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Abstract – We present the first frequency-dependent analyses of the geographic smoothing 
of wind power's variability, analyzing the interconnected measured output of 20 wind 
plants in Texas. Reductions in variability occur at frequencies corresponding to times 
shorter than ~24 hours and are quantified by measuring the departure from a Kolmogorov 
spectrum. At a frequency of 2.8x10-4 Hz (corresponding to 1 hour), an 87% reduction of the 
variability of a single wind plant is obtained by interconnecting 4 wind plants. 
Interconnecting the remaining 16 wind plants produces only an additional 8% reduction.  
We use step-change analyses and correlation coefficients to compare our results with 
previous studies, finding that wind power ramps up faster than it ramps down for each of 
the step change intervals analyzed and that correlation between the power output of wind 
plants 200 km away is half that of co-located wind plants.  To examine variability at very 
low frequencies, we estimate yearly wind energy production in the Great Plains region of 
the United States from automated wind observations at airports covering 36 years. The 
estimated wind power has significant inter-annual variability and the severity of wind 
drought years is estimated to be about half that observed nationally for hydroelectric 
power. 
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1. Introduction 
Currently 29 of the United States of America have renewables portfolio standards 

(RPS) that mandate increasing their percentage of renewable energy, and the lower 
chamber of the United States Congress has enacted a federal renewable electricity standard 
(Database of State Incentives for Renewables and Efficiency, 2009; Waxman and Markey, 
2009).  Major electricity markets such as California, New York, and Texas expect wind to 
play a large role in meeting their RPS.  As a result of the state RPS requirements and a 
federal production tax credit equivalent to a carbon dioxide price of approximately 
$20/metric ton (Dobesova et al., 2005), wind power net generation is currently 
experiencing very high growth rates (51% in 2008, 28% average annual growth rate over 
the past decade) in the United States (EIA, 2009). 

Wind power’s variability and fast growth rate have led areas including Cal-ISO, PJM, 
NY-ISO, MISO, and Bonneville power to undertake wind integration studies to analyze if 
their systems can accommodate significant (5-20%) penetrations of wind power (CAISO, 
2007; DOE, 2008; EnerNex, 2009; GE, 2008; Hirst, 2002).  Included in each integration 
study is how wind power variability can be mitigated with options such as storage, demand 
response, or fast-ramping gas plants.  Some system operators are beginning to charge wind 
operators for costs arising from the integration of high wind penetration in their system. In 
2009, the Bonneville Power Authority (BPA) introduced a wind integration charge of $1.29 
per kW per month (~0.6¢/kWh assuming a 30% capacity factor), citing reliability risks and 
substantial costs encountered in fulfilling 7% of their energy needs with wind power (BPA, 
2009).   

Previous studies have shown that interconnecting wind plants with transmission 
lines reduces the variability of their summed output power as the number of installed wind 
plants and the distance between wind plants increases (Archer and Jacobson, 2007; Czisch 
and Ernst, 2001; Giebel, 2000; IEA, 2005; Kahn, 1979; Milligan and Porter, 2005; Wan, 
2001).  Kahn (1979) estimates the increased reliability of spatially separated wind plants, 
writing that “wind generators can displace conventional capacity with the reliability that 
has been traditional in power systems.”   Kahn (1979) calculates the loss of load probability 
(LOLP) and the effective load carrying capability (ELCC) of up to 13 interconnected 
California wind plants.   

Czisch and Ernst (2001) and Giebel (2000), in separate studies, show the correlation 
between wind plants decreases with distance.  Each concludes wind power variability is 
reduced by summing the output power from spatially separated wind plants.  Czisch and 
Ernst (2001) and Giebel (2000) both find that wind plant outputs are correlated even over 
great distances (correlation coefficient > 0).   

Milborrow (2001) shows a smoothing effect by calculating the output power change 
over a certain time interval (step-change) of wind plants.  He finds the one-hour power 
swing of 1,860 MW of wind power in Western Denmark over a three month period in 2001 
was at most 18% of installed capacity compared with 100% for a single wind plant.  In 
contrast, Bonneville Power Authority in the U.S. Pacific Northwest experienced a maximum 
one-hour step-change of 63% in 2008 for their 1,670 MW of wind power.   

Archer and Jacobsen (2007) wrote that interconnected wind plants would produce 
“steady deliverable power.”  They use hourly and daily averaged wind speed 
measurements taken at 19 airports located in Texas, New Mexico, Oklahoma, and Kansas to 
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estimate generation duration curves and operational statistics of wind power arrays.  They 
found that “an average of 33% and a maximum of 47% of yearly averaged wind power 
from interconnected farms can be used as reliable, baseload electric power” (Archer and 
Jacobson, 2007).   

The previous studies analyze wind’s variability primarily in the time domain, using 
metrics such as 10-minute step-change histograms, correlation coefficients and LOLP.   

Frequency domain analysis is a powerful complementary method that can be used 
to characterize variability and evaluate whether and at what frequencies smoothing occurs 
as more wind plants are introduced into a system.  We use Fourier transform techniques to 
estimate the power spectral density (PSD) (Apt, 2007; Cha and Molinder, 2006; Press et al., 
1992) and characterize the variability of actual wind plants within ERCOT, the electricity 
market serving most of Texas.  We also use step-change analyses and correlation 
coefficients to characterize the variability of ERCOT wind plants and wind plants modeled 
from wind monitoring stations located throughout the Midwest and Great Plains and 
compare our results with previous studies.   

