landfall in those areas in 2004 and 7 the following 
year).  

These hurricanes resulted in critical damages to energy infrastructure. Hurricane Katrina 
(2005), for example, was reported to have damaged 21 oil and gas producing platforms 
and completely destroyed 44 (8). Numerous drilling rigs and hydrocarbon pipelines were 
also damaged. Similarly, hurricanes have damaged powers systems. Liu et al (9), for 
example, reported that in 2003 Dominion Power had over 58,000 instances of the 
activation of  safety devices in the electrical system to isolate damages as a result of 
Hurricane Isabel. Although no offshore wind turbines have been built in the U.S., there is 
no reason to believe that this infrastructure would be exempt from hurricane damages.  
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In order to successfully develop sustainable offshore resources, the risk from hurricanes 
to offshore wind turbines needs to be analyzed and understood. Here we present a 
probabilistic model to estimate the number of turbines that would be destroyed by 
hurricanes in an offshore wind farm.  We apply this model to estimate the risk to offshore 
wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the 
U.S.: Galveston County, TX; Dare County, NC; Atlantic County, NJ; and Dukes County, 
MA. As of the of 2010, leases have been signed for wind farms off the coasts of 
Galveston (10) and Dukes County (11); projects off the coasts of New Jersey and North 
Carolina have been proposed (11). 

Results 
Wind Farm Risk from a Single Hurricane 
Wind turbines are vulnerable to hurricanes because the maximum wind speeds in those 
storms can exceed the design limits of wind turbines. Failure modes can include loss of 
blades and buckling of the supporting tower. In 2003, a wind farm of seven turbines in 
Okinawa, Japan was destroyed by typhoon Maemi (12) and several turbines in China 
were damaged by typhoon Dujuan (13). Here we consider only tower buckling, since 
blades are relatively easy to replace (although their loss can cause other structural 
damage). To illustrate the risk to a wind farm from hurricane force wind speeds, we 
calculate the expected number of turbines that buckle in a 50-turbine wind farm as a 
function of maximum sustained (10-minute mean) wind speed, assuming that turbines 
cannot yaw during the hurricane to track the wind direction (we later consider the case in 
which the nacelle can be yawed rapidly enough to track the wind direction of the 
hurricane). Figure 1 plots the median, 5th percentile, and 95th percentile of the number of 
turbine towers that buckle as a function of wind speed. The vertical dotted line shows the 
design reference wind speed for wind turbines in IEC Class 1 wind regimes, which 
includes the NREL 5-MW turbine we simulate, and nearly all offshore wind turbines 
currently in production. The IEC 61400-3 design standard for Class 1 wind regimes 
requires that a turbine survive a maximum 10-minute average wind speed with a 50-year 
return period of 50 m/s (97 knots) at hub height (14); we scale this wind speed from 80-m 
height to 10-m height assuming power-law wind shear with an exponent of 0.077 (15) 
because hurricane wind speeds are given for 10-meter height.  

Higher-category hurricanes will destroy a significant number of turbines. A Category 2 
hurricane (wind speeds of 45 m/s or higher) will buckle up to 17% of the turbines in a 
wind farm, and a Category 3 (wind speeds of 50 m/s or higher) will buckle up to 92%. 
The damage caused by Category 3, 4 and 5 hurricanes is important for offshore wind 
development in the U.S. because every state on the Gulf of Mexico coast and 9 of the 14 
states on the Atlantic Coast have been struck by a Category 3 or higher hurricane 
between 1856 and 2008 (16). Hurricane Ike in 2008, for example, had a maximum 
sustained wind speed of 95 knots (49 m/s) at 10-meter height (Category 2) when it passed 
over the meteorological tower erected by the developers of the Galveston Offshore Wind 
project. If a 50-turbine wind farm had been located off the coast of Galveston when 
hurricane Ike struck, our model predicts that Hurricane Ike would have had a 90% 
probability of buckling between 1 and 7 turbines, with a median of 4 towers. 
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Figure 1: Cumulative distribution function of the expected number of turbine towers buckled by a single storm 
as a function of wind speed. This models a storm with a turbulence intensity of 14% in a 50-turbine wind farm 
of NREL 5-MW turbines (17)  that cannot yaw to track the wind. The dashed lines plot the 5th and 95th 
percentile values and the solid vertical line shows Vref, the design wind speed with a 50-year return period (14) 
scaled to 10-m height.   

Risk from Multiple Hurricanes 
We calculate the cumulative distribution function (CDF) for the number of turbines that 
buckle in 20 years for wind farms at four different locations, assuming that buckled 
turbines are not replaced after each storm. The distributions are modeled by a modified 
Phase-Type distribution described in the materials and methods section. Figure 2 shows 
the CDF for each location for two cases: turbines that can yaw to track wind direction 
(dashed line) and turbines that cannot yaw (solid line). The non-yawing case is a worst-
case scenario, but it is realistic for two reasons. First, wind turbines typically do not have 
backup power for yaw motors and hurricanes often cause widespread power outages. 
Wind turbine design standards such as the IEC 61400-3 (Design Load Case 6.2) require 
turbine designers to assume a yaw misalignment up to ±180º if no yaw backup power is 
available, though designers can assume the turbine points directly into the wind if six 
hours of backup power is available for the yaw and control systems (14). Second, wind 
direction in a hurricane may change faster than a wind turbine can yaw. The NREL 5-
MW turbine we model is designed to yaw at 0.3º/sec, but Schroeder, et al show that the 
wind direction of Hurricane Bob in 1991 changed 30º in approximately 60 seconds 
(0.5º/sec), as measured 55 km away from the center of the storm (18). The yawing case in 
Figure 2 illustrates how much the risk to a wind farm is reduced if the turbines can track 
the wind direction quickly and reliably as a hurricane passes.  
Galveston County is the riskiest location to build a wind farm of the four locations 
examined, followed by Dare County, NC. In contrast, Atlantic County, NJ and Dukes 
County, MA are significantly less risky. In Galveston County, there is a 16% probability 
that no turbines will buckle in 20 years and a 46% probability that more than half will 
buckle if the turbines cannot yaw; if they are able to yaw, there is a 83% probability that 

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

40

45

50

Max sustained wind speed at 10 m height [knots]

N
um

be
r o

f t
ur

bi
ne

s 
bu

ck
le

d

Hurricane Category 54321



Carnegie Mellon Electricity Industry Center Working Paper CEIC-11-03 www.cmu.edu/electricity 
  

DRAFT- Do not cite or distribute  6 

none will buckle and a 7% probability that more than half will. In Dare County, NC, 
there is a 13% probability that no turbines will buckle in 20 years and a 33% probability 
that more than half will buckle if the turbines cannot yaw; if they are able to yaw, there is 
a 96% probability that none will buckle and much less than 1% probability that more than 
half will. In Atlantic County, NJ there is a 64% that no turbines will buckle in 20 years 
and a 4% probability that more than half will buckle. In Dukes County, MA, there is a 
61% probability that no turbines will buckle in 20 years and less than 1% probability that 
more than half will buckle. If the turbines in Atlantic and Dukes counties are able to 
quickly yaw even when grid power is out, there is more than a 99% probability that none 
will buckle in 20 years.  

