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Abstract 

The effects of combined driving and vehicle-to-grid (V2G) usage on the lifetime 

performance of relevant commercial Li-ion cells were studied. We derived a nominal realistic 

driving schedule based on aggregating driving survey data and the Urban Dynamometer Driving 

Schedule, and used a vehicle physics model to create a daily battery duty cycle.  Different 

degrees of continuous discharge were imposed on the cells to mimic afternoon V2G use to 

displace grid electricity.  The loss of battery capacity was quantified as a function of driving days 

as well as a function of integrated capacity and energy processed by the cells. The cells tested 

showed promising capacity fade performance:  more than 95% of the original cell capacity 

remains after thousands of driving days worth of use.  Statistical analyses indicate that rapid 

vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling.  These 

data are intended to inform an economic model.   
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1. Introduction 

One suggested benefit of plug-in hybrid electric vehicles (PHEVs) or battery electric 

vehicles (BEVs) is to provide electricity for off-vehicle use, “vehicle-to-grid” (V2G) services, 

when parked [1].  These benefits might include peak load shifting, frequency regulation and 

other ancillary services, smoothing variable generation from wind and other renewables, and 

providing distributed grid-connected storage as a reserve against unexpected outages.  To 

determine the financial and technical feasibility of these applications, it is essential to quantify 

the effect of this kind of usage on battery degradation and performance.  Most previous 

measurements have indicated  that Li-ion battery capacity decreases as a result of cycling, and 

the magnitude of this loss is dependent on both the number of cycles and the depth of discharge 

(DoD) that the battery is subjected to during these cycles[2].  While these characteristics are well 

understood for the LiC(Ni)oO2/graphite based cells used in the consumer electronics market (as 

well as for lead acid and  NiMH systems) , there is far less published data for the current and 

next generation of high rate cells that may see wide adoption in PHEV and BEV battery packs.  

Those data that have been published indicate it is possible to make Li-ion cells with much less 

capacity fade and dependence on depth of discharge than is commonly assumed [3].  However, 

these results are insufficient to determine the economics of V2G energy sales because they are 

from cycling that is not representative of battery use for driving and battery use for grid energy.  

To provide more representative data, we examined the battery degradation of a battery 

cell already being implemented in the PHEV Hymotion battery pack (an aftermarket PHEV 

conversion), the A123 Systems ANR26650M1 cell.  We have examined the response of multiple 

sets of these cells (from different lots) to gauge their behavior in both simulated driving and 

combined driving/V2G energy sales modes.  Our ultimate goal is to determine the performance 
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and financial costs associated with cycling for V2G energy use in combination with a typical 

PHEV driving duty cycle.  Simulating the actual discharge pattern also has enabled us to 

determine if there is a difference between dynamic discharge (representing the driving) and 

constant discharge (energy arbitrage) using statistical analyses. 

2. Experimental 

2.1. Driving profile created with data taken from NHTS 

The energy arbitrage potential of a vehicle battery depends on both the usable capacity 

and the fraction of the pack used for daily driving, while the lifetime cost of performing energy 

arbitrage will depend on how the pack degrades as a function of use mode. To experimentally 

quantify this, a nominal urban driving/V2G power profile and correlated battery test regime was 

derived by combing several common data sets.  A representative urban commute driving duty 

cycle was constructed, using data from the 2001 National Household Travel Survey (NHTS) of 

70,000 households [4].  To do this, we created a dataset from the NHTS day trip file tabulating 

the daily trip profile of a vehicle.  The day trip file contains “data about each trip the person 

made on the household’s randomly-assigned travel day” [5].  These trips include walking, taking 

public transportation, driving, or any other means of travel.  We extracted only the trips taken by 

vehicles owned by households and eliminated trips taken at the same time by different members 

of the household in the same vehicle.  This resulted in a new data set that tabulates the daily 

vehicle trips, instead of those of individual household members.  The number of vehicles owned 

by the household is included in the day trip files, and only vehicles that were driven were used in 

the trip calculation.    
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The vehicle information dataset was then cross-referenced to append vehicle-specific 

information, such as the age, fuel economy, and other relevant information.  Vehicle-specific 

information was used to check for potential trends that might indicate that the NHTS data would 

not apply to PHEVs; none were found.  Three cities in the Northeastern quadrant of the United 