To characterize the year-to-year variations of wind power production, we calculate 
the yearly output of wind power by modeling wind plants over a span of 36 years.  We 
examine the existence and likely severity of wind drought years as compared to 
hydroelectric power reduction by rainfall droughts. 

 
2. Data 

We use both ERCOT wind plant power output data and National Oceanic and 
Atmospheric Administration (NOAA) wind speed data for our analyses.  We use 15-minute 
time resolution real power output data from 20 wind plants within ERCOT (figure 1)*.  The 
ERCOT data were obtained from ERCOT's website. Data sets from three wind farms with 
over ten days of consecutive zeros were discarded. There were minor data dropouts in data 
from the remaining 20 wind farms, but the correlation coefficients were insensitive to 
exclusions of data dropout periods, so the correlations displayed include all data.  If 
necessary, data from each wind plant are scaled to the end-of-the-year capacity of the wind 
plant to adjust for mid-year capacity additions.  We use 2008 wind power data from 
Bonneville Power Authority to analyze if results similar to our ERCOT results are seen in 
another system.  BPA provides 5-minute system wind power data on its website†.  There 
was 0.04% of the data missing from BPA’s 2008 wind data set.  

                                                        
* Electric Reliability Council of Texas (2009) Entity-Specific Resource Output.  Retrieved 
Feb. 18, 2009 from ERCOT’s Planning and Market Reports.  Available: 
http://www.ercot.com/gridinfo/sysplan/ 

† Bonneville Power Authority wind generation in balancing authority.  Retrieved May 6, 
2009.  Available at http://www.transmission.bpa.gov/business/operations/wind/ 

http://www.ercot.com/gridinfo/sysplan/
http://www.transmission.bpa.gov/business/operations/wind/
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Figure 1 - Locations of the ERCOT wind plants from which data were obtained. 

 
When examined in the frequency domain, ERCOT’s data exhibit the Kolmogorov 

spectrum of wind plants as found by Apt (2007).  The Nyquist frequency, the highest 
frequency the data can represent without aliasing, is 5.6 x 10-4 Hz (corresponding to 30 
minutes) for ERCOT’s 15-minute wind power output data.      

We use NOAA ASOS two-minute resolution wind speed data to estimate the effect of 
interconnecting up to 40 wind plants throughout 7 states located in the Midwest, 
Southwest, and Great Plains regions‡.  ASOS is a joint project among NOAA, the Department 
of Defense, the Federal Aviation Administration, and the US Navy with ~ 1000 stations that 
automatically record surface weather conditions (NOAA et al., 1998).  We selected 40 
stations to represent the high wind energy locations of the Great Plains region where wind 
plants are currently being developed; Archer and Jacobson (2007) analyzed a subset of this 
region.  Each minute, ASOS stations record wind speed and direction averaged over the 
previous two minutes to the neared nautical mile per hour.   Table 1 in the Appendix lists 
the 40 ASOS sites we use and figure 2 plots their location.  The average distance between 
the 40 ASOS sites we use is 785 km and the median distance is 725 km.   

                                                        
‡ See Table 1 in the Appendix for a list of specific sites.  Data are available at 
ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/ 

ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/
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Figure 2 – Locations of the airports from which data were obtained. 

 
There are three limitations to using ASOS wind speed data to model wind plants.  

The first is that the data are reported as integer knots (NOAA et al., 1998). The second is 
that the data are a running 2-minute average. Both the rounding and averaging reduce the 
high frequencies we can resolve in the frequency domain (Over and D’Odorico, 2002).  A 
noise floor is evident in the power spectral density, caused by the one knot amplitude 
resolution of the data. The effect of averaging is a departure from the Kolmogorov 
spectrum at frequencies greater than approximately 2x10-4 Hz (periods of 90 minutes or 
shorter) that we do not observe in non-ASOS anemometer data.  The third limitation of the 
ASOS data set is prevalence of bad data.  In 2007, our selected ASOS sites had an average 
bad data rate of 7.7%.  Spencer Municipal Airport, Iowa (KSPW) had the best data 
collection in our sample with a bad data rate of 4.6% and Theodore Roosevelt Regional 
Airport in Dickinson North Dakota (KDIK) had the worst with a bad data rate of 16.5%.  

We use NOAA hourly data obtained from airport sites (red squares in figure 2) to 
study how the energy output of wind plants varies over many years.  There is significant 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-09-07     www.cmu.edu/electricity 

 

6 
DRAFT: Do not cite or quote without permission of the authors. 
 

variation in the historical hourly data sets of the 40 airports prior to ASOS deployment in 
the 1990s.  Some airports recorded wind speeds every third hour and only during the day.  
Data dropouts of months to years are present in the majority of the data sets.  We used only 
the 16 airports out of the 40 that had hourly wind speed data from 1973 to 2008 and did 
not have a data dropout greater than 5 days.  The 16 sites are listed in Table 2 in the 
Appendix and had an average missing data rate of 13%.   

