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Abstract: Certain applications, such as analyzing the effect of a wind farm on grid 

frequency regulation, require several years of wind power data measured at 

intervals of a few seconds. We have developed a method to generate days to years 

of non-stationary wind speed time series sampled at high rates by combining 

measured and simulated data. Measured wind speed data, typically 10 - 15 minute 

averages, captures the non-stationary characteristics of wind speed variation: 

diurnal variations, the passing of weather fronts, and seasonal variations. Simulated 

wind speed data, generated from spectral models, adds realistic turbulence between 

the empirical data. The wind speed time series generated with this method agree 

very well with measured time series, both qualitatively and quantitatively. The 

power output of a wind turbine simulated with wind data generated by this method 

demonstrates energy production, ramp rates, and reserve requirements that closely 

match the power output of a turbine simulated turbine with measured wind data. 
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1. Introduction 
Planning for frequency control in a power system with significant amounts of wind power 

requires both high-frequency data (~1 Hz) to capture fast changes in power output and long 

periods of data to capture diurnal and seasonal variations. Similarly, simulating the fatigue life of 

wind turbine mechanical components requires high-frequency data to capture the dynamic 

effects of control system actions, but long periods of data to compile statistical data to more 

accurately estimate lifetimes.  In both cases, large amounts of data are needed to design systems 

that are neither overly conservative and inefficient nor unreliable. 

Long wind speed data sets sampled at high rates are often difficult to obtain. Empirical data 

are often sampled at too slow a rate, in the wrong location, or at the wrong height. Government 

meteorological services record many years of wind speed data, but it is typically sampled at slow 

rates (2 minute moving average in the USA) with low amplitude resolution (1 knot, 0.51 m/s, in 

the USA) [1] and at locations that are not valuable for wind power development. Wind farm 

developers collect several years of data at potential wind power sites, but they typically record 

10-15 minute average values that are sufficient to estimate only long-term power production. 

Special scientific campaigns sometimes collect weeks to years of high-frequency data, but there 

are few of them because they are expensive to set up and maintain. The measurement 

instruments on a wind turbine are one of the best sources of this type of data, but the 

measurements can be confounded by the effects of the turbine and other turbines nearby, and 

data are frequently not archived at high temporal resolution.  

Simulated wind speed data can be created at very high sampling rates, in any location, and at 

any height desired. However, simulation of periods longer than a few hours is difficult because 

wind speed variations are non-stationary processes: their statistical properties change over time. 

Those properties change with time of day, with the passing of weather fronts, and with the 

seasons.  Most methods for simulating long periods of wind speed data use separate models for 

the non-stationary variations over longer periods (e.g. hours to months) and the stationary 

variations over shorter periods (e.g. seconds to minutes).  

Previous authors have proposed a variety of methods for simulating non-stationary wind 

speed time series longer than a few hours [2]. The simulation methods divide the variations into 

high-frequency (periods less than approximately 15 minutes) and low-frequency (periods greater 

than 15 minutes) ranges. One method, that we will refer to as the ―spectral method‖, joins 

together separate spectral models for the high- and low-frequency ranges in the frequency 

domain [3,4] and generates time series using the Veers method [5]. The other class of methods, 

that we will refer to as the ―parametric method‖, models the high-frequency range using a 

spectral model and the low-frequency range using a probability distribution [6,7,8] or an auto-

regressive moving average (ARMA) model [9]. Short periods (~10 minutes) of high-frequency 

data are generated using the Veers method, blended together, and then superimposed on low-

frequency time series data. Most authors blend together the short time series of high-frequency 

data using a window function such as the Hann function that reduces leakage of energy outside 

the range of simulated frequencies [6,10], but one author concatenates together the high-

frequency time series without any windowing because discontinuities are smaller than the largest 

sample-to-sample variations in the blocks of simulated data [7]. 

Both methods of modeling the low-frequency, non-stationary variations in wind speed are 

inadequate for certain types of power system planning and simulation because their simulations 

are not indexed to time of day and time of year. For example, the spectral and parametric 

methods can generate long time series that contain a certain level of wind speed variance with a 
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given probability, but those methods cannot model what time of day or time of year that level of 

variance is likely to occur. Electrical power demand is a relatively predictable function of time of 

day and time of year, so wind simulations must correctly model wind properties as a function of 

time. Nielsen addresses this problem in a non-stationary simulation of a wind front passage by 

specifying the statistical properties of wind turbulence at certain reference states, using Veers 

method to simulate stationary turbulence at those reference states, and then interpolating between 

the stationary simulations with Bezier curves fit to the reference states [11].  

Our work addresses and solves the problem of correctly placing events in time by creating 

―hybrid‖ wind speed time series that combine measured low-frequency wind speed data with 

simulated high-frequency data. This hybrid method is similar to the parametric methods 

described above, especially Nielsen [11], but the hybrid method uses low-frequency measured 

wind speed data instead of the low-frequency data generated by parametric methods, and low-

pass filtering of the measured data instead of windowing or interpolation. Low-frequency 

measured wind data is available from meteorological stations and meteorological towers at wind 

farms. Low-frequency wind speed data is also available from meso-scale simulations, but users 

should be very careful to understand the limitations of particular meso-scale models and the 

spatial and time resolutions of the data they generate. 

Our work also improves on the procedure used in the parametric methods by filtering the 

low-frequency data to remove noise that leaks into the high-frequency region. This filtering fixes 

the problem of spurious low-frequency content in the Power Spectral Density (PSD) of data 

generated by McFarlane’s method [6]. 

We demonstrate that this hybrid method creates wind time series that closely match the high-

frequency and low-frequency characteristics of measured wind data and that the results of wind 

turbine simulations run with our hybrid wind closely match the results of turbine simulations run 

with measured wind data. 