The results in Figure 2 assume each hurricane has a turbulence intensity of 14%, where 
we define the turbulence intensity (TI) as the 10-minute standard deviation of wind speed 
divided by the 10-minute mean wind speed. The probability distributions in Figure 2 are 
sensitive to the chosen value of TI, especially for small numbers of turbines buckled. For 
example, the probabilities that no turbines are buckled in Galveston if the turbines are 
able to yaw are 76% and 89% for turbulence intensities of 12% and 16%, respectively. 
However, we believe a TI of 14% gives a low estimate of the number of turbines that 
buckle because much higher TI values are observed in hurricanes. Schroeder, et al 
recorded longitudinal (along-wind) turbulence intensities of 7 – 17% during the passage 
of Hurricane Bob in 1991 (18) and 12 – 42% during the passage of Hurricane Bonnie in 
1998 (19). 

 
Figure 2: Cumulative distribution of the number of turbines in a 50-turbine wind farm buckled in 20 years if 
buckled turbines are not replaced. Dashed lines plot the distribution for the case that turbines can yaw to track 
the wind direction, and solid lines plot the distribution for the case that turbines cannot yaw. 

If turbines are replaced after each storm, the cumulative probabilities for fewer than 35 
turbines buckling in 20 years is within four percentage points of the distributions without 
replacement shown in Figure 2. However, there is a possibility that more than 50 turbines 
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will buckle in 20 years. For example, there is a 33% probability in Galveston County and 
22% probability in Dare County that more than 50 turbines will buckle if the turbines 
cannot yaw. The distributions with replacement are modeled as a compound Poisson 
distribution; the derivation of the distribution and a CDF plot of the results are given in 
the Supporting Information. 

Distribution of Damage by Hurricane Intensity 
The number of turbines that buckle in a wind farm during the farm’s 20-year life is a 
function of the frequency of hurricane occurrence and the intensity of the hurricanes that 
occur. Higher-intensity storms buckle more turbines, but occur less frequently. To assess 
which categories of hurricanes cause the most expected damage, we use Monte Carlo 
simulation to calculate the expected value of the number of turbines that buckle in 20 
years and the expected damage from each category of hurricane. The results are plotted in 
Figure 3. These results reflect damages averaged through 10,000 20-year periods—the 
results in any given 20-year period will be different, typically dominated by one or two 
hurricanes. 

Figure 3 indicates that Category 3, 4 and 5 hurricanes cause most of the expected damage 
at each location: 89% in Galveston County, 80% in Dare County, 75% in Atlantic 
County, and 71% in Dukes County. However, no Category 4 and 5 hurricanes have made 
landfall in Dare, Atlantic, or Dukes counties since record keeping began in 1850. 
Analyses of U.S. hurricanes prior to 1850 report four landfalls in North Carolina that may 
have been category 4 (in 1815, 1827, 1842 and 1846) (20, 21) and one in 1821 that was 
likely either category 4 or 5 (21). This historic record indicates that hurricanes of 
intensity 4 or higher should be possible in Dare County. Category 4 hurricanes also 
appear possible in Atlantic county with sufficiently warm sea-surface temperatures such 
as during late August. Hurricane model projections (20) indicate that the Great Colonial 
Hurricane of August 1635 most likely retained category 4 intensity until reaching 
southern New Jersey. However, storms of category 4 intensity in coastal Massachusetts 
may be physically impossible in present climate conditions. Generalized Extreme Value 
distributions (GEV) fit to the maximum sustained wind speeds of hurricanes in the 
regions around Dare, Atlantic, and Dukes counties predict probabilities of 4%, 2%, and 

2% , respectively, that a hurricane making landfall in those counties will be Category 4 or 
5.  
We test the sensitivity of our results in Figure 2 and Figure 3 to the occurrence of 
category 4 and 5 hurricanes by repeating the Monte Carlo simulation of 10,000 20-year 
periods but excluding periods that contain a category 4 or 5 hurricane. This analysis 
excludes 15% of total simulations for Dare County, 2% for Atlantic County, and 2% for 
Dukes County. The results for Dare County are the most sensitive to the occurrence of 
high-category hurricanes: the expected number of turbines that buckle in 20 years 
decreases from 19.3 to 13.4, the probability of no turbines buckling increases from 20% 
to 24% and the probability that less than half the turbines buckle increases from 68% to 
80% when Category 4 and 5 hurricanes are excluded. The results for Atlantic and Dukes 
counties are less sensitive to the occurrence of high-category hurricanes: the expected 
number of turbines that buckle falls from 3.8 to 3.1 in Atlantic County and from 3.4 to 
2.6 in Dukes County. In both Atlantic and Dukes counties, the probabilities of none of the 
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turbines and less than half the turbines buckling increase approximately two percentage 
points. Plots of the CDF of number of turbines bucked with higher-category hurricanes 
excluded are given in the Supporting Information. 
 

 
Figure 3: The expected number of turbines that buckle in a 50-turbine wind farm over 20 years for each 
location, subdivided by hurricane category. 

Discussion 
The 2008 DOE report (3) estimates that 54 GW of shallow offshore wind capacity will be 
required to bring the U.S. to 20% wind, and locates most of that capacity off the Gulf and 
East coasts. We find that hurricanes pose a significant risk to wind turbines off the U.S. 
Gulf and East coasts, even if they are designed to the most stringent current standard 
(IEC Class 1 winds). Now is an appropriate moment to consider mitigation strategies that 
can be incorporated to reduce risk to the grid and to operators, before large-scale offshore 
wind development is undertaken in the United States. 