 
3. Methods 

 
Interconnecting Wind Plants 

We simulate wind plants interconnected with uncongested transmission capacity 
(sometimes called the copper plate assumption) by summing together either ERCOT wind 
plant power output data or NOAA airport wind speed data (taken at 8 or 10 meters, 
depending on the station) scaled up to 80 meters and transformed to power with a cubic 
curve (equation 1) that provides a good match to observed data from 1.5 MW turbines and 
turbine-mounted anemometer data. 

Equation 1 

 

 
Previous work indicates that wind power variability can be reduced by either 

increasing the number of wind plants or increasing the distance between wind plants.  For 
our step change and frequency analyses, we add stations together according to their 
location.  We select an ERCOT wind plant as the starting point, calculate the distance to 
each of the other stations using a WGS-84 ellipsoidal Earth, and sort the results from 
closest to farthest wind plant (Vincenty, 1975).  We simulate interconnected wind plants by 
adding the closest wind plant’s power to the system, perform step change and PSD 
analyses, and repeat until all wind plants have been interconnected.  The same method is 
used to add ASOS stations together by distance. 

 
Missing Data 

The 1-minute ASOS and hourly NOAA data sets are incomplete.  For the ASOS data, 
we treat missing data as follows.  If the length of the missing data segment is less than 3 
minutes, then the missing data is filled in by interpolating between the 2 closest points.  
Any missing data segments longer than 3 minutes are excluded from the summed result.   

For the NOAA hourly data set used for the wind drought analysis, any missing data 
segments with a length of 3 hours or less are filled in by interpolating between the 2 closest 
points.  Any missing data segments with a length greater than 3 hours but less than 120 
hours are filled in using average wind speeds calculated from the previous four weeks for 
each hour of the day.  We then take the time of day average segment that coincides with the 
missing data segment and scale it to match its boundaries with the boundaries of the 
surrounding good data segments.  Any data set that has a missing data segment longer than 
120 hours is excluded.  
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Scaling Wind Data to Hub Height 
The airport wind speed measurements were taken at heights of 8 to 10 meters and 

are scaled up to 80 meters before being transformed to power data.  We use a logarithmic 
velocity profile to estimate wind speeds at a hub height of 80 meters (equation 2) (Seinfeld 
and Pandis, 2006).  The logarithmic velocity profile assumes the surface layer is adiabatic.  
The logarithmic velocity profile depends on a surface roughness length that characterizes 
the boundary layer near the ASOS station; we use .   

Equation 2 

 

where 

 

 
 

κ ~ 0.4 (von Karman constant) 
 
Correlation Analysis 

Correlation between power output time series of two wind plants can be quantified 
by Pearson’s correlation coefficient: 

Equation 3 

; ( 1 1) . 

 
Power outputs of two wind plants that rise and fall in relative unison have ρ near 

one, and little smoothing takes place.  A correlation coefficient near zero indicates that 
wind power outputs vary independently of each other.  A negative correlation coefficient, 
although not seen in the data, would indicate anticorrelation between wind power outputs 
such that high power output from one wind plant is associated with low power output from 
the other; maximum smoothing would occur if  = -1. Previous studies have shown that as 
the distance between wind plants increases, the correlation between their outputs 
decreases.  The standard deviation of summed time series signals is dependent on the 
correlation between each individual time series signal (equation 4) (Giebel, 2000).   

 
Equation 4  

s u m

2 1

N 2 i jcorri j

ji

 

Step Change Analysis 
The most common time domain method used in wind power studies is a step change 

analysis (see for example Wan, 2001, 2004) where the change in power for a given time 
step is calculated and either reported as power (e.g. MW) or as a percentage of the rated 
capacity of a wind plant (equation 5).  We calculate step changes as a percentage of the 
maximum power produced by a wind plant or summed plants (equation 6). 
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Equation 5  

)()( tPtPP  or 100
)()(

CapacityNameplateP

tPtP
P   

 
Equation 6  

100
)max(

)()(

P

tPtP
P  

 
We calculate step changes at 30-minute, 60-minute and 1-day time intervals 

because they are important to ancillary services and day-ahead electricity markets.  We 
plot the maximum step change observed versus the distance from the original starting 
wind plant to the next wind plant interconnected.   

 
Frequency domain  

To characterize the smoothing of wind power’s variability as a function of frequency 
as wind plants are interconnected, we analyze wind power in the frequency domain. Our 
results can be used to help determine the most economical generation portfolio to 
compensate for wind’s variability.  For the Texas wind plant data, we compute the discrete 
Fourier transform of the time series of output in order to estimate the power spectrum 
(sometimes termed the power spectral density or PSD) of the power output of a wind farm. 

One of the attributes of power spectrum estimation is that increasing the number of 
time samples does not decrease the standard deviation of the PSD at any given frequency fk. 
In order to take advantage of a large number of data points in a data set to reduce the 
variance at fk, the data set may be partitioned into K time segments. The Fourier transform 
of each segment is taken and a PSD constructed. The PSDs are then averaged at each 
frequency, reducing the variance of the final estimate by the number of segments (and 

reducing the standard deviation by K/1 ).  The length of a data set determines the lowest 
frequency that can be resolved and segmenting increases the lowest frequency we are able 
to resolve in a signal by a factor of K (Apt, 2007; Press et al., 1992).  Since we wish to 
characterize wind power variability in the time range of current market operations (24 
hours to 15 minutes), the decreased ability to examine frequencies corresponding to very 
long times is a small price to pay for the decreased variance.  