2.  Hybrid Method for Generating Wind Data  
We propose a hybrid method to generate long periods (days to years) of wind speed time 

series data by combining measured wind speed statistics sampled at low rates with simulated 

wind turbulence sampled at high rates. Measured statistics capture the non-stationary properties 

of real wind and simulated turbulence interpolates between the measured data. The hybrid 

method simulates short periods of turbulence using measured mean wind speed (and variance, if 

available) as a parameter, then superimposes the simulated turbulence on measured mean wind 

speed. 

We define T as the total length of the period covered by the input data (in seconds); the total 

length of the output data is also T because the hybrid method interpolates the measured data. The 

sampling interval of the low-rate measured statistics is Tsample, input = 
1

fsa mp le,in p u t
 (in this paper, 

Tsample,input = 600 seconds,  fsample, input = 1.7 x 10
-3

 Hz). The sampling frequency of the output data 

is foutput (in this paper, foutput = 1 Hz).  

A hybrid wind speed time series u(t) of length T with output sampling frequency foutput is 

created by the following steps, illustrated in Figure 1: 

A. Statistics of wind speed data are calculated over long intervals. In this paper, the wind 

speed mean and variance are measured with a sampling interval of Tsample,input = 10 

minutes. 
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B. A block of zero-mean, high-frequency turbulence is simulated for every two points of 

measured data (2Tsample,input) using a spectral model and the Veers method [5]. Blocks 

of turbulence are concatenated together without blending, overlapping, or windowing. 

C. The measured mean wind speed is re-sampled to the desired sampling rate foutput and 

smoothed by a low-pass filter  

D. The simulated turbulence is added to the smoothed mean to create the hybrid wind 

speed time series. 

 
Figure 1: Procedure for generating wind speed time series from a hybrid of measured and simulated data. (A) Wind 

speed mean and variance measured for a long period Tinput used as parameters to generate zero-mean turbulence in (B). 

The mean wind speeds in (A) are re-sampled at a higher rate foutput and smoothed by a low-pass filter in (C). The hybrid 

wind speed time series in (D) is the sum of (B) and (C). 

2.1. Slowly-varying Measured Wind Speed (C) 
The basis of a hybrid wind time series is mean wind speed measured at sampling intervals of 

Tsample, input. Low-rate mean wind speed captures slow changes such as diurnal and seasonal 

phenomena and the passing of weather fronts. Meteorological stations for wind resource 

assessment or weather prediction record the mean (and sometimes variance) of wind speed for 

periods of a few minutes. In this research, we use measured 10-minute mean U0(p) and variance 

u
2
(p), where p is an index of the 10-minute period (Figure 1A). 

We wish to create a time series of wind speeds of length T with a sampling rate of foutput. We 

re-sample the low-rate mean data to a sampling rate of foutput by repeating each measured mean 
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U0(p) at intervals foutput  for a period of Tsample, input (Figure 1C). Increasing the sampling rate from 

fsample,input to foutput does not add any new information, but it adds high-frequency noise. According 

to the sampling theorem, the maximum frequency signal that can be resolved by data sampled at 

fsample,input is fNyq, input
1

2Tsample,input
(the Nyquist frequency) [12]; all the content for frequencies 

higher than fNyq, input is introduced noise. We remove the noise using a 3
rd

-order low-pass 

Butterworth filter with a cutoff frequency of fcutoff fNyq,input
1

2Tinput
, where the gain of the filter 

is . The low-pass filter is implemented in the frequency domain by 

applying the Fourier transform to the data, convolving the transformed data with the filter, and 

then applying the inverse Fourier transform. To avoid wrap-around effects from the Fourier 

transform, we de-trend the data by subtracting the best-fit line before applying the Fourier 

transform and then adding that best-fit line after applying the inverse Fourier transform. 

2.2. High-rate Turbulence (B) 
The hybrid method simulates high-rate turbulence to interpolate between measured mean 

wind speed values, shown in Figure 1B. For every two measured mean wind speeds U0(p) and 

U0(p+1), we generate a zero-mean turbulence time series of length 2Tsample, input. To model the 

non-stationary properties of real wind, the variance of each simulated turbulence time series is a 

function of the corresponding measured mean wind speed (and variance, if available). We model 

wind turbulence with two variations of the Kaimal spectrum: the form given in Kaimal’s original 

paper that models variance as a function of surface roughness length z0 [13], and the form given 

in the IEC 61400-1 standard that takes wind speed variance as an explicit input [14].  

Wind turbulence is simulated by a method developed by Shinozuka [15] and extended by 

Veers [5]. The Veers method simulates wind turbulence by taking the Fourier transform of a 

turbulence spectrum. The procedure for simulating wind turbulence by Veers method is 

described in detail in many other sources [3,5,16] and summarized here: 

1. Define a 1-sided spectrum for the wind turbulence S(f) 

2. Discretize the spectrum for the desired output period and sample rate: S[m] = S(f) f 

3. Scale the discretized spectrum and apply random phase angles:  

4. Construct a two-sided spectrum V2 side 

5. Calculate the turbulence time series:  

 

If the wind speed variance 
2

u is known, the one-sided Kaimal spectral model specified in the 

IEC 61400-1 standard [14] can be used: 
 

 

( 1 ) 

If the wind speed variance is not known but the surface roughness length z0 is known (or can be 

estimated), the one-sided Kaimal spectral model proposed by Kaimal [13] can be used: 
 

 

( 2 ) 

where 

u = 10-minute standard deviation of longitudinal wind speed [m
2
/s

2
] 
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U0 = 10-minute mean of longitudinal wind speed [m/s] 

 
L1 = 8.1* 1 

 

z = turbine hub height [m] 

z0 = surface roughness length [m]

 

f = frequency [Hz] 

The duration of each simulated interval of high-rate turbulence must be 2Tsample,input  in order 

to generate frequency content up to fNyq,input, the highest frequency that the input data can resolve 

according to the Sampling Theorem [12]. Each simulated period will contain N = 2Tsample, input 

foutput points; if N is not an integer, we round it up to the nearest even integer. 