Engineered solutions can mitigate the risk of wind turbine damage as a result of 
hurricanes in the Eastern United States. Typically, wind turbines are designed based on 
engineering design codes for northern Europe and the North Sea, where nearly all the 
offshore and coastal wind turbines have been built. These codes specify maximum 
sustained wind speeds with a 50-year return period of 42.5 – 51.4 m/s (83 – 100 knots), 
lower than high intensity hurricanes (22). Asian countries have been interested in 
designing structurally stronger wind turbines that can survive typhoon-force winds (23). 
These authors have proposed changes in the characteristic values for the IEC 61400-3 
design standard that would apply to turbines in areas exposed to tropical cyclones. 
Garciano, et al (24), also analyze data from the Philippines and propose increasing the 
design reference wind speed at hub height with a 50-year return period from 50 m/s to 58 
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m/s. Tarp-Johansen, Clausen, and others also analyze data from the Philippines and 
propose the design reference wind speed at hub height with a 50-year return period 
should be increased from 50 m/s to 67 m/s and the load safety factor should be increased 
from 1.35 to 1.7 to maintain the same level of reliability (13). Tarp-Johansen and Clausen 
estimate that the changes they propose to the design requirements increase the cost of 
each turbine 20 – 30% compared to conventional turbines (25). We have also 
demonstrated that wind turbines that have external power available to yaw can very 
substantially reduce the risk of being destroyed. Installing lead-acid batteries to allow a 
turbine to yaw without external power would add $70,000 - $100,000 to the price of a 
turbine and 4,000 - 7,000 kg to its weight, assuming 6 hours of backup power for yaw 
motors that draw 30 kW of power (26). In addition, the current yaw rate is 0.3 degrees 
per second. Further work is needed to determine the yaw rate appropriate for hurricanes. 
Backup power, robust wind direction indicators, and active controls may be cost-effective 
to reduce risk to the turbine.  

There is ample warning of hurricanes, and supplemental generation reserves can be 
brought on line to cover for the wind plants that will be shut down for months to years 
that it may take to rebuild buckled towers. However, system operators must make it 
economical for the owners of such spare generation to stay in business even in years with 
no hurricane damage, and suitable capacity payment mechanisms will be required. 
The probability of hurricane landfalls is not geographically uniform. Figure 4 plots the 
offshore wind resources within water shallower than 60 meters (2) and the annual rate of 
hurricane landfalls for states in the Eastern U.S. since 1900 (27).   Information for 
Florida, Alabama, and Mississippi is not included in Figure 4. Though these states have 
moderate to high hurricane occurrence rates (0.44, 0.14, and 0.10 year-1 respectively), 
there are no offshore wind resource estimates available for them. The specific results 
shown in this paper are thus not representative of all the risk of hurricanes to all possible 
offshore wind farm locations. It is clear, however, that analysis of the type presented here 
should be performed as part of the wind farm siting analysis. 
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Figure 4: Resource vs. Hurricane Occurrence Rate λ  [year-1] 

 
Our analysis also assumed that historic wind speeds and historic rates of hurricanes 
occurrence are representative of future conditions. This may not be the case if climate 
change were to affect hurricane intensity or frequency. Detection of climate change 
effects on hurricanes is complicated by the very high sensitivity of hurricanes to 
variations in atmosphere-ocean conditions on multiple timescales, including the 
multidecadal (28); and by the short period over which hurricane observations are 
considered reliable (28, 29). Current high-resolution modeling studies project a relatively 
small increase in Atlantic hurricane intensity with increased global temperatures due to 
an increase in available thermal energy. These models also identify a possible decrease in 
Atlantic hurricane frequency, which may be attributable to the stabilization of the upper 
atmosphere (30). According to these projections, an increase in intensity due to climate 
change may not be noticeable for the next few decades (30-32). In line with this, Pielke et 
al. (33) report that no trends in normalized damages can be detected. On the other hand, a 
recent observational study (34) finds that there has been an increase in the intensity of the 
most intense hurricanes. Wind farm developers will invest and operate under the current 
uncertainties on the future development of Atlantic hurricane activity. The method 
developed here will support the decision process of wind turbine investors in hurricane-
prone areas. Sensitivity analysis on models like the one presented here can allow 
investors and regulators to see how distribution parameters affect the risk. 

There is a very substantial risk that Category 3 and higher hurricanes can destroy half or 
more of the turbines at some locations. By knowing the risks before building multiple 
GW of offshore wind plants, we can avoid precipitous policy decisions after the first big 
storm buckles a few turbines. Reasonable mitigation measures – increasing the design 
reference wind load, ensuring that the nacelle can be turned into the wind, and building 
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most wind plants in the areas with lower risk – can greatly enhance the probability that 
offshore wind can help to meet the United States’ electricity needs. 

Materials and Methods 
We model the distribution of the number of wind turbines buckled by hurricanes for two 
cases:  (1) turbines are not replaced for the life of the wind farm, and (2) turbines are 
replaced after each hurricane. For each case, we calculate the distributions using two 
methods: an analytical probability distribution presented here and a Monte Carlo 
simulation discussed in the Supporting Information. All the analyses presented here 
model a wind farm of 50 NREL 5-MW wind turbines (17) for 20 years. We believe our 
results under-estimate the probability of loss because we model only buckling of the 
tower base but ignore damage to other components. Our results may also under-estimate 
the probability of tower buckling because we analyze the onshore version of the NREL 5-
MW turbine, which has a simpler foundation structure and is not subjected to wave loads. 

Analytical Distribution: Turbines Buckled without Replacement 
We model Yno rep, the number of turbines that buckle in T years without replacement as a 
modified Phase-Type distribution with six parameters: Yno rep ~ PH(λ, µ, σ, ξ, α, β). 
Figure 2 plots the results calculated with this method. 