A Fourier transform requires evenly sampled data points to transform a signal from 
the time domain to the frequency domain.  The Texas wind plant output data is complete 
for the time period (2008) examined. However, the ASOS data has significant gaps.  For 
example, the longest continuous data segment for one ASOS station was 42 days and the 
longest coincident continuous data segment of the 40 summed ASOS stations was 12 hours.  
The high percentage of missing data would limit our frequency analysis in two ways.  First, 
we would be able to use only the 12 hours of coincident continuous good wind speed data.  
Second, we wouldn’t be able to use segmenting to reduce the variability of the ASOS PSDs 
because the length of the coincident continuous good data is so short.  To overcome the 
limitations imposed by the high percentage of missing ASOS data we calculate PSDs by 
using a Lomb periodogram instead of a periodogram estimated using a Fourier transform.  
The Lomb periodogram (Lomb, 1976) was developed for use in intermittent astrophysics 
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data (equation 7) and does not require evenly sampled data points to calculate the PSD of a 
signal.  Instead of calculating the Fourier frequencies of a signal, it applies a least-squares 
fit of sinusoids to the data to obtain the frequency components.  The time delay component 
 in equation 7 ensures the frequencies produced by the Lomb periodogram are orthogonal 

to one another.  We implement the Lomb periodogram by using the algorithm of Press et al. 
(1992).   

Equation 7 - Lomb Periodogram 

PN ( )
1

2 2

(h j h )cos (t j )
j

2

cos
2
(t j )

j

(h j h )s i n (t j )
j

2

s i n
2
(t j )

j

 

Subject to the constraint:

 

tan(2 )
sin2 t j

j

cos2 t j
j  

In computing the PSDs, we use 8 segments for the ERCOT data and 32 segments for 
the ASOS data to reduce the variability of using a year’s worth of data.  The algorithm used 
to implement the Lomb periodogram requires two factors, ofac and hifac, to be defined for 
each signal.  The first factor, ofac, is an oversampling factor that we set to 6 for ASOS data 
and 1 for ERCOT data.  The second factor, hifac, determines the highest frequency the 
algorithm is able to resolve.  We calculate hifac for each signal to produce the correct 
Nyquist frequency.   

Kolmogorov (1941) proposed that the energy contained in turbulent fluids is 
proportional to the frequency of the turbulent eddies present in the fluid, E α f β, with β = -
 5/3.  Apt (2007) has shown the power spectrum of a wind plant’s power output follows a 
Kolmogorov spectrum between frequencies of 30 seconds and 2.6 days.  We expect 
departures from Kolmogorov of β < -5/3 if any smoothing occurs when wind plants are 
interconnected.  As wind plants are interconnected we estimate β by linearly regressing the 
log of the PSD of the summed wind power between the frequencies of 1.2x10-5 to 5.6x10-4 
Hz (24 hours to 30 minutes). 

Kolmogorov’s relationship is valid for wind only for frequencies corresponding to 
times of approximately 24 hours or less.  It has been shown the spectra of wind speed 
turbulence flatten for longer frequencies, indicating wind has constant energy in its lower 
frequencies (longer than a few days) (Jang and Lee, 1998).  We use a modified von Karman 
formulation (equation 8) for wind speed turbulence spectrum to model the power 
spectrum of one wind plant over the frequency range of 43 days to 30 minutes (Kaimal, 
1972).   

To estimate the smoothing arising from interconnecting wind plants, we determine 
if departures from a Kolmogorov spectrum occur in the following manner.  We fit equation 
8 to the PSD of a single wind plant to determine a value for B.   

 
Equation 8 

3/51
)(

Bf

A
fPSD  
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As we add wind plants to the single wind plant, we fit equation 8 to the resulting summed 
PSD to determine a value for A and produce an appropriately scaled single wind plant 
model PSD.  We then compare the slope of the log of the summed PSD to the -5/3 slope of 
the single wind plant model in the Kolmogorov region between frequencies corresponding 
to 30 minutes and 24 hours.  We measure deviations from the spectrum of equation 8 by 
dividing the power contained in each frequency of the summed PSD by the power 
estimated in each frequency of the single wind plant model.  If no smoothing occurs when 
wind plants are interconnected the result should be close to 1 for all frequencies.  If there is 
a reduction in variability then there will be frequencies for which the fraction is less than 1.  
Finally, we use a linear regression on the log of the fractions to display the mean fraction 
response versus frequency.   
 
Wind Drought Analysis 

Analyzing long-term variations in wind power production is important for system 
planning.  If significant drought periods occur, system planners must ensure adequate 
resources and renewable energy credits (RECs) are available to cover the wind power 
underproduction.  Similarly, wind production that is significantly above the long-term 
average may depress the market price for RECs and increase the requirements for 
compensating power sources. 