States were selected: Boston (BOS), Philadelphia (PHL), and Rochester NY (ROC).  These cities 

were chosen because they are located in three different electricity markets and because they each 

had a high number of NHTS participants.  The median number of trips taken on a given day by 

vehicles driven in each of the three cities was four (the mean was 4.46 for cities combined).  For 

this reason, only vehicles which took four trips were thereafter considered in the determination 

of the representative profile.  The median start time, duration, velocity, and distance of each trip 

in the three cities are listed in table 1. Because the three cities had similar median trips, the data 

from all three cities were combined to make a single trip profile (figure 1).  The total distance 

traveled was 29 km (original data in miles) when combining all four trips.  This is similar to the 

result obtained if the same analytical steps are applied to the entire NHTS dataset (total distance 

of 29 km; however trip start times and velocities vary). 

Approximate Location of Table 1 

Approximate Location of Figure 1 

 

2.2. Model constructed to replicate the energy use profile for driving 

To determine the quantity and rate of energy transferred to and from a battery during 

driving conditions, we constructed a simple physics model that computed the energy needed to 

propel a typical vehicle through the NHTS trip profile. As an input to this model, the vehicle 

distance/velocity profile  in each trip was created by sampling the Urban Dynamometer Driving 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-09-02  www.cmu.edu/electricity 

DRAFT: Do Not Cite Or Quote  5 

Schedule (UDDS) and overlaying these segments into the average NHTS distance vs. time 

profile [6].  The 1370 second-long UDDS profile was doubled in length to allow contiguous 

selections to span from the end of original UDDS profile to the beginning.  These selections 

were portions of the UDDS profile, and significant fractions were repeated multiple times (figure 

2). 

Approximate Location of Figure 2 

To calculate the power vs. time battery duty cycle needed to achieve this 

velocity/acceleration profile, the vehicle was assumed to have the physical characteristics of a 

2008 Toyota Camry; the mass was 1588kg (3500 lbs), coefficient of drag of 0.28 and a frontal 

area of 2.7m2.  Rolling resistance of the tires was assumed to be 0.01 [7]. The efficiency of 

power transfer from regenerative braking to batteries was assumed to be 40%, the efficiency 

from battery to wheels was assumed to be 80% [8]. The battery pack energy capacity was 

assumed to be 16 kWh (as in Chevrolet's proposed Volt) [9]. The density of air was taken from 

the US standard atmosphere at sea level.   

An 800 watt constant load was added to account for the power needed for all activities 

unrelated to movement such as heater, air conditioner, radio, lights and other accessories [10].   

The total load every second was therefore obtained by adding the 800 watt load to the power 

necessary to achieve the velocity defined in the UDDS.  The force needed as a function of time 

to achieve the UDDS target speed is a summation of the forces listed in table 2.   

Approximate Location of Table 2 

 

If the acceleration is sufficiently negative (indicating braking), that its absolute value is 

greater than air resistance and rolling resistance combined, then regenerative braking is occurring 
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and the power values for motion are given by equation 1.  The regenerative value will be 

therefore be negative and indicates battery charging.  Equation 2 describes the necessary power 

for cases where no regenerative braking occurs. 

power = ( ) tvmgCACvma rrd Δ++ **4.0 2/1 2ρ    (1) 

power = ( )
8.0

** 2/1 2 tvmgCACvma rrd Δ++ ρ     (2) 

Using this model, we compute that the vehicle would use 31% of its battery pack capacity to 

drive the derived 4-trip profile, with 0.28 kWh/mile being withdrawn from the battery on 

average. This value appears reasonable; the Electric Power Research Institute’s (EPRI) hybrid 

electric working group suggests 0.26 kWh/mile for a compact sedan [11].   

The duty cycle profile derived from this model is used here as power-based "C-rate", the 

discharge power rate of a battery normalized to the total energy content.  For example, for a 16 

kWh battery a 16 kW load would be defined as having a discharge power with a 1 C-rate, 32 kW 

would be a 2 C-rate, etc. (in this case we are using power instead of the more common electronic 

current in Amps and Ah, for ease of calculation during economic analyses).  By normalizing to 

cell energy and using a C-rate to determine power/current loads, the testing cycle can be run on 

any individual cell.  