Hurricane	  occurrence	  is	  modeled	  as	  a	  Poisson	  process	  with	  rate	  parameter	  λ	  fitted	  
to	  historical	  hurricane	  data.	  The	  probability	  that	  H,	  the	  number	  of	  hurricanes	  that	  
occur	  in	  T	  years,	  equals	  a	  particular	  value	  h	  is:	  
 

€ 

Pr(H = h) =
λT( )h

h!
e−λT  [1]     [1] 

 
The maximum 10-minute sustained wind speed of each hurricane at 10-meter height is 
modeled as a Generalized Extreme Value (GEV) distribution with a location parameter µ, a 
scale parameter σ, and a shape parameter ξ fitted to historical hurricane data. The 
probability density function for W, the maximum sustained wind speed, evaluated at 
particular value w is:	  
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The probability that a single wind turbine is buckled by a 10-minute sustained hub-height 
wind speed u is modeled using a Log-Logistic function with a scale parameter α and a 
shape parameter β. The function is fitted to the results of simulations of stresses on a 
particular turbine design given a yaw direction relative to the wind, a wind turbulence 
intensity, and a sustained wind speed u. The Log-Logistic function is given by: 
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The number of turbines buckled by a single hurricane in a wind farm of n turbines is 
modeled as a Beta Binomial distribution with parameters αB and βB. We derive the Beta 
Binomial distribution by fitting a Beta distribution with parameters αB and βB to the 
probability of buckling as a function of wind speed weighted by the probability of 
occurrence of each wind speed (a convolution of D and W) with a nonlinear least-squares 
fit. The wind speeds W are scaled to turbine hub height using the table of scaling values 
for hurricanes given by Franklin, et al. (15). Fitting the distribution simplifies the model 
by replacing the convolution of D and W, which together have five parameters, with a 
Beta distribution that has only two parameters. The Beta distribution gives the 
distribution of buckling probabilities for a single turbine given a hurricane with random 
(GEV) maximum wind speed. The corresponding Beta Binomial distribution with the 
same parameter values αB and βB gives the probability that X, the number of turbines that 
buckle out of n total, equals a particular value x: 
 

€ 

Pr(X = x) =
n

x

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
B(x −αB ,n − x + βB )

B(αB ,βB )
  [4] 

 
where B( ) is the Beta function.  

The cumulative distribution of the number of turbines buckled in T or fewer years 
without replacement, Yno rep, is modeled as a modified Phase-Type distribution: 

 

€ 

Pr(Ynorep ≤ y |τ ≤ T) = π exp TΤ(y,n)( )e   [5] 

 

where π  is a row vector of initial state probabilities, T is a matrix of jump intensities for 
the transitions between states, and e is a column vector of ones. A Phase-Type 
distribution gives the distribution of times τ to reach the absorbing state of a Markov 
jump process (35, 36). In this application, each jump (state transition) represents a 
hurricane occurrence, each state represents a unique number or turbines buckled, and the 
absorbing state is when all n turbines in the wind farm have buckled. We modify the 
Phase-Type distribution to calculate the distribution of the number of turbines buckled 
Yno rep in a fixed time T by iteratively redefining the absorbing state to include cases 
where less than n turbines are bucked, as shown in Figure 5. 
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Figure 5: The Markov Chain used to calculate the probability that the number of turbines buckled is less than 
or equal to y. We define the absorbing state as all the states where Yno rep ≥  y+1. 

 
This redefinition of the absorbing state makes the sizes of the vectors π  and e a function 
of y and makes both the size and values of the matrix T a function of y. To calculate the 
probability that y or fewer turbines buckle, we define the absorbing state to include an 
integer number of turbines buckled from y+1 to n. There are y+1 total states; the y+1st 
state is the absorbing state. The term π  in [5] is a y+1 element row vector of initial state 
probabilities; in this application π  = [1 0 … 0] because the distribution begins in state 1 
(no turbines buckled). The term e is a column vector of ones: [1 1 … 1]T. The term T is a 
(y+1) X (y+1) matrix of jump intensities, where the jump intensity Tij(y,n) from the ith 
state to the jth state is the product of λ, the rate of hurricane occurrence, and pij, the 
probability a hurricane causing a transition from state i to state j by buckling turbines. 
The off-diagonal elements of T(y,n) in the ith row and jth are calculated by: 
 

€ 

Τij (y,n) = λBetaBinomial(n − i +1,n − j +1;αB ,βB ) j ≥ i    [6] 

and the diagonal elements are calculated by: 

€ 

Τii(y,n) = − ti(y,n) + Τij (y,n)
j> i

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟   [7] 

where t is the jump intensity for a hurricane that jumps directly to the absorbing state (i.e. 
destroys all remaining turbines): 
 

€ 

ti(y,n) = λ BetaBinomial(n,n −m;αB ,βB )
m=0

n−y−1

∑   [8]
 

 
The off-diagonal elements of T do not sum to 1 along a row because some hurricanes do 
not cause a state transition (i.e. some hurricanes do not buckle any turbines). 
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Analytical Distribution: Turbines Buckled with Replacement 
We model Yrep, the number of turbines that buckle in T years with replacement as a 
compound Poisson distribution with six parameters: Yrep ~ Compound Possion(λ, µ, σ, ξ, 
α, β). The compound Poisson distribution is a convolution of the Poisson distribution 
given in [1] for the number of hurricanes that occur in T years  and the Beta Binomial 
distribution given in [4] for number of turbines buckled by each hurricane. No analytical 
expression exists for the PDF or CDF of a Compound Poisson distribution that contains a 
Beta Binomial distribution. We use Panjer’s Recursion (37, 38), an iterative method, to 
approximate the PDF. The details are given in Supporting Information. 

Application to Specific Locations 
The rate of hurricane occurrence parameter λ for the Poisson distribution given in [1] is 
calculated as the number of hurricanes to make landfall in each county between 1900 and 
2007 (16), divided by the length of the time period. The calculated values for the 
locations we investigate are given in Table 1. The parameters for the Generalized 
Extreme Value distribution given in [2] are fit to historical data for the maximum 10-
minute sustained wind speed at 10-meter height for all hurricanes to pass through the 
geographic ranges of interest (described in the fourth column of Table 1) between 1851 
and 2008.  

 
Table 1: Distribution Parameters for Poisson and Generalized Extreme Value Distributions. 