We use hourly NOAA data to estimate the yearly energy production of wind turbines 
from 1973 to 2008.  We scale the wind speed measurements to 80 meter hub heights (see 
scaling wind data to hub heights section) and transform it to hourly power data with a 
power curve (see interconnecting wind plants section).  A surface roughness of 0.03 meters 
is assumed for all of the airports.  For each year the hourly power data from all 16 turbines 
is summed and compared to the mean yearly power production for the 35 year period. 

 
4. Results 

 
Frequency Domain 

In figure 3, we show the ERCOT PSD results for 1, 4, and 20 wind plants using 15 
minute time resolution data for 2008.  A single wind plant follows a Kolmogorov spectrum 
(f  -5/3) from 1.2x10-5 to 5.6x10-4 Hz (corresponding to times of 24 hours to 30 minutes).  
When 4 wind plants are added together, the power contained in this region decreases with 
frequency at a faster rate ( f  -2.49 instead of f  -1.67).  For 20 wind plants the power decreases 
even more rapidly with increasing frequency (f -2.56).  Adding wind plants together does not 
appreciably reduce the 24 hour peak.  BPA’s summed wind power (f  -2.2) shows less 
smoothing than ERCOT’s wind power, very likely because 17 of BPA’s 19 wind plants are 
located within 170 km of each other in the Columbia River gorge and BPA’s 19 wind plants 
are separated by at most 290 km. 
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Figure 3 – Power spectral density (with 8 segment averaging, K = 8) for 1 wind plant, 4 interconnected 
wind plants, and 20 interconnected wind plants in ERCOT.  Wind power variability is reduced as more 
wind plants are interconnected, with diminishing returns to scale. 

 
The amplitude of variability of twenty interconnected wind plants has ~95% less 

power at a frequency of  2.8x10-4 Hz (corresponding to 1 hour) than that of a single wind 
plant (figure 4).  The reduction in variability has very rapidly diminishing returns to scale, 
as interconnecting 4 wind plants gives an 87% reduction in variability at this frequency 
and interconnecting the remaining 16 wind plants produces the remaining 8% reduction.  
The maximum reductions in variability occur at the higher frequencies and dimish as the 
frequency decreases until at 24 hours there is no reduction in variability (figure 3).  Figure 
5 shows the reduction in variability achieved as a function of the number of interconnected 
wind plants for frequencies corresponding to 1, 6, and 12 hours.   
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Figure 4 – Fraction of a Kolmogorov spectrum of 1 wind plant for interconnected wind plants over a 
frequency range of 1.2x10-5 to 5.6x10-4 Hz.  As more wind plants are interconnected less power is 
contained in this frequency range. 

 
  
 

 
Figure 5 - Fraction of a Kolmogorov spectrum of different time scales versus the number of 
interconnected wind plants.  Interconnecting four or five wind plants achieves the majority of the 
reduction of wind power’s variability.  We note that reductions in wind power variability are 
dependent on more than just the number of wind plants interconnected (e.g. size, location, and the 
order in which the wind plants are connected; see Eq. 9). 
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We calculate β (f β) for simulations where each of ERCOT’s 20 wind plants is used as 

the starting location and the remaining 19 wind plants are interconnected to it in order of 
their distance (closest to farthest).  We use the resulting 400 data points to model the 
change in β due to three factors: ρ, the correlation coefficient between the interconnected 
wind plants and the next wind plant to be interconnected; PNameplate Ratio, the ratio between 
the nameplate capacity of the wind plant to be interconnected and the nameplate capacity 
of the interconnected wind plants; and N, the number of wind plants interconnected.  
Equation 9 is the result of linearly regressing the log of the change in β with the three 
variables (R2 is 0.77 and all variables are significant to a 99% level).     

 
Equation 9 

 

  
The PSD of forty interconnected modeled 1.5 MW GE turbines located throughout the Great 
Plains and Midwest did not depart from a Kolmogorov spectrum.  We have eliminated as a 
possible cause the different time resolutions by averaging the ASOS data at 15 minute 
intervals (the ERCOT sampling rate). It is possible that the discrepancy between the ASOS 
simulated power output and the observed ERCOT power output spectra may arise from 
intra-wind-farm aerodynamic effects, but further analysis is required, including the 
determination of the frequency dependence of the smoothing as a function of wind farm 
size. 
 
Generation Duration Curves 
 We have computed normalized generation duration curves for a single ERCOT wind 
plant, twenty interconnected ERCOT wind plants, and BPA’s wind power (figure 6).  Also 
shown is the average normalized generation duration curve of ERCOT’s 20 wind plants 
interconnected with their nearest three neighbors and the area encompassed by +/- 1 
standard deviation.  One wind plant has a higher probability of achieving close to its 
nameplate capacity than interconnected wind plants but an increased probability of no 
wind or low wind power events.   
 Archer and Jacobson (2007) concluded on the basis of meteorological data that 
interconnected wind plants spread throughout Texas, Oklahoma, Kansas, and New Mexico 
would produce at least 21% of their rated capacity 79% of the time and 11% of their rated 
capacity 92% of the time.  The ERCOT and BPA data from operating wind turbines do not 
support that conclusion.  ERCOT’s twenty interconnected wind plants produced at least 
10% of their rated power capacity 79% of the time and at least 3% of their rated capacity 
92% of the time.  BPA’s nineteen interconnected wind plants produced at least 3% of their 
rated capacity 79% of the time and 0.5% of their rated capacity 92% of the time.  
Hereinafter we define "firm power" for a generator as an availability range of 79 to 92%.   