Under regenerative braking conditions, the battery pack will be charged if the 

deceleration provides more power than used by the constant base load (figure 3). The cumulative 

distribution of power levels over a 24 hour period was calculated to illustrate the amount of time 

during the test cycle that the battery was under various loads (figure 4).  The near-vertical 

portion is due to the base load that is constant when there is nearly no force required for motion.  

As a result of the relatively large energy-to-power ratio for a battery pack of this size, the 

absolute value of the C-rate imparted to the battery exceeds 1 only 20% of the time.  The 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-09-02  www.cmu.edu/electricity 

DRAFT: Do Not Cite Or Quote  7 

maximum absolute C-rate value was 2.85.  This value is modest compared to the demonstrated 

rate capability of the tested cells, which are qualified by the vendor to a C-rate of at least 20 C 

Approximate Location of Figures 3 and 4 

 

2.3. Cell acquisition and cycling 

Thirteen cells were purchased at three separate times, and came from four different 

fabrication lots.   Due to equipment limitations, testing start dates were staggered as new 

equipment became available.  All testing was conducted with Arbin BT2000 series battery 

cyclers.  The inception of testing of the first 4 cells (lot 1) was followed after 3 months by 4 

more cells (lots 2 & 3), in turn followed by 5 more cells (lot 4) after another 4 months.  Cells 

from lot 1 underwent 2400 cycles, lot 2 and 3 completed 2000 cycles and lot 4 had reached 1000 

cycles when this paper was submitted.  Again, each cycle in this case represents a single driving 

day, so some of these cells were tested the equivalent of at least 5 driving years. 

The cells were not thermally controlled and were kept at the lab ambient temperature, 

which varied from 24˚ to 27˚C, but was most commonly approximately 25˚C.  Data published by 

the manufacturer indicating good cell stability and uniformity up to at least 40˚C imply that the 

cell temperatures used in this testing were not high enough to cause excess degradation, nor were 

they variable enough to significantly affect the data. [12]  A thermocouple was connected to one 

cell and temperature was monitored though several full driving cycles; the cell temperature did 

not increase significantly, as expected from these cells, which have been engineered for high rate 

applications and so do not heat up significantly under the nominally low C rates experienced. 

The cells were subjected to one of five different driving day testing cycles.  Test cycle 1 

corresponded to driving only and is shown in figure 5, while each of the other 4 cycles consisted 

of the same daily duty cycle, with varying amounts of additional V2G discharge in the afternoon 
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hours..  The V2G discharge consisted of a specific time at a galvanostatic C/2 rate (1.15 A in this 

case), and in and a cutoff voltage of 2.5 V was used to avoid over-discharge.  A C/2 discharge 

rate was chosen to represent V2G simulation because it scales to an approximate 8 kW rate of 

withdrawal from the 16 kWh pack.  The rate might be forced lower depending on the 

infrastructure available in the home; a 240V, 30A circuit could maintain only 7.2 kW of energy 

transfer.  This implies the rate of discharge will likely be below C/2 slightly unless a special 

circuit is installed.  Each cycle began with a 1 C galvanostatic charge of 2.3 A until cells reached 

a voltage of 3.6 V followed by a 5 minute rest.  Then trips 1-3 were executed with 5 minute rests 

between each.  The V2G discharge then was conducted.  The driving only cells had no V2G 

discharge (3 cells, one each from lots 1, 2, and 4).  Test cycle 2 had one V2G discharge of 1.15 A 

for 995 s (3 cells, one each from lots 1, 2, and 4).  Test cycle 3 had one V2G discharge lasting 

1715 s (3 cells, one each from lots 1, 2, and 4).  Test cycle 4 had 2 V2G discharges and was the 

same as test cycle 3 with an additional V2G discharge after trip 4 held until the cell voltage 

dropped to 3.2 V (3 cells, one each from lots 1, 3 and 4).  Test cycle 5 extended the second V2G 

discharge until 2.5 V (1 cell from lot 4).    This test regimen is indicated in table 3. 