 Each simulated time series corresponds to two low-rate measurements, so we must combine 

the measured means U0 and variances u
2
 according to the following formulas: 

 

 
( 3 ) 

 

 
( 4 ) 

where we use the abbreviation Ts,I = Tsample,input. 

We discretize the continuous one-sided Kaimal spectrum S(f) in equation ( 1 ) or ( 2 ) at 

discrete frequencies fm = m f : 
 

 ( 5 ) 

There are M = 1 + N/2 unique frequencies in the one-sided spectrum, where N =  2Tsample, 

inputfoutput . We require that N be an even integer, so M will be an odd integer based on the 

definition above. We force S[0] = 0 because the steady-state (―DC‖) value of the simulated data 

is zero because we are simulating a zero-mean process. 

We scale the magnitude of the discretized spectrum according to the following formula: 
 

 
( 6 ) 

The term ei [m] creates random phases in V that make the output of Veers method random. 

The phases ei [m]
 
are complex numbers and S[m] are real numbers, so V[m] are complex 

numbers. The phase angles [m] are drawn from a uniform random distribution over the range [0  

2 ]. Nearly all simulations that use the Shinozuka/Veers method use uniform randomly-

distributed phase angles. Shinozuka proves that a simulated time series will be ergodic if uniform 

randomly-distributed phase angles are used [16]. In our analysis of measured wind speed data 

sampled at 5 – 52 Hz, we found that the differences between adjacent phase angles can be 

described by a von Mises distribution [17] and that the fit of the von Mises distribution improves 

for higher sampling frequencies. However, we find that it is statistically impossible to distinguish 

between uniform and von Mises distributions for the sampling frequencies used in our paper (~1 

Hz). The dispersion parameter  of the phase differences, analogous to the standard deviation in 

a normal distribution, is so low at this sampling frequency that statistical tests cannot establish 

that a von Mises distribution fits the data. 
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The factor of 1/2 in equation ( 6 ) is necessary because we will create a two-sided spectrum 

from V, but the spectra in equations ( 1 ) and ( 2 ) are one-sided spectra. The factor of ½ should 

be omitted if a two-sided spectrum is used. We introduce  to normalize S[m] to compensate for 

the variance lost when S(f) is discretized. 

The factor  accounts for the difference between the desired variance 
d e s i r e d

2  and the actual 

variance  of data simulated with the discretized spectrum in equation ( 5 ). We define  as: 
 

des ir ed

2

S( f )df
f 1

2
f

f 1
2
f

 

( 7 ) 

In theory, the variance 
2
 of wind turbulence simulated from a one-sided spectrum is given by 

equation ( 8 ) and approximated by ( 9 ), assuming that M is large: 
 

2 S( f )d f
0

 ( 8 ) 

 

S[m]
m 0

M

 ( 9 ) 

In practice, the actual variance of the simulated wind turbulence is smaller than predicted in ( 8 ) 

and ( 9 ) because S[0] = 0 and M is not infinite. This is a problem because variance is a parameter 

in the spectrum in equation ( 1 ) and we want the variance of the simulated turbulence output to 

equal that parameter.  

We show in Figure 2 that the actual variance of the simulated turbulence output is well-

predicted by the following formula: 
 

 

( 10 ) 

where the integration limits in ( 10 ) are determined by the method for discretizing the 

continuous spectrum, best illustrated by figure 1 in a paper by Yang [18]. The integral of the 

continuous spectrum in a small region around fm is approximated by a rectangle of height S[m] 

and width f: 
 

S[m] f S(f)d f
fm

1

2
f

fm
1

2
f

 ( 11 ) 

 Figure 2 shows that discretizing the turbulence spectrum causes a loss of variance in the 

simulated turbulence. We simulated 400 – 1600 seconds of turbulence at sampling frequencies 

from 0.2 – 20 Hz using Veers method and the Kaimal spectrum in equation ( 1 ). The actual 

variance of simulated turbulence deviates significantly from the desired variance (
2

desired = 1); 

the actual variance only approaches the desired variance asymptotically with increasing sampling 

frequency ( ) and increasing sample period ( ).  In this paper, we use a sampling 

frequency of 5 Hz and a sampling period of 1200 sec; that means the variance of each period of 

simulated turbulence is approximately 8% lower than the measured variance used as a parameter 

in the simulation.  

We correct for that loss of variance using equation ( 10 ). Equation ( 10 ) (dotted lines) 

closely predicts the actual variance of simulated turbulence (solid lines) without running a 

simulation. We use that prediction to calculate  in equation ( 7 ), and use  in equation ( 6 ) to 

scale the spectrum so the variance of the simulated turbulence measured the desired variance. 

a ctu a l

2
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Figure 2: This figure plots the actual variance of turbulence simulated with the Kaimal spectrum in equation ( 1 ) and a 

variance parameter 2
desired = 1 against the sampling frequency of the simulation. Different curves plot simulations of 

different lengths. The actual variance is plotted as solid lines and the variance predicted by equation ( 10 ) is plotted as 

dotted lines. The turbulence is simulated with Veers method, the Kaimal spectrum from equation ( 1 ), U0 = 10 m/s, 
2
desired = 1 m2/s2, and z = 65 m. 

We use the following pattern to create a two-sided spectrum of N points:  
 

 ( 12 ) 

where the negative frequencies are represented in the second half of V2 side, each V2 side[n] is 

complex-valued except V2 side[N/2], and the first element V2 side[1] is forced to zero because we 

are creating a zero-mean simulation. To produce a time series of real-valued wind speeds, the V2 

side must be conjugate symmetric, i.e. , where the 

* operator represents complex conjugation. Note that the magnitudes of the one-sided spectra in 

equations ( 1 ) or ( 2 ) are multiplied by 1/2  in equation ( 6 ) in anticipation of creating the two-

sided spectrum in equation ( 12 ).   