 Rate of hurricane 
occurrence 

[events/year] 

Max. Sustained 
hurricane wind speed: 
GEV distribution 
[knots] 

Geographic range 
of hurricanes 
modeled (lat/long) 

Galveston 
County, TX 

λ = 0.19 µ = 78.7, σ = 12.1, ξ = 
0.251 

25.5ºN - 30ºN 
92ºW – 99ºW 

Dare County, NC λ = 0.21 µ = 77.6, σ = 11.9, ξ = -
0.0366 

32º - 36.5ºN 
 71º - 81ºW 

Atlantic County, 
NJ 

λ = 0.047 µ = 77.2, σ = 10.6, ξ = -
0.0544 

36º - 41ºN 

71º - 77.5ºW 

Dukes County, 
MA 

λ = 0.075 µ = 73.2, σ = 6.99, ξ = -
0.139 

40.3º - 42ºN 

66º - 74.5ºW 

The parameters for the Log-Logistic function given in [3] are fit to probabilities of 
turbine tower buckling calculated by comparing the results of simulations of the 5-MW 
Offshore wind turbine designed by the U.S. National Renewable Energy Laboratory (17) 
to the stochastic resistance to buckling proposed by Sørensen, et al (39). The fitted 
parameters for different levels of wind turbulence intensity and for turbines that can and 
cannot yaw to track wind direction are given in Table 2. More extensive details are given 
in the Supporting Information. 
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Table 2: Parameters for Log-Logistic Distribution 

Turbulence intensity Pointed into wind (active 
yawing) 

Pointed perpendicular to 
wind (not yawing) 

16% (Class A) α = 5.18 , β = 0.051 α = 4.83, β = 0.045 

14% (Class B) α = 5.24 , β = 0.047 α = 4.84 , β = 0.064 

12% (Class C) α = 5.29 , β = 0.032 α = 4.84 , β = 0.059 
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Risk	  From	  Multiple	  Hurricanes	  with	  Replacement	  
In	  the	  main	  body	  of	  the	  paper,	  Figure	  2	  present	  CDF	  plots	  for	  the	  number	  of	  turbines	  
destroyed	  in	  20	  years	  if	  buckled	  turbines	  are	  not	  replaced.	  Here	  we	  present	  similar	  results	  
for	  the	  case	  that	  buckled	  turbines	  are	  replaced	  after	  each	  storm.	  Figure	  S1	  plots	  the	  CDF	  for	  
each	  location	  for	  two	  cases:	  turbines	  that	  can	  yaw	  to	  track	  wind	  direction	  (dashed	  lines)	  
and	  turbines	  that	  cannot	  yaw	  (solid	  lines).	  
In	  this	  scenario,	  damaged	  turbines	  are	  replaced	  after	  each	  storm	  so	  there	  is	  no	  limit	  to	  the	  
maximum	  number	  of	  turbines	  that	  buckle.	  There	  is	  a	  23%	  probability	  that	  more	  than	  50	  
turbines	  will	  buckle	  in	  Galveston	  County	  and	  a	  12%	  probability	  that	  more	  than	  50	  will	  
buckle	  in	  Dare	  County.	  

	  
Figure S1: Cumulative distribution of the number of turbines in a 50-turbine wind farm buckled in 20 years if buckled 
turbines are replaced after each storm if they buckle. Dashed lines plot the distribution for the case that turbines can yaw 
to track the wind direction, and solid lines plot the distribution for the case that turbines cannot yaw. 

Risk	  From	  Multiple	  Hurricanes,	  Cat.	  4	  and	  5	  Hurricanes	  Excluded	  
To	  illustrate	  the	  effect	  of	  excluding	  category	  4	  and	  5	  hurricanes	  for	  Dare,	  Atlantic,	  and	  
Dukes	  counties,	  we	  plot	  the	  CDF	  of	  the	  number	  of	  turbines	  damaged	  with	  and	  without	  
those	  higher-‐category	  hurricanes.	  The	  results	  for	  the	  case	  that	  turbines	  cannot	  yaw	  to	  track	  
the	  wind	  direction	  are	  shown	  in	  Figure	  S2,	  where	  solid	  lines	  plot	  the	  results	  for	  all	  
hurricanes	  and	  dotted	  lines	  plot	  the	  results	  excluding	  category	  4	  and	  5	  turbines.	  Similarly,	  	  
the	  results	  for	  the	  case	  that	  turbines	  can	  actively	  yaw	  are	  shown	  in	  Figure	  S3,	  where	  solid	  
lines	  plot	  the	  results	  for	  all	  hurricanes	  and	  dotted	  lines	  plot	  the	  results	  excluding	  category	  
4	  and	  5	  turbines.	  	  
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Figure S2: CDF of the number of turbines buckled in 20 years without replacement; turbines cannot yaw to track the 
wind. Solid lines plot the distribution including all hurricanes, and dotted lines plot the distribution with category 4 and 5 
hurricanes excluded. 

	  
Figure S3: CDF of the number of turbines buckled in 20 years without replacement; turbines can actively yaw to track 
the wind. Solid lines plot the distribution including all hurricanes, and dotted lines plot the distribution with category 4 
and 5 hurricanes excluded. 
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Analytical	  Distribution:	  Turbines	  Buckled	  with	  Replacement	  
As described in the main document, we use a Compound Poisson distribution to model Yrep, 

the total number of turbines destroyed in T years in a wind farm of n turbines if turbines are 
immediately replaced after they are destroyed by a hurricane. The Compound Poisson 
distribution is a function of six parameters: λT, µ, σ, ξ, α, and β.  
 
 Yrep ~ Compound Poisson(λT, µ, σ, ξ, α, β) [A1]  
 
No analytical expression exists for the PDF or CDF of a Compound Poisson distribution that 
contains a Beta Binomial distribution. We use Panjer’s Recursion (1, 2), an iterative method, to 
compute the exact pdf: 
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where 

 

€ 

f j =
Pr(Xi = j) j ≤ n

0 j > n

⎧ 
⎨ 
⎩  [A3] 

 
The value of fj is zero for j > n in equation A2 because the Beta Binomial distribution for the 
number of turbines damaged in the ith hurricane Xi is not defined for x > n, i.e. the number of 
turbines damaged in one hurricane cannot be larger than the number of turbines in the wind farm. 
Panjer defines a and b for a Poisson distribution (1). 

a = 0 
b = λT 

 
The initial value of f is: 
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 [A4] 

 
and the initial value g0, from (3), gives the probability that no turbines are buckled by hurricanes 
in T years as the probability that no hurricanes occur (H = 0) plus the probability that a positive 
number of hurricanes occur but cause no damage: 
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where B(α, β) is the Beta function: 

 

€ 

B(α,β) =
Γ(α −1)Γ(β −1)
Γ(α + β −1)

=
(α −1)!(β −1)!
(α + β −1)!

 [A6] 

and Γ() is the Gamma function. 