Approximate Location of Figure 5 

Approximate Location of Table 3 

The duration of the rest period the end of each driving day simulation was adjusted such 

that each test case, regardless of the degree of V2G discharge, lasted 3 hours.  This regimen was 

repeated for 100 cycles, and then the cells were put through a C/2 charge/discharge 

“measurement” cycle to 100% state of charge/discharge to measure cell capacity.  This started 

with charging the cell 1.15 A until it reached a voltage of 3.6V.  Then the voltage was held 

constant until the current tapered to 0.01A to ensure the cells were fully and equally charged.  
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After a 5-minute rest the cells were discharged at 1.15 A rate until voltage fell below 2.5 V (i.e. 

100% DoD).  The capacity measured through this discharge was defined as the cell capacity at 

that point in the testing.  To avoid biasing the results with differing rest periods between test 

cycle and baseline cycle the baseline check automatically began 5 minutes after completion of 

the 100 test cycles. 

 

3. Results and Analyses 

The cells from different lots did not behave identically.  Lot 1 showed a significant 

degree of variation in capacity retention as the cells were cycled (figure 6 a-b), with cells 

increasing and decreasing in capacity as they were cycled, although the overall trend was 

downward.  Lots 2 - 4 showed remarkable consistency in degradation (figure 6c).  It is possible 

that the unusual scatter observed in the data from lot 1 is somehow linked to the integrity of the 

BT2000 test unit used for these cells (on which only these 4 cells have been tested), though such 

a link has not been quantified.  For this reason they are not used in the final statistical analysis. 

Approximate Location of Figure 6 

Because the cells from different lots might have undergone different formation (at the 

factory)  before testing started it was necessary to find a way to determine an initial capacity in a 

consistent manner.  One common approach is to measure capacity after a specific number of 

identical low rate cycles.  We considered this unsuitable because we felt it was desirable to avoid 

running a large number of cycles on the battery in an attempt to normalize them and thus 

decrease capacity by an unknown amount.  The next alternative we considered was to measure 

the capacity after an arbitrary number of cycles, but with 5 different possible test cycles this was 

also unsatisfactory.  Instead, we performed a linear regression on each cell data set to back-
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predict their initial capacity in terms of cycles tested.  This capacity was then used to determine 

the relative loss as a function of cycles instead of using a numerical value for the total energy 

content.  A linear regression of relative capacity degradation vs. cycles was then used to predict 

when the cell would reach 80% of original capacity.  This information was used to predict the 

cycle life vs. DoD/cycle.   

Overlaying the values on the VARTA Automotive plot shows that DoD/cycle appears to 

have a smaller effect on degradation with these cells compared to those reported previously, 

particularly given that a single “cycle” in this case was representative of an entire day’s worth of 

driving. This appears to indicate that the portion of a cell's capacity used, or the ultimate depth of 

discharge, is not as important with A123 systems based cells as with the cells on VARTA plot 

labeled old LiIon and NiMH (figure 7), where DoD is a key variable [13].  As the degree of 

discharge per driving day increases, the predicted cycle life does not fall as rapidly as 

conventional data analysis commonly predicts.  For example, in cells discharged to 95% DoD 

per cycle, our measurements predict that 5300 cycles will be needed before reaching 80% of 

initial capacity instead of around 1500 cycles as indicated by the VARTA data.  Also, daily 

cycles with shallower DoD values do not appear to increase cycle life as significantly as those 

indicated from the VARTA analyses.  This suggests that a greater portion of the cell capacity 

could be used during each cycle than would be suggested by the VARTA plot if applied to this 

chemistry. 

Approximate Location of Figure 7 

Figure 8 shows data for a C/2 discharge of the same cell (from lot 3) after 0, 1000, and 

2000 simulated driving days.  The potential profile in the voltage plateau region was essentially 

unchanged after 2000 cycles, indicating that internal resistance did not change significantly, as 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-09-02  www.cmu.edu/electricity 

DRAFT: Do Not Cite Or Quote  11 

the differential in cell polarization under discharge before and after the 2000 cycles was 

imperceptible.  The decrease in delivered capacity after cycling is manifested as a departure from 

the discharge plateau after 1.82 Ah of discharge for the heavily cycled cell, vs. 1.91 Ah for the 

uncycled cell (figure 8b).   