We calculate the turbulence time series output u using the Fast Fourier Transform (FFT): 
 

 ( 13 ) 

where the FFT is defined following Press [12] as: 
 

 

( 14 ) 

In theory it is not necessary to take the absolute value of the FFT in equation ( 13 ) because 

the conjugate-symmetric two-sided spectrum we constructed in equation ( 12 ) ensures the output 

of the FFT will be real-valued. In practice, the limited numerical precision of computers may 

cause the output u[n] to have small imaginary values. 
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Confusingly, different sources define the Fast Fourier Transform (FFT) and its inverse in 

opposite ways. Press [12] gives the definition of the FFT in equation ( 14 ), but Bracewell [19] 

and Newland [20] define that as the inverse FFT. The Matlab software uses the definition in 

equation ( 14 ) except for a minus sign in the exponential term; Mathematica accepts a parameter 

for the choice of definitions. 

2.3. Combining Empirical and Simulated Data (D) 
We create the hybrid wind speed time series by concatenating the blocks of simulated zero-

mean turbulence and superimposing them on the filtered measured mean data (Figure 1D). We 

find that windowing the periods of simulated turbulence suggested by some authors [6,10] is not 

necessary. We do not encounter the problem of excessive spectral content at low frequencies 

noted by McFarlane [6] because our method does not overlap consecutive blocks of simulated 

high-frequency data and because we low-pass filter the measured data,  

2.4. Extension to Three Dimensions 
We do not consider the general three-dimensional case of the Veers method here; good 

explanations can be found in papers by Veers [5] and Sørensen [21], but we will briefly 

summarize how to extend the one-dimensional case described above. A simulated 3-D wind field 

consists of parallel, coherent 1-D wind speed time series. A coherence matrix  is introduced in 

equation ( 6 ), so the discretized spectrum S[m] must be a square matrix Because S[m] is a square 

matrix, the square root operation must be replaced by the Cholesky decomposition or similar 

decomposition that yields a lower-triangular matrix. Similarly, the random phases in the ei [m] 

term of equation ( 6 ) must be replaced by a square matrix with complex random phase angles on 

the diagonal and zeros elsewhere. 

2.5. Application Notes 
The method we present here can be used to generate wind speed time series data for many 

applications that require higher frequency data than is available. However, certain applications 

require details we have not discussed above.  

Power production: The large rotors on multi-megawatt wind turbines filter most high-

frequency turbulence, but make the power output of those turbines sensitive to the significant 

wind speed differences across the rotor induced by shear. Wagner has shown that calculating the 

power performance of a wind turbine from only hub-height wind speed measurements introduces 

significant uncertainties [22]; related research by Antoniou has shown hub-height measurements 

introduce similar uncertainties in power curve and wind resource calculation [23]. Wagner 

proposes several methods to calculate an ―equivalent‖ wind speed that better account for wind 

shear and better model power production [22]. Dolan proposes an alternative formula to calculate 

an equivalent wind speed based on a wind shear function [24]. These methods calculate an 

equivalent wind speed from wind speeds measured at several heights within the area of the 

turbine rotor. Our hybrid method can be used to generate wind speed times series at multiple 

heights, but the results will be sensitive to the models of wind shear and vertical coherence used. 

We also recommend simulating the low-pass filtering effect of the large rotor with the H ,0(s) 

filter proposed by Sørensen [3]. 

Power quality/Flicker: Power quality and flicker analyses deal with power variations at 

frequencies higher than approximately 1 Hz [25]. The large rotor of multi-megawatt wind 

turbines filters most wind fluctuations at frequencies higher than 10
-1

 Hz [26], but wind shear 

and the aerodynamic effect of blades passing the tower introduces noise at three times the 
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rotation frequency (―3p‖). We recommend applying the H ,0(s) and H ,3(s) filters proposed by 

Sørensen [3] to simulate the low-pass filtering effect of the large rotor and the 3p effect of wind 

shear and blades passing the tower. Careful attention should be paid to modeling the generator 

and oscillation modes of the blades, drivetrain, and tower, although those topics are beyond the 

scope of the method we propose for simulating wind speed. 

Mechanical Load Simulation: Mechanical load simulations typically require high-

frequency wind speed data over the three-dimensional wind field. We recommend extending our 

proposed method to three dimensions, as outlined above in section 2.4. We also recommend 

applying the H ,0(s) and H ,3(s) filters proposed by Sørensen [3] to simulate the low-pass 

filtering effect of the large rotor and the effect of blades passing the tower, and applying a model 

of vertical wind shear to simulate the unbalanced wind load on the rotor. 

3. Validation 
We validate the method for creating hybrid wind speed data described above by comparing 

the data it generates to wind speed data measured at three sites in the U.S. The hybrid method 

was created to support simulations of wind power variability on time scales relevant to grid 

frequency regulation, so we focus on validating the characteristics of the hybrid method that are 

most important for that application. First we compare the characteristics of wind speed variation, 

especially the Power Spectral Density (PSD). Then we use that wind speed data to drive a 

simulated wind turbine to create wind power data. We compare the energy production and ramp 

rate characteristics of the wind power over different time scales. 

The procedure for creating the data used to validate the hybrid wind method is: 

1. Collect measured wind speed data from field measurements (see Table 1) and 

decimate data to 5 Hz.  

a. The measured 5 Hz data are the ―Measured‖ data set 

2. Calculate 10-minute statistics (mean and standard deviation) from measured wind 

data in step 1. 

a. The measured 10-minute mean wind speeds (resampled to 5 Hz) are the 

―Measured, 10-min avg‖ data set 

3. Generate 5 Hz hybrid wind speed data 

a. Hybrid data created with equation ( 1 ), which takes wind speed standard 

deviation as an input, are the ―Hybrid, ― data set 

b. Hybrid data created with equation ( 2 ), which takes estimated surface 

roughness length as an input, are the ―Hybrid, z0‖ data set 

4. Generate wind power data by simulating a 2-MW wind turbine driven by wind speed 

from the data sets created in steps 1a, 2a, 3a, and 3b. 