Monte	  Carlo	  Distribution:	  Turbines	  Buckled	  with	  Replacement	  
To check the Compound Poisson distribution described above, we use Monte Carlo simulations 
to calculate Yrep, the distribution of the total number of turbines buckled in T years in a wind farm 
of n turbines if turbines are replaced after each hurricane. We simulate 10,000 20-year periods 
using the same distributions used in the Compound Poisson distribution: H for the frequency of 
hurricane occurrence, W for the maximum sustained wind speed, and D for the probability of 
buckling as a function of wind speed. 
For each simulated 20-year period in a given location, we calculate the total number of turbines 
that buckle according to the following procedure:	  

1. Draw number of hurricanes from Poisson distribution H described in Hurricane Frequency. 
2. Draw maximum sustained wind speed for each hurricane from Generalized Extreme Value 

distribution W described in Hurricane Intensity (W. 
3. Scale maximum sustained wind speed to hub height (4) and calculate probability of a single 

turbine buckling at that wind speed using the Log-Logistic damage function described in 
Wind Turbine Damage Function (D). 

4. Calculate the number of turbines buckled in each hurricane using a Binomial distribution 
with the probability of buckling calculated in step 3 and n turbines. 

	  
A	  comparison	  of	  the	  distributions	  calculated	  with	  the	  compound	  Poisson	  distribution	  and	  
the	  Monte	  Carlo	  simulation	  is	  shown	  in	  Figure	  S4.	  
	  

	  
Figure S4: A comparison of the cumulative probability distributions of number of turbines buckled in 20 years for the 
case where turbines are replaced after each storm if they buckle. Results calculated with Monte Carlo simulation are 
plotted as dashed lines and results calculated with a compound Poisson distribution are plotted as solid lines. 
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Monte	  Carlo	  Distribution:	  Turbines	  Buckled	  without	  Replacement	  
To check the Phase-Type distribution described in the main paper, we use Monte Carlo 
simulations to calculate Yno rep, the distribution of the total number of turbines buckled in T years 
in a wind farm of n turbines if turbines are not replaced after they are destroyed. We simulate 
10,000 20-year periods using the same distributions used in the Phase-Type distribution: H for 
the frequency of hurricane occurrence, W for the maximum sustained wind speed, and D for the 
probability of buckling as a function of wind speed. 
For each simulated 20-year period in a given location, we calculate the total number of turbines 
buckled according to the following procedure:	  

1. Draw number of hurricanes from Poisson distribution H described in Hurricane Frequency. 
2. Draw maximum sustained wind speed for each hurricane from Generalized Extreme Value 

distribution W described in Hurricane Intensity (W. 
3. Scale maximum sustained wind speed to hub height (4) and calculate probability of a single 

turbine buckling at that wind speed using the Log-Logistic damage function described in 
Wind Turbine Damage Function (D). 

4. Calculate the number of remaining turbines buckled in each hurricane using a Binomial 
distribution with the probability of buckling calculated in step 3 and the number of turbines 
remaining after all the previous hurricanes. 
 

A	  comparison	  of	  the	  distributions	  calculated	  with	  the	  Phase-‐Type	  distribution	  given	  in	  the	  
main	  paper	  and	  the	  Monte	  Carlo	  simulation	  described	  above	  is	  shown	  in	  Figure	  S5.	  

	  
Figure S5: A comparison of the cumulative probability distributions of number of turbines buckled in 20 years for the 
case where turbines are not replaced if they buckle. Results calculated with Monte Carlo simulation are plotted as dashed 
lines and results calculated with a Phase-Type distribution are plotted as solid lines. 

Hurricane	  Frequency	  (H)	  
We	  fit	  a	  Poisson	  distribution	  to	  the	  rate	  of	  hurricane	  occurrence	  in	  a	  particular	  county	  by	  
dividing	  the	  number	  of	  hurricanes	  to	  make	  landfall	  in	  that	  county	  from	  1900	  to	  2006	  by	  the	  
number	  of	  years	  (5).	  Table	  1	  in	  the	  main	  document	  lists	  the	  resulting	  rate	  of	  hurricane	  
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occurrence	  values	  λ	  for	  the	  four	  counties	  we	  examine.	  This	  method	  of	  calculating	  the	  rate	  
of	  hurricane	  occurrence	  assumes	  that	  the	  rate	  is	  constant	  and	  equal	  to	  the	  average	  rate.	  
However,	  previous	  research	  has	  shown	  strong	  associations	  between	  North	  Atlantic	  
hurricane	  activity	  and	  atmosphere-‐ocean	  variability	  on	  different	  timescales,	  including	  the	  
multidecadal	  (6,	  7).	  	  

Hurricane	  Intensity	  (W)	  
We	  fit	  a	  Generalized	  Extreme	  Value	  distribution	  (GEV)	  to	  the	  maximum	  10-‐minute	  
sustained	  wind	  speed	  at	  10-‐meter	  height	  of	  hurricanes	  that	  pass	  through	  a	  region	  around	  
the	  counties	  we	  examine.	  Table	  2	  in	  the	  main	  paper	  gives	  the	  parameters	  of	  the	  fitted	  GEV	  
distributions	  for	  each	  location	  and	  the	  latitude	  and	  longitude	  limits	  of	  the	  regions	  around	  
those	  locations.	  Figure	  S6	  compares	  the	  empirical	  and	  fitted	  CDFs	  for	  the	  maximum	  
sustained	  wind	  speed	  at	  each	  location.	  
 

	  
Figure S6: Comparison of empirical CDFs for maximum hurricane wind speed in the regions we examine and the GEV 
distributions fitted to those data. 