Archer and Jacobson’s (2007) simulations produce baseload capacity equivalents 
for wind power that are 2 to20 times greater than those observed in the ERCOT and BPA 
data.  Two effects may be responsible for the discrepancy between our results and Archer 
and Jacobson’s results.  The first is that Archer and Jacobson analyze a larger geographical 
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area than the encompassed by ERCOT or BPA.  The second is Archer and Jacobson use 
individual model wind turbines while we use data from operating wind plants.   

The average generation duration curve of four interconnected ERCOT wind plants 
shows that a small number of interconnected wind plants achieves the majority of the 
smoothing of wind power’s variability and corresponds to the result obtained from our 
power spectral density analysis.  19 BPA and 20 ERCOT interconnected wind plants 
similarly achieve only 70% to 88% of their nameplate capacities but BPA’s wind power has 
a higher probability of low to no wind power occurances.  The higher probability of low to 
no wind events in BPA’s system is likely because of the limited geographic dispersion of 
BPA’s wind plants noted in the preceding section.   
 

 
Figure 6 – Normalized generation duration curves for ERCOT interconnected wind plants and BPA's 
total wind power for 2008.  The average normalized generation duration curve of ERCOT’s 20 wind 
plants interconnected with their nearest three neighbors is plotted (dotted line) with the area 
encompassed by one standard deviation (tan area). 

 
Pairwise Correlations of Wind Power Output 

In figure 7 we show the correlation coefficients between pairs of wind plants versus 
the geographical distance between the wind plants, using measured 15-minute wind power 
averages from 20 wind plants in Texas for 2008.  Wind plants that are located less than 50 
kilometers apart tend to have highly correlated power outputs (0.7 <  < 0.9), while wind 
plants located more than 500 kilometers apart show lower correlation (  < 0.3).  All of the 
correlation coefficients were greater than zero at the 99% significance level (t-test). 
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Figure 7 - Correlation coefficients vs. distance between pairs of wind plants (inset shows the data on a 
semi-log plot).   

 
The exponential fit shown in figure 7, exp( distance/D) , has a decay parameter D 

of 305 kilometers and an intercept of  = 0.89 at zero separation distance.  A linear 
regression of log-transformed correlation coefficients against distance has an R2 of 0.55 
(i.e. the exponential model explains about half of the variation in the correlation 
coefficients).   

Eight pairs of wind plants, between 200 and 300 kilometers apart, have correlation 
coefficients lower than 0.2 that lie below the overall trend.  These eight pairs are Delaware 
Mountain and Kunitz paired with each of Woodward Mountain, Indian Mesa, Southwest 
Mesa, and King Mountain (Table 2 - Appendix).  This may reflect the influence of local 
topography and climate patterns and demonstrates that geographical proximity does not 
necessarily imply high correlation.  Removing these eight points increases D to 320 
kilometers; the difference between this value and that of the full data set is not statistically 
significant (t-test, 95% significance level), so the cluster of 8 points does not exert strong 
leverage on the model. 

Giebel (2000) performed a similar analysis for wind power in Europe and found D to 
be 641 kilometers (green line in figure 7).  While the current study analyzes 15-minute 
wind energy data sampled constantly for 2008, Giebel (2000) acquired data by applying a 
power curve to 10-minute wind speed averages sampled every 3 hours, thus obtaining 10-
minute wind power averages at 3-hour intervals.  To assess the distortion in cross-
correlations that this difference introduces, one week of 10-second wind power data for 
two wind plants in Texas and Oklahoma was processed to mimic Giebel’s data as well as 
that of the current study.  The correlation coefficient for 10-minute averages taken every 
three hours was 0.31, and for consecutive 15-minute averages was also 0.31.  The 
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proximity of these values suggests that the difference in data sampling frequencies 
between the current study and Giebel (2000) does not introduce distortions that prohibit 
comparison. 

Fixing the best-fit intercept for the Texas data in figure 7, the decay parameter of the 
European model (641 km) differs from that of the best-fit Texas model (305 km) at the 
99% significance level (t-test).  The R2 of Giebel’s model applied to the Texas data is 0.05, 
which reflects the poor fit of the European model to the Texas data.   

A significantly higher decay parameter for wind power in Texas would imply that 
more smoothing occurs over a given distance in Texas than in Europe; however, large 
variation in correlation coefficients for the European data prohibits a firm comparison.  
European wind speed cross-correlation data for December 1990 – December 1991 has an 
exponential best fit with D = 723 kilometers (Giebel, 2000).  The correlation coefficients 
show a large degree of scatter, especially in the 0 – 500 kilometer region that overlaps with 
the data of the current study; between 400 and 500 kilometers,  for the European wind 
speed data ranges from approximately 0.1 to 0.7, while  for the Texas wind power data 
ranges from 0.1 to 0.3.  Assuming a similar degree of scatter in  for the resulting European 
wind power time series, no significant difference between cross-correlations of Texas and 
European wind power data can be determined by comparing the current study and Giebel 
(2000); the European exponential model is a poor fit for the Texas data, but the Texas 
model could fit the European data comparably to the best fit model of Giebel (2000), 
especially at distances below 500 kilometers. 