 

Figure 3 and Figure 4 compare the wind speed data from steps 1 – 3 above. Figure 5 - Figure 8 

compare the wind power data from step 4. 

3.1. Validation Data 
To validate our hybrid method of creating long wind speed time series, we used publically-

available wind speed data from three experiments conducted by the U.S. National Center for 

Atmospheric Research (NCAR): CASES99 (Cooperative Atmosphere-Surface Exchange Study) 

[27,28], FLOSSII (Fluxes Over Snow Surfaces, Phase II) [29,30], and ATST (Advanced 
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Technology Solar Telescope site survey) [30,31], summarized in Table 1. We decimate these 

data to 5 Hz by low-pass filtering and then down-sampling the data, and then calculate the along-

wind horizontal (longitudinal) wind speed. The large rotor on modern wind turbines acts as a 

low-pass filter to attenuate phenomena faster than approximately 0.5 Hz  [26], so we choose a 

sampling rate of 5 Hz to ensure we capture all significant power variations. 

 
Table 1: Properties of data sets from three U.S. National Center for Atmospheric Research (NCAR) experiments used to 

validate the hybrid wind model. 

Data Set 
Name 

Location Measurement 
Height 

Sampling 
Frequency 

Surface 
Roughness 
Length z0 
(estimated) 

Dates Sampled 

CASES99 Leon, Kansas 55 m 20 Hz 0.03 m 6 – 30 Oct., 1999 

FLOSSII North Park, 

Colorado 

30 m 60 Hz 0.03 m 20 – 31 Nov., 2002 

15 – 29 Dec., 2002 

ATST Big Bear Lake, 

California 

25 m  30 Hz 0.003 m 7 May – 14 June, 

2004 

 

We group the data into contiguous blocks that share common atmospheric stability 

properties. First we calculate the stability criterion value 1/L for each 1-hour period, where L is 

the Obukhov length from Businger [30] calculated according to equation ( 15 ) below. Next we 

determine the Pasquill atmospheric stability class [31] corresponding to the calculated value of 

1/L using a nomogram given by Golder  [32], assuming the roughness lengths z0 given in Table 

1. Finally, we create each block of data by selecting the contiguous data with the same stability 

class: stable (Pasquill A, B, C), neutral (Pasquill D), or unstable (Pasquill E, F) and require that 

each block of data be a minimum of 2 hours long. The distribution of the data in the stability 

classes is shown in Table 2. 

 
 

( 15 ) 

where 

  = friction velocity (definition from Weber [33]) 

u = along-wind velocity 

v = across-wind velocity 

w = vertical wind velocity 

T = absolute temperature 

Tv = virtual temperature 

 = 0.4 = von Kármán constant 

g = 9.8 m/s
2
 = acceleration of gravity  

 = covariance of two variables a and b 
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Table 2: Distribution of the measured wind speed data in different atmospheric stability classes 

Data Set Stable Data 
[hours] 

Neutral Data 
[hours] 

Unstable Data 
[hours] 

CASES99 148 177 10 

FLOSSII 111 150 0 

ATST 46 87 111 

 

3.2. Wind Speed Time Series 
Figure 3 qualitatively compares wind speed time series generated with our hybrid method to 

a measured wind speed time series. The two hybrid wind speed data sets (―Hybrid, ‖ and 

―Hybrid, z0‖) are generated by calculating the 10-minute mean and variance of the measured 

time series, then superimposing simulated high-frequency turbulence. The ―Measured, 10-min 

avg.‖ plot shows the kind of measured data commonly captured from meteorological masts that 

would be used as the basis for generating hybrid wind data. 

The plots in Figure 3 demonstrate that the hybrid method generates realistic non-stationary 

wind speed data. The hybrid wind data accurately model doubling of the wind speed, from t = 

2000 to t = 4000, and doubling of the variance, from t = 7000 to t = 10000. 

 
Figure 3:  A comparison of measured wind speed data (“Measured”), hybrid wind speed data generated with empirical 

mean and variance statistics (“Hybrid, ”), hybrid wind speed data generated with empirical mean statistics and 
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estimated surface roughness length (“Hybrid, z0”), and empirical mean statistics (“Measured, 10-min avg.”).  These 

dataare representative of the close match between hybrid wind speed data and measured data with similar statistical 

properties. These plots show 4 hours of data from the CASES99 experiment beginning at 20:00:00 October 28, 1999 

(stable atmospheric conditions). The hybrid and “Measured, 10-min avg.” data is generated using 10-minute statistics 

derived from the “Measured” data.  

3.3. Wind Turbulence Spectra 
We compare the PSD (Power Spectral Density) of hybrid wind speed time series to the PSD 

of measured wind speed time series from the CASES99 experiment. We calculate the PSD 

according to the following formula: 
 

 
( 16 ) 

where T is the duration of the data in second and the inverse Fourier Transform is defined by 

Press [12] as: 
 

 

( 17 ) 

Each PSD plotted in Figure 4 is the average of all the PSDs of 2-hour periods with the mean 

wind speed between 6 and 8 m/s. This averaging, called ―segment averaging‖ by Press [12] 

reduces the variance of the PSD. The number of periods averaged is given in the title of each 

plot. We plot the spectra for mean wind speeds 6 – 8 m/s to because that range consistently 

contains the most data across the three experimental sites. We plot the spectra of four different 

data sets: ―Measured‖ is ATST field data decimated to 5 Hz, ―Hybrid, ‖ is hybrid data created 

with the Kaimal spectral model in equation ( 1 ), ―Hybrid, z0‖ is hybrid data created with the 

Kaimal spectral model in equation ( 2 ), and ―Measured, 10-min avg‖ is 10-minute means of the 

ATST field data. Hybrid wind is essentially simulated turbulence superimposed on the 

―Measured, 10-min avg‖ data, so this last data set shows the results if the hybrid method is not 

used. 
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Figure 4: A comparison of Power Spectral Densities (PSD) of measured wind data, both variants of hybrid wind speed 

data, and measured 10-minute average data from the ATST field site for 6 – 8 m/s mean wind speed. Each PSD is the 

segment average of the PSDs all 2-hour segments of data in the specified mean wind speed range (see description in text). 