Wind	  Turbine	  Damage	  Function	  (D)	  
We	  fit	  a	  Log-‐Logistic	  distribution	  to	  the	  probability	  of	  a	  wind	  turbine	  tower	  buckling	  as	  a	  
function	  of	  10-‐minute	  sustained	  wind	  speed	  at	  hub	  height.	  The	  probability	  of	  the	  turbine	  
tower	  buckling	  at	  a	  given	  wind	  speed	  is	  calculated	  by	  simulating	  tower	  bending	  moments	  
of	  a	  5-‐MW	  NREL	  turbine	  and	  comparing	  them	  to	  the	  stochastic	  resistance	  to	  buckling	  of	  the	  
turbine	  tower.	  In	  our	  analysis,	  we	  model	  the	  5-‐MW	  wind	  turbine	  design	  created	  by	  the	  U.S.	  
National	  Renewable	  Energy	  Laboratory	  (NREL)	  for	  two	  load	  cases	  (active	  yawing	  and	  not	  
yawing)	  and	  three	  turbulence	  intensity	  values	  (12%,	  14%,	  and	  16%).	  Turbulence	  intensity	  
I	  is	  calculated	  as	  the	  quotient	  of	  the	  10-‐minute	  mean	  wind	  speed	  u	  and	  the	  10-‐minute	  
standard	  deviation	  σ:	  I	  =	  u10	  min/σ10	  min.	  	  
We	  calculate	  separate	  damage	  functions	  for	  the	  “active	  yawing”	  and	  “not	  yawing”	  load	  
cases	  because	  those	  are	  the	  best-‐	  and	  worst-‐case	  wind	  load	  conditions	  for	  an	  idling	  wind	  
turbine.	  The	  active-‐yawing	  case	  assumes	  the	  grid	  power	  is	  available	  to	  the	  turbine	  or	  the	  
turbine	  has	  a	  backup	  power	  source	  for	  the	  yaw	  motors	  and	  control	  system;	  the	  not-‐yawing	  
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case	  assumes	  the	  turbine	  does	  not	  have	  a	  backup	  power	  source	  and	  grid	  power	  has	  been	  
lost,	  a	  typical	  occurrence	  in	  hurricanes	  (8).	  The	  current	  design	  standards	  for	  wind	  turbines	  
given	  by	  the	  IEC	  (9)	  and	  Germanischer-‐Lloyd	  (10)	  require	  that	  an	  idling	  wind	  turbine	  be	  
able	  to	  survive	  10-‐minute	  sustained	  wind	  with	  50-‐year	  recurrence	  period	  (load	  case	  6.2).	  If	  
backup	  power	  is	  not	  available	  for	  the	  yaw	  and	  control	  systems,	  the	  IEC	  standard	  requires	  
the	  turbine	  must	  be	  able	  to	  survive	  a	  yaw	  misalignment	  of	  ±180º	  and	  the	  Germanischer-‐
Lloyd	  standard	  specifies	  ±30º.	  The	  “active	  yawing”	  case	  we	  simulate	  assumes	  backup	  
power	  for	  the	  yaw	  system,	  and	  the	  “not	  yawing”	  case	  assumes	  a	  yaw	  misalignment	  of	  90º.	  
The	  probability	  of	  buckling	  as	  a	  function	  of	  wind	  speed	  for	  each	  turbulence	  intensity	  value	  
and	  yawing/not	  yawing	  are	  plotted	  in	  Figure	  7.	  

	  
Figure 7: Comparison of the probability of buckling as a function of wind speed (damage function). TI = turbulence 
intensity.	  

Bending	  moment	  simulation	  

We	  calculate	  a	  range	  of	  maximum	  tower	  bending	  moments	  by	  simulating	  the	  mechanical	  
loads	  on	  an	  NREL	  5-‐MW	  turbine	  (11)	  for	  mean	  hub-‐height	  wind	  speeds	  from	  40	  to	  110	  m/s	  
(78	  –	  214	  knots).	  These	  wind	  speeds	  are	  significantly	  higher	  than	  the	  wind	  speeds	  at	  which	  
wind	  turbines	  shut	  down	  to	  avoid	  damage	  (typically	  25	  m/s),	  so	  the	  simulations	  assume	  
the	  turbine	  is	  idling	  with	  its	  blades	  feathered	  to	  90º.	  To	  simplify	  the	  simulations,	  we	  
simulate	  the	  land-‐based	  version	  of	  the	  NREL	  5-‐MW	  turbine	  instead	  of	  the	  offshore	  version	  
so	  we	  don’t	  need	  to	  model	  the	  effects	  of	  waves;	  as	  a	  result,	  the	  damage	  function	  we	  derive	  
should	  under-‐predict	  the	  probability	  of	  an	  offshore	  turbine	  buckling	  at	  a	  given	  wind	  speed.	  	  
For	  each	  mean	  wind	  speed	  u	  (in	  1	  m/s	  increments),	  we	  run	  10	  10-‐minute	  dynamic	  
simulations	  of	  the	  wind	  turbine	  using	  FAST	  version	  7.00.01a-‐bjj	  (12).	  We	  use	  TurbSim	  
version	  1.50	  (13)	  to	  generate	  a	  three-‐dimensional	  wind	  field	  with	  a	  different	  random	  seed	  
for	  each	  simulation.	  The	  turbulent	  wind	  fields	  are	  generated	  using	  the	  Normal	  Turbulence	  
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Model	  (NTM)	  given	  in	  the	  IEC	  61400-‐3	  standard	  (9).	  That	  IEC	  standard	  specifies	  that	  the	  
Extreme	  Wind	  speed	  Model	  (EWM)	  should	  be	  used	  to	  test	  the	  effect	  of	  extreme	  winds	  on	  an	  
idling	  turbine	  (load	  case	  6.2),	  but	  we	  use	  the	  NTM	  instead	  because	  it	  generates	  wind	  time	  
series	  with	  larger	  standard	  deviations.	  Schroeder,	  et	  al	  found	  the	  longitudinal	  turbulence	  
intensity	  of	  wind	  speed	  ranges	  from	  7	  –	  17%	  during	  the	  passage	  of	  Hurricane	  Bob	  in	  1991	  
(14)	  and	  12	  –	  42%	  in	  the	  passage	  of	  Hurricane	  Bonnie	  in	  1998	  (15).	  We	  test	  the	  sensitivity	  
of	  our	  results	  to	  different	  turbulence	  intensities	  by	  calculating	  separate	  damage	  functions	  
for	  turbulence	  intensities	  of	  12%,	  14%,	  and	  16%.	  	  
We	  analyze	  the	  FAST	  simulation	  results	  by	  calculating	  the	  magnitude	  of	  the	  tower	  bending	  
moment	  and	  finding	  its	  maximum	  value.	  FAST	  calculates	  the	  x-‐component	  (TwrBsMxt)	  
and	  y-‐component	  (TwrBsMyt)	  of	  the	  bending	  moment	  at	  the	  tower	  base.	  We	  calculate	  the	  
magnitude	  as	    