 
Step Change Analysis 

Figure 8 shows the maximum ASOS 30-minute, 60-minute and 1-day percent step 
changes in power as a function of distance when KCNK (Concordia, Kansas), a station close 
to the geographic centroid of the ASOS airports, is used as the starting station, and 
additional stations are added based on their distance from the starting station.    Figure 9 is 
constructed using KMOT (Minot, North Dakota), the station farthest from the geographical 
center of mass, as the starting station.  
 Adding together wind plants reduces the substantial step changes in power 
experienced by individual wind plants.  As more distant wind plants are interconnected, 
the maximum step change in power relative to the maximum power produced reaches an 
asymptote of 15%-30% for step changes of an hour or less.  The reductions in variability 
are approximately equal to those observed by Milborrow (2001) (a maximum hourly step-
change of 18%) and are less than what BPA experienced in 2008 (a maximum hourly step-
change of 63%).  BPA’s control area is significantly smaller than the geographic region 
spanned by the 40 ASOS sites.  The largest 30-minute increase or decrease in power 
estimated from 40 interconnected ASOS wind plants was 15% of the maximum wind power 
produced.  The maximum 1-day step changes are also reduced as more distant wind plants 
are interconnected although a reduction of at most 20% is achieved.  

The reductions are obtained over relatively short distances with ~50% of the 
reductions occurring within 400 km.  In figure 8, 93% of the reductions occur in the first 
600 km and 7% occurs between distances of 600 to 1200 km.  If the reference wind plant is 
at a geographic extreme rather than the centroid (figure 9), 93% of the reductions occur in 
the first 1000 km.     
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Figure 8 – ASOS step change analysis using KCNK (Concordia, Kansas) as the starting location.  Each 
point represents an additional interconnected station. The relative maximum step change, measured 
as the maximum step change divided by the maximum power, decreases with distance as more wind 
plants are interconnected. 
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Figure 9 – ASOS step change analysis using KMOT (Minot, North Dakota) as the starting location.  Each 
point represents an additional interconnected station. The relative maximum step change, measured 
as the maximum step change divided by the maximum power, decreases with distance as more wind 
plants are interconnected.  

 
 Figure 10 shows the maximum ERCOT 30-minute, 60-minute, and 1-day percent 
step changes in power when ERCOT wind plant 1 (Delaware Mountain), the wind plant 
farthest from the geographic centroid of ERCOT’s wind plants, is used as the starting wind 
plant.  Similar reductions in variability to those simulated from ASOS data are produced 
when ERCOT wind plants are interconnected.  Reductions of 42% for 30-minute step 
changes, 50% for 60-minute step changes, and 16% for 1-day step changes are achieved 
when wind plants within 500 km are interconnected.  The reductions for ERCOT are 
observed over shorter distances than predicted by the ASOS results.  In ERCOT’s system, 
wind power ramps up faster than it ramps down for each of the step change intervals 
analyzed.  If system operators are to match wind’s fluctuations exactly, they will need to 
have a larger capacity from generators and demand response to ramp down their power 
than they will require from them to ramp up.   
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Figure 10 – ERCOT step change analysis when wind plant 1 (Delaware Mountain, TX) is used as the 
starting location.  The relative maximum step change, measured as the maximum step change divided 
by the maximum power, decreases with distance as more wind plants are interconnected. 

 
Are There Wind Droughts? 

We estimated yearly variation in wind energy production from modeled 1.5 MW 
turbines at 16 locations over the years 1973 to 2008 (figure 11).  Also plotted is the annual 
energy produced from hydroelectric power in the United States for the same time span.  We 
normalized each of the results by their mean.  The standard deviation for the estimated 
wind production was 6% of the mean energy produced per year.  The largest deviation 
from the mean occurred in 1988 when the estimated wind energy production was 14% 
more than the mean annual production.  The largest negative deviation from the mean 
occurred in 1998 when estimated wind energy produced was 10% less than the mean 
annual production.  The standard deviation for the actual hydroelectric production was 
12% of the mean energy produced per year for the 36 year period.  U.S. hydropower’s 
largest positive deviation from the mean occurred in 1997 when hydropower production 
was 26% above the mean.  The largest negative deviation occurred in 2001 when 
hydropower production was 23% below average.    
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Thus, yearly wind energy production from the sample of 16 airports in the central 
and southern Great Plains is predicted to exhibit long term variations, and these are about 
half that observed nationally for hydropower (we note that the bulk of hydropower 
production is regionally concentrated).

 
Figure 11 – Normalized predicted annual wind energy production from 16 wind turbines located 
throughout the Central and Southern Great Plains.  The normalized annual hydropower production 
for the United States is also plotted for comparison. 

 
5. Analysis 

The variability of interconnected wind plants is less than that of individual wind plants 
when measured in the time domain with step change analyses and in the frequency domain 
with power spectrum analyses.  The amount of smoothing is a predictable function of 
frequency, correlation coefficient, nameplate capacity ratio, and the number of 
interconnected wind plants. Reductions in variability diminish as more wind plants are 
interconnected.  Finally, yearly wind power production is likely to vary, and have year-to-
year variations about half that observed nationally for hydropower.   