Data from stable conditions (0.01 < 1/L < 0.15) are plotted in (A), neutral conditions (-0.03 < 1/L < 0.01) are plotted in (B), 

and unstable conditions (-0.15 1/L < -0.03) in (C). We plot the spectral only to 2 Hz because we decimate (low-pass filter 

and down-sample) the measured data to 5 Hz, but the low-pass filtering attenuates the spectra of the measured data above 

2 Hz. 

The spectra of the hybrid wind data in Figure 4 closely match the spectra of the measured 

ATST wind data in stable, neutral, and unstable atmospheric conditions. The spectra of wind 

speed data generated with both hybrid variants is almost indistinguishable from the spectra of the 

measured data at all frequencies. These results are representative of the results for other range of 

mean wind speed and for data from the CASES99 and FLOSSII experiments with one exception: 

the hybrid wind under-predicts the magnitude of turbulence for frequencies in the range of 1 x 

10
-3

 – 3 x 10
-3

 Hz when compared to data from the CASES99 test site during stable atmospheric 

conditions. That range of frequencies is where measured data is joined with simulated turbulence 

to form hybrid wind, which suggests that the low-pass filter applied in Step C of the hybrid 

method may not be steep enough. However, this under-prediction is not evident in neutral and 

unstable CASES99 data or in any of the ATST and FLOSSII data.  

The spectra of the 10-min average data matches (plotted in green) very poorly with spectra of 

the measured data; we expect this result because the 10-min average data should contain almost 

no frequency content at frequencies higher than 1.7 x 10
-3 

Hz, the frequency corresponding to 10 
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minutes. The poor fit of the spectra of 10-minute average data demonstrates the advantage of the 

hybrid method: the hybrid method adds the turbulence the 10-minute average data lacks. 

3.4. Wind Turbine Simulation Model 
All wind power data used in this paper are created by simulating the output of a single 2-MW 

wind turbine with different measured and hybrid wind inputs. The turbine is pitch-regulated, 

variable speed turbine with an 80-m rotor, modeled using the Wind Turbine Blockset, v3.0 

developed by Aalborg University [34]. The turbine design parameters, control scheme, control 

parameters, and first-order generator model are those recommended by the Danish Technical 

University (DTU) [35]. We incorporate a rotor-wind filter H ,0(s)  proposed by Sørensen [3] into 

the wind turbine model to simulate the filtering effect of a large rotor on turbulence that is not 

spatially homogeneous, but we do not account for the effect of vertical wind shear across the 

rotor disk. 

 

3.5. Validation of Power Production 
We compare the energy and power produced by one 2-MW wind turbine with 40-meter 

blades (described in Section 3.4) fed with both the measured and hybrid wind speed time series. 

Comparing simulated wind power takes into account the filtering effect of a large wind turbine 

on wind speed fluctuations and the dynamic response of a modern turbine to those fluctuations. 

We do not compare simulated wind power to wind power measured from actual wind turbines 

because of the difficulties in controlling the output of actual turbines for wind direction, wakes, 

terrain, mechanical and electrical losses, power limits, and ramp rate limits. Future work should 

analyze met-mast and wind power data to give a more thorough comparison of the hybrid 

method to the output of an actual wind turbine. 

Figure 5 shows a comparison between the energy generated by a 2MW wind turbine driven 

by the measured wind data described in Table 1 and the corresponding hybrid wind data. Each 

sub-plot shows the percent error in energy generation in 1-hour periods. Figure 5A compares 

hybrid wind data generated using equation ( 1 ), which takes wind speed standard deviation as a 

parameter. Figure 5B compares hybrid wind data generated using equation ( 2 ), which takes 

surface roughness length as a parameter. Figure 5C compares measures 10-minute average wind 

data to show the results if the hybrid method is not used to fill in high-frequency turbulence.  

We define the 1-hour percent energy generation error  in hour k as:  
 

 

( 18 ) 

where Eemp(k) is the energy generated by the simulated wind turbine driven by measured wind 

data in hour k and Ehyb(k) is the energy generated with hybrid wind data in hour k.  
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Figure 5: The plots on the left show percent difference in energy production  between a turbine simulated with empirical 

wind data and hybrid wind data, plotted against per-unit (p.u.) mean power. (A) compares measured data to hybrid data 

created with equation ( 1 ), (B) compares measured data to hybrid data created with equation ( 2 ), and (C) compares 

measured data to 10-minute average measured data. The boxplots on the right plot the mean (center line), 25th and 75th 

percentile values (bottom and top of box), and the 5th and 95th percentiles (bottom and top “whiskers”) of the same data 

[36]. 