€ 

M = TwrBsMxt2 + TwrBsMyt2 and	  choose	  the	  maximum	  value	  from	  each	  
simulation.	  
We	  were	  warned	  that	  FAST	  simulations	  might	  be	  unstable	  for	  large	  yaw	  mis-‐alignments	  
(16)	  and	  we	  found	  the	  maximum	  tower	  bending	  moments	  in	  some	  simulations	  of	  the	  not-‐
yawing	  case	  (90º	  wind	  direction)	  were	  much	  higher	  (several	  orders	  of	  magnitude)	  than	  the	  
rest	  of	  the	  simulation	  results.	  To	  exclude	  these	  anomalous	  results,	  we	  fit	  a	  line	  to	  the	  
maximum	  bending	  moment	  as	  a	  function	  of	  10-‐minute	  mean	  wind	  speed	  using	  a	  robust	  
linear	  least-‐squares	  with	  bi-‐square	  weights	  and	  exclude	  any	  data	  points	  more	  than	  1.5	  
times	  or	  less	  than	  0.5	  times	  the	  best-‐fit	  line.	  The	  data	  and	  the	  exclusion	  limits	  are	  
illustrated	  in	  Figure	  S8.	  This	  method	  does	  not	  exclude	  any	  model	  results	  from	  the	  active-‐
yawing	  case	  (0º)	  wind,	  which	  we	  expected	  because	  the	  FAST	  simulation	  is	  believed	  to	  be	  
reliable	  for	  small	  yaw	  misalignments.	  	  	  

	  
Figure S8: The method for excluding anomalous simulation results for maximum tower bending moment. The red line is 
a robust linear best-fit to the data and the green dashed lines are 0.5 and 1.5 times the best-fit line. Data outside the green 
dashed lines are excluded. 
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Calculation	  of	  buckling	  probability	  
Given	  the	  maximum	  tower	  bending	  moments	  M	  calculated	  above,	  we	  calculate	  the	  
probability	  of	  a	  turbine	  tower	  buckling	  by	  comparing	  the	  simulated	  bending	  moments	  to	  a	  
random	  variable	  for	  the	  resistance	  of	  a	  tower	  to	  buckling.	  	  
For	  each	  combination	  of	  mean	  wind	  speed	  u,	  turbulence	  intensity	  I,	  and	  yaw	  status	  A,	  we	  
create	  1000	  bending	  moment	  values	  by	  repeatedly	  sampling	  the	  simulation	  results	  with	  
equal	  probability.	  If	  no	  anomalous	  values	  were	  excluded,	  there	  are	  10	  simulation	  values	  to	  
sample	  from;	  there	  are	  fewer	  if	  some	  were	  excluded.	  
We	  create	  1000	  resistance	  to	  buckling	  values	  by	  sampling	  from	  Mcr,	  the	  resistance	  to	  
buckling	  of	  a	  thin-‐walled	  cylinder	  (17):	  

	  

€ 

Mcr = 1
6 1− 0.84

D
t

Xy,ssFy

XE ,ssE

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D3 − (D− 2t)3( )Xy,ssXcrFy 	   [A7]	  

with	  the	  parameters	  given	  in	  Table	  S1:	  
Table S1: Parameters of resistance to buckling at the base of a NREL 5-MW turbine tower. LN = log-normal distribution, 
COV = coefficient of variance. Adapted from [Søresnen 2005] 

Variable	   Description	   Distribution	  
Type	  

Expected	  Value	   COV	  

D	   Tower	  diameter	  (base)	   -‐	   6	  m	   -‐	  
t	   Tower	  thickness	  (base)	   -‐	   0.027	  m	   -‐	  
E	   Young’s	  modulus	   -‐	   210	  GPa	   -‐	  
Fy	   Yield	  stress	   LN	   1	   0.05	  
Xy,ss	   Model	  uncertainties	  

due	  to	  scale	  effects:	  
yield	  stress	  

LN	   1	   0.05	  

XE,ss	   Model	  uncertainties	  
due	  to	  scale	  effects:	  
Young’s	  modulus	  

LN	   1	   0.02	  

Xcr	   Critical	  load	  capacity	   LN	   1	   0.10	  
	  
The	  damage	  function	  D	  is	  calculated	  by	  comparing	  all	  the	  sampled	  bending	  moment	  values	  
to	  the	  sampled	  resistance-‐to-‐buckling	  values	  to	  find	  the	  probability	  of	  buckling	  for	  each	  10-‐
minute	  mean	  wind	  speed	  u,	  turbulence	  intensity	  I,	  and	  yaw	  status	  A:	  
	  

€ 

D(u; I,A) = Pr Mcr ≤ M(u; I,A)( ) 	   [A7]	  
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Nomenclature	  
T = time period to investigate 
n = number of turbines in the wind farm 
u = 10-min avg. hub-height wind speed 
 
λ = rate parameter for occurrence of hurricanes 
µ = location parameter for distribution of wind speed in a hurricane 
σ= scale parameter for distribution of wind speed in a hurricane 
ξ = shape parameter for distribution of wind speed in a hurricane 
α = scale parameter for the log-logistic distribution of the probability of a turbine buckling at a 
10-minute average wind speed u 
β = shape parameter for the log-logistic distribution of the probability of a turbine buckling at a 
10-minute average wind speed u 
αB,  βB = parameters of the Beta Binomial distribution for the distribution of turbines buckled in 

a single hurricane (parameters are derived by fitting a Beta distribution to the damage 
function weighted by the probability of occurrence of wind speed) 

 
W = random variable for the maximum sustained (10-minute) wind speed of a hurricane 
w = a wind speed drawn from W 
D = random variable for the probability of turbine damage for a given wind speed w 
d = a damage probability drawn from D 
X = random variable for the number of turbines damaged in 1 hurricane 
x = a number of damaged turbines drawn from X 
H = random variable for the number of hurricanes in T years 
h = a number of hurricanes drawn from H 
Yrep = random variable for the number of turbines damaged in T years, with replacement 
Yno rep = random variable for the number of turbines damaged in T years, no replacement 
y = a number of turbines damaged drawn from Y 
 
a = constant for alternative description of the Poisson distribution used in Panjer recursion from 
(18)  
b = constant for alternative description of the Poisson distribution used in Panjer recursion from 
(18) 
 
T = transition matrix for phase-type distributions 
τ = the time to destroy all turbines (or reach an absorbing state) if turbines are not replaced 
 
z = number of Monte Carlo simulations 
 
T = matrix of state transition intensities. The values Tij are the probabilities of transition from 
state i to state j. There are n+1 states, where the n+1 state is the absorbing state 
t =  
π= starting probabilities for each state 
k =  number of turbines in absorbing state 
m = just an index for summation 
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