Approximate Location of Figure 8 

The test profiles used on these cells were very different from those typically published 

(i.e. potential-limited galvanostatic charge/charge at intermediate rates), so a different approach 

is used here to quantify the capacity fade as a function of battery use. Simple accounting for the 

%DoD at end of cycle DoD does not accurately represent the amount of energy processed by a 

cell per cycle.  For example, the ratio of charging from regenerative braking to discharging 

produced by the model was 0.076; if 100% energy efficiency is assumed, then at least 14% more 

energy is exchanged during a driving cycle beyond the energy associated with the indicated DoD 

value. To this end, percent initial capacity was related to the total capacity (in Ah) processed by 

each cell, a value that included the discharge for driving, charging from regenerative braking, 

charging during the evening to recharge the battery for the next day, baseline check.  This value 

can be directly related to the moles of Lithium ions transferred between the electrodes during 

use.   

Data collected from cell lot 1 showed inconsistencies, again, consistent with the capacity 

versus cycle life for these cells.   However, the second set of cells, lots 2 – 4, showed a high level 

of consistency in degradation with respect to integrated Ah processed; the cells appear to degrade 

in response almost exclusively to capacity processed as opposed to the number of cycles, or the 

DoD per cycle (figure 9a).  The sample analysis based on energy processed (in Wh) showed 

marginally better results and were more directly applicable to modeling the energy arbitrage 
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potential of the cells (figure 9b).  There appeared to be a slight difference in slope between cells.  

Those with greater energy arbitrage discharge appeared to degrade slightly slower.  Comparing 

two specific cells from lot 2 over a similar range of energy processed shows a different but 

statistically insignificant slope (at the 95% level) (figure 10).  Adding cells from lot 4 tightens 

the 95% confidence interval lessening the overlap of the two slopes, at the 95% level, but they 

are still not statistically different. 

Approximate Location of Figures 9 and 10 

To investigate this further, a multiple linear regression was conducted to relate the 

degradation of the cells to the type of cycling incurred.  The first step was to break the total Wh 

processed by each cell in different categories of charge and discharge.  It was assumed that these 

different cycling regimes could be represented by driving discharge, driving recharge (from 

regenerative braking), energy arbitrage discharge, and recharge.  The first two are dynamic, 

while the last two categories are constant rate.  The values were normalized to the initial capacity 

of each cell to remove variation from differing initial capacity.  Regenerative braking recharge 

was highly correlated with the driving discharge because the simulation had a specific ratio of 

regenerative braking to driving discharge as defined by the UDDS.  Therefore, regenerative 

braking was dropped from the multiple linear regression analysis. Only driving discharge and 

energy arbitrage discharges were considered for the multiple linear regression, because the other 

values could be almost perfectly predicted if these values were known.  The errors of the 

resulting regression appear to follow the assumption of normality, as shown in figure 11, which 

indicates that a multiple linear regression can be used without fear that the errors follow a pattern 

that would indicate some hidden underlying process [14]. 

Approximate Location of Figure 11 
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The resulting regression appeared linear (adjusted R2=0.96).  The relative size of the 

coefficients implies that the battery usage associated with driving causes more loss in cell 

capacity per Wh processed than usage associated with V2G load shifting (lower rate, more 

controlled discharges) (table 4).  The confidence intervals are small enough that there is no 

overlap as indicated by the high absolute value of the t-stat.  The regression relates percent 

capacity loss to energy discharged driving, energy discharged for arbitrage, and initial capacity.  

An example is shown in table 5, where we illustrate how a given quantity of energy processed in 

a particular mode can be used to predict the percent capacity loss.  Because all cells underwent 

the same cycling associated with driving, the differences in these coefficients relates not just to 

the difference in degradation from dynamic discharge versus constant discharge, but also to other 

hidden variables such as cell aging, which is thought to be minimal over the approximately 12 

months of testing performed for this study [15].   