Figure 5 shows both variants of hybrid wind (Figure 5A and B) have smaller errors in energy 

production than the 10-minute average data (Figure 5C) they are based on. The mean error for 

hybrid data created with both methods (A and B) is -0.4%; the mean error for the 10-minute 

average data (C) is -0.8%. Hybrid data also gives significantly less variance in the errors: 90% of 

the hybrid errors fall between -2.7% and +1.4%, whereas 90% of the errors for the 10-minute 

average data fall between -4.5% and 3.4%. Using the hybrid method to add high-frequency 

turbulence to low-frequency measured data significantly reduces the magnitude and range of 

error in energy production. The hybrid method also reduces the trend of energy error increasing 

as a function of mean power: Figure 5C shows that using 10-minute average data over-predicts 

energy production when the average power is low and under-predicts energy when the average 

power is high. Data created with the hybrid method do not show such a strong trend. 
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3.5.1. Power Ramp Rate 
Figure 6 and Figure 7 show comparisons of the ramp rates of power generated by a 2-MW 

wind turbine driven by the measured wind data described in Table 1 to the corresponding hybrid 

wind data. Validation of the ramp rates is important to confirm that the hybrid method accurately 

models the variations on different time scales. Figure 6 shows a comparison of the distribution of 

sizes of ramp events and Figure 7 compares the size of extreme ramp events.  

We use the definition that the ramp rate is the change in mean power from one period to the 

next: Pramp(n) = Pmean(n+1) – Pmean(n) [9]. The ramp rates are binned by the mean power of the 

starting period Pmean(n). We analyze ramp rates over three different time scales: 10 minutes, 1 

minute, and 10 seconds. The 10-minute ramp rates correspond to phenomena in the ―load-

following‖ time scale, 1-minute ramp rates correspond to phenomena in the ―frequency-

regulation‖ time scale, and the 10-second ramp rates correspond to ―flicker‖ phenomena.  

The duration curves in Figure 6 plot the percentile values of ramp rates. Ramp events are 

grouped together in bins by initial power Pmean(n); Figure 6 shows the duration curves for 10-

minute, 1-minute, and 10-second ramp events with an initial power of 0.6 to 0.7 per-unit (p.u.). 

This figure is similar to comparisons of measured and simulated wind power ramp rates given by 

Brower for validation of the Eastern Wind Integration and Transmission Study, but we plot a 

cumulative distribution function (CDF) where Brower plots a probability density function (PDF) 

[40]. 

 
Figure 6: A comparison of the distribution (percentiles) of power ramp rates for a simulated turbine driven by measured 

and hybrid wind data. All plots show changes in power starting in the range 0.6 – 0.7 per-unit (p.u.); (A) shows the 

distribution of 10-minute ramp rates, (B) the distribution of 1-minute ramp rates, and (C) the distribution of 10-second 

ramp rates. The hybrid data are nearly indistinguishable from the measured data, especially for 1-minute and 10-second 

ramp rates. 
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Figure 6 shows that the hybrid methods are slightly worse at modeling 10-minute ramp rates 

than 10-minute average measured data (A), but much better at modeling 1-minute and 10-second 

ramp rates (B and C). For 10-minute ramp rates starting from the 0.6 – 0.7 p.u. power range 

(Figure 6A), the mean-square error (MSE) between the measured data and the 10-minute average 

measured data is 0.87 x 10
-4

 p.u./10-min, significantly smaller than MSEs for the two hybrid data 

sets: 3.3 x 10
-4

 p.u./10-min and 2.2 x 10
-4

 p.u./10-min. For 1-minute ramp rates (Figure 6B), the 

MSE for the hybrid data sets is 1.9 x 10
-4

 p.u./1-min but the MSE for the 10-minute average 

measured data is more than an order of magnitude larger: 59 x 10
-4

 p.u./1-min. For 10-second 

ramp rates (Figure 6C), the MSEs for the hybrid data sets are 3.0 x 10
-5

 and 6.7 x 10
-5

 p.u./10-sec 

but the MSE for the 10-minute average measured data is two orders of magnitude larger: 490 x 

10
-5

 p.u./10-sec. These results are typical of the results in all other initial power ranges. 

The power ramp rates based on hybrid wind data match very closely to the power ramp rates 

based on measured wind over time scales from 10 minutes to 10 seconds. The good match 

between hybrid and measured ramp rates on these time scales shows that the simulated 

turbulence introduced by the hybrid method models the characteristics of actual wind turbulence 

well. It is somewhat surprising that the hybrid wind predicts10-minute power ramps that are 

smaller than than10-minute average measured data because the hybrid method adds zero-mean 

turbulence that should not affect the 10-minute ramp rate. We suspect that the under-prediction 

of 10-minute ramp rates by the hybrid method is an artifact of the low-pass filter used in creating 

the hybrid data. Figure 4 supports this hypothesis—the spectra of hybrid wind diverge slightly 

from the spectra of measured wind at approximately 1.1 x 10
-3

 Hz, which corresponds to a period 

of ~15 minutes. 

Figure 7 plots the 1
st
 percentile (most extreme down ramps) 10-minute, 1-minute, and 10-

second ramp rates as a function of initial power Pmean(n). The data are grouped by initial power 

into 0.1 p.u. bins, so each plotted point is the 1
st
 percentile ramp rate value for all the data in a 

particular bin. These plots are a cross-sectional slice of the plots in Figure 6, but varying the 

initial power instead of the percentile value. The 1
st
 percentile ramp rates are significant because 

they put the greatest burden on other generators to compensate for the decrease in wind power.  
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Figure 7: The extreme (1st percentile) power ramp rates for a simulated turbine driven by measured and hybrid wind 

data. Each plot shows the extreme power down ramp as a function of the initial power (power output at the start of 

ramping). (A) shows the distribution of extreme 10-minute ramp rates, (B) the distribution of extreme 1-minute ramp 

rates, and (C) the distribution of extreme 10-second ramp rates. The ramp rates of the hybrid data closely match the 

ramp rates of the measured data, but the hybrid data predicts more extreme 10-second ramp rates for initial power 

output in the range 0.7 – 1 p.u. 