These results do not indicate that wind power can provide substantial baseload power 
simply through interconnecting wind plants.  ERCOT’s generation duration curve shows 
wind power reliably provides 3-10% of installed capacity as firm power (as defined above) 
while BPA’s generation duration curve shows 0.5-3% of their wind power is firm power.  
The frequency domain analyses have shown that the power of interconnected wind plants 
will vary significantly from day to day and the results of the step change analyses show 
day-to-day fluctuations can be 75 to 85% of the maximum power produced by a wind plant 
(figures 8-10).   

The benefit of interconnecting wind plants is a significant reduction in the high 
frequency variability of wind power.  Reductions in the relative magnitude of the 30-
minute and hourly step changes will reduce the per MWh ancillary service costs of wind 
energy.  The reductions will also improve the root mean square error of wind energy 
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forecasts for a system’s total wind energy production but not the forecast error for 
individual wind plants.  Estimating the value of these benefits is difficult due to the 
proprietary algorithms used by system operators.  We have provided system planners with 
a metric that better characterizes the variability of large penetrations of wind power.  
System planners can then identify the resources needed to compensate the variability and 
calculate the associated costs.   
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Appendix 
 

Table 1 - Table of ASOS stations used to obtain wind speed data. 

Station State 

Latitude Longitude Hourly 
Data 
Used? Degrees Minutes Seconds Degrees Minutes Seconds 

KEST IA 43 24 29.73 94 44 47.94  

KSPW IA 43 9 57.64 95 12 20.15  

KMCW IA 43 9 34.76 93 20 12.56 Yes 

KAMW IA 41 59 59.49 93 37 16.3  

KALO IA 42 33 22.35 92 23 47.19  

KDDC KS 37 46 0.28 99 57 58.68 Yes 

KGCK KS 37 55 43.6 100 43 32.48  

KCNK KS 39 32 57 97 39 8 Yes 

KRSL KS 38 52 16.67 98 48 31.04  

KAAO KS 37 44 51.3 97 13 16  

KEMP KS 38 19 55.34 96 11 18.26  

KGLD KS 39 22 17.239 101 41 56.371 Yes 

KICT KS 37 38 59.8 97 25 59 Yes 

KRWF MN 44 32 48.41 95 5 0.09  

KRST MN 43 54 31.73 92 29 48.18 Yes 

KFCM MN 44 49 42.71 93 27 37.5  

KAXN MN 45 51 56.85 95 23 32.27 Yes 

KBIS ND 46 46 23.07 100 44 58.21 Yes 

KJMS ND 46 55 44.34 98 40 41.91  

KDIK ND 46 47 46.94 102 48 1.33 Yes 

KMOT ND 48 15 33.78 101 16 51.9 Yes 

KFAR ND 46 55 17.62 96 48 49.63 Yes 

KCAO NM 36 26 43.89 103 9 14.13  

KLVS NM 35 39 15.2 105 8 32.6  

KCSM OK 35 20 26.74 99 11 55.82  

KFDR OK 34 21 7.5449 98 59 2.0727  

KGAG OK 36 17 43.94 99 46 35.125  

KHBR OK 34 59 28.7 99 3 5  

KPWA OK 35 32 3 97 38 49  

KOKC OK 35 23 35.12 97 36 2.64 Yes 

KABI TX 32 24 23.49 99 41 0.66 Yes 

KAMA TX 35 13 8.52 101 42 18.84 Yes 

KCDS TX 34 25 58.79 100 17 35.28  

KDHT TX 36 1 20.41 102 32 58  

KGDP TX 31 42 3.6 106 16 34.36  

KLBB TX 33 39 48.86 101 49 22.18 Yes 

KMAF TX 31 56 42.98 102 12 15.65 Yes 

KODO TX 31 55 18.52 102 23 10.74  

KINK TX 31 46 46.69 103 12 10.28  

KSPS TX 33 59 19.666 98 29 30.816  
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Table 2 - ERCOT wind plants 

Number Name 
Latitude Longitude 

1 Delaware Mountain 31.6486 -104.75 
2 Woodward 30.9575 -102.377 
3 Indian Mesa 30.9333 -102.182 
4 Southwest Mesa 31.0844 -102.108 
5 King Mountain 31.2213 -102.161 
6 Kunitz 31.3478 -104.4723 
7 Capricorn Ridge 31.8207 -100.793 
8 Airtricity 32.0649 -101.536 
9 Sweetwater 32.32 -100.4 

10 Trent Mesa 32.429 -100.199 

11 Buffalo Gap 32.2287 -100.062 
12 Horse Hollow 32.344 -99.9853 
13 Callahan Divide 32.299 -99.872 
14 Post Oak 32.7234 -99.2963 
15 Mesquite 32.7234 -99.2963 
16 Camp Springs 32.7556 -100.698 
17 ENA Snyder 32.7921 -100.918 
18 Brazos 32.9574 -101.128 
19 Red Canyon 32.9389 -101.316 
20 Whirlwind 34.0862 -101.086 

 
 