The data for extreme power ramp rates plotted in Figure 7 show a similar trend to the data in 

Figure 6: the hybrid data model power ramps over short periods (1-minute and 10-seconds) 

better than the 10-minute average data, but slightly worse for 10-minute ramping periods. For the 

1
st
 percentile 10-minute ramp rates (Figure 7A), the mean-square error (MSE) between the 

measured data and the 10-minute average measured data is 0.40 x 10
-3

 p.u./10-min, significantly 

smaller than the MSEs for the two hybrid data sets: 1.9 x 10
-3

 p.u./10-min and 1.5 x 10
-4

 p.u./10-

min. For the 1
st
 percentile 1-minute ramp rates (Figure 7B), the 10-minute average measured data 
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has a MSE of 1000 x 10
-5

 p.u./1-min, several orders of magnitude larger than the MSEs of the 

hybrid data: 8.2 x 10
-5

 and 6.9 x 10
-5

 p.u./1-min. Similarly for the 1
st
 percentile 10-second ramp 

rates (Figure 7C), the 10-minute average measured data has a MSE of 140 x 10
-4

 p.u./1-min 

compared to the MSEs of the hybrid data: 3.1 x 10
-4

 and 2.4 x 10
-4

 p.u./10-sec. 

Similar to the ramp rate duration curves in Figure 6, the 1
st
 percentile power ramp rates based 

on hybrid wind data match very closely to the power ramp rates based on measured wind over 

time scales from 10 minutes to 10 seconds. They do not match as well on a time scale of 10 

minutes—we suspect that the under-prediction of 10-minute ramp rates by the hybrid method is 

an artifact of the low-pass filter used in creating the hybrid data. However, we are surprised that 

the hybrid data sets diverge significantly at higher initial powers. The hybrid method under-

predicts extreme down ramp rates by 2.5% of the rated turbine power output (0.025 p.u.) for 

initial power 0.8 – 0.9 p.u., suggesting that the hybrid method generates too much turbulence at 

higher wind speeds. 

3.6. Validation of Spinning Reserve Requirements 
Figure 8 compares the power reserves needed for power generated by a 2MW wind turbine 

driven by the measured wind data described in Table 1 and the corresponding hybrid wind data. 

Validation of the power reserve requirements is important to confirm that the hybrid method 

accurately models the variations on different time scale. We define the reserve requirement as 

the difference between mean power in one period and minimum power in the next: Pramp(n) = 

Pmean(n) – Pmin(n+1) [9]. The reserve requirement values are binned by the mean power of the 

starting period Pmean(n). As we did for the ramp rates, we analyze reserve requirements on 10-

minute, 1-minute, and 10-second time scales. We analyze the 99
th

 percentile reserve 

requirements because these represent the most extreme reserve requirements. 
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Figure 8: The extreme (99st percentile) reserve requirements for a simulated turbine driven by measured and hybrid wind 

data. Each plot shows the extreme reserve requirement as a function of the initial power (power output at the start of 

ramping). (A) shows the distribution of extreme 10-minute reserves, (B) the distribution of extreme 1-minute reserves, 

and (C) the distribution of extreme 10-second reserves. The reserve requirements of the hybrid data closely match the 

reserve requirements of the measured data, but the hybrid data predicts more extreme 10-second reserve requirements 

for initial power output in the range 0.7 – 1 p.u. 

The data for extreme power reserve requirements plotted in Figure 8 show that the hybrid 

method is consistently better at predicting reserve requirements than the 10-minute average 

measured data. For 10-minute reserve requirements (Figure 8A), the 10-minute average data is 

nearly as good as the hybrid data: it has a MSE of 4.5 x 10
-4

 p.u. compared to the MSEs of the 

hybrid data of 3.8 x 10
-4

 and 4.5 x 10
-4

 p.u. For 1-minute reserve requirements (Figure 8B), the 

hybrid method is significantly better: the MSE for 10-minute average data is 38 x 10
-4

 p.u., an 

order of magnitude worse than the MSEs for the hybrid data: 3.0 x 10
-4

 and 0.97 x 10
-4

 p.u. For 

10-second reserve requirements (Figure 8C), the MSE for the 10-minute average data is 26 x 10
-4

 

p.u. and the MSEs for the hybrid data are 4.6 x 10
-4

 and 3.9 x 10
-4

 p.u. 

As with the extreme ramp rates in Figure 7, the hybrid data sets diverge significantly at 

higher initial powers. The hybrid method over-predicts extreme reserve requirements by 3% of 
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rated turbine power output (0.03 pu.u) for initial power 0.8 – 0.9 p.u. This suggests that the 

hybrid method generates too much wind turbulence at higher wind speeds. 

4. Conclusions 
We demonstrate a method for creating long wind speed time series as a hybrid of measured 

and simulated wind speed. This method is meant to take advantage of wind speed data measured 

at low frequencies by meteorological stations and wind farm developers, and data simulated with 

appropriate spatial and temporal resolution by meso-scale weather models. The measured wind 

data captures non-stationary phenomena such as diurnal variations, the passing of weather 

systems, and seasonal variations, while our hybrid method simulates data to interpolate the fast 

turbulent variations that are needed to accurately model fast variations in wind power.  

Our analysis shows that the wind speed time series created with our hybrid method 

accurately reproduce measured wind speed data from three different sites and in neutral, stable, 

and unstable atmospheres. We demonstrate that the total energy produced by a wind turbine 

simulated with hybrid wind is within -2.7%/+1.5% of the energy produced by the same turbine 

simulated with measured wind data for 90% of the tested period. We also demonstrate that the 

power ramp rates and spinning reserve requirements for a turbine simulated with hybrid wind 

data very closely match the results for a turbine simulated with measured wind data.  

This method is well suited to studies of the fluctuations of wind farm power on the scale of 

seconds to minutes. It generates wind speed data time series sampled fast enough to simulate 

dynamic behavior of individual wind turbines, such as pitch control, but retains their time-

dependent characteristics such as diurnal variations, the passing of weather fronts, and seasonal 

variations.  
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