Approximate Location of Table 5 

 

 4. Discussion/Conclusions 

The loss of capacity as a function of driving days shown in figure 6 indicates that the 

degradation of these high-power LiFePO4 - based cells does not follow the same pattern as 

commonly used previous reported results and models [16,17].  These data reveal that in benchtop 

testing of simulated driving conditions,  the cell DoD does not does not have nearly as great an 

effect on lifetime as previously reported values for other battery chemistries (commonly those 

based on layered metal oxide cathodes such as LiMO2 where M is some combination of Co, Ni, 

and Mn) [14, 15, 18].  This result implies that a LiFePO4/graphite– based PHEV battery pack 

with properly matched cells can be cycled though a very broad state of charge range without 
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incurring any significant increase in capacity loss as a function of Ah or Wh processed.   In 

principle, a PHEV can utilize a smaller battery and use a greater proportion of the battery, 

however doing so might make discharge rate and associated ohmic heating more of an issue.  

After 2000 cycles the low rate discharge potential profile appears very similar to that 

collected before cycling started, and a very small fraction of the initial capacity has been lost.  

This observation is consistent with the hypothesis that only a minimal Solid Electrolyte 

Interphase (SEI) layer must be forming during cycling of these cells, and that the mechanical 

cycling of the electrodes does not induce loss of connection and capacity fade . The tendency for 

increased I2R cell heating after many cycles is not present (due to the relatively low C-rates 

encountered), and so failure mechanisms associated with this effect are minimal. 

The comparison between capacity fade as a function of cycle number and Ah processed 

provides several key insights to the processes at work in these batteries.  First, the dominant cell 

degradation method is not dependant upon depth of discharge, or rate of discharge (at least up to 

the 3C spikes encountered in this test regimen).  For example, if only the data shown in figure 6 

were used to examine capacity loss, the conclusion might be drawn that degradation was indeed 

a function of depth of discharge.  However we show in figure 9 that, in fact, the cycle DoD and 

relative fraction of low-rate galvanostatic cycling vs. acceleration/regenerative braking current 

pulses are not important even over thousands of driving days. Rather, it is the integrated number 

of lithium ions that have been intercalated/de-intercalated into the electrodes, regardless of the 

DoD at which these events occur.   Nevertheless, there are still other factors of importance.  The 

multiple regression shows there is a difference between driving energy withdrawn and constant 

discharge. With the low rate constant discharge associated with roughly half the degradation of 

the dynamic discharge (-6.0E-3% and -2.7E-3% for 1 normalized Wh).  For this reason, using 
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constant discharge degradation to predict driving degradation is likely inaccurate, and correction 

factor attributed to the kind of cycling encountered is prescribed.   

The literature commonly indicates that the dominate mechanisms for capacity loss in Li-

ion cells are (1) the formation of a resistive and progressively Li-consuming interfacial layer 

between the functional graphite at the anode and the electrolyte, and (2) the physical degradation 

of active materials and electrode structures [19].  Our data indicate a much lower loss of capacity 

as a function of cycles and Ah processed, a result consistent with the use of high performance 

nano-structured electrode (cathode) materials that are much more physically stable during use 

and so do not degrade.  The remaining loss in capacity is likely due to anode interfacial film of 

Li2O/LiF/Li2CO3/Other formation [20]. In most interpretations, the loss of capacity is correlated 

to amount of Li that has reacted to form the SEI and so is no longer functional in the battery 

function.  The fact that we observed little to no relationship between DoD and capacity fade 

supports the idea that the SEI formation at the anode occurs at the same rate regardless of state of 

charge and degree of graphitic lithiation.  A recent capacity degradation model is consistent with 

this hypothesis; the anode potential was not varied significantly during simulation and so depth 

of discharge was not nearly as important as the time-integrated current of Li-ions the SEI was 

driven to process during cycling [17].  Higher rate cycling causes more rapid capacity loss.  This 

is also consistent with the literature in several ways:  at higher rates greater overpotentials are 

observed at the electrode surfaces and will therefore slightly enhance the rate SEI formation.  

Local heating at the electrode surface at high rates could also increase the rate of SEI formation.  

It should also be noted that the cells were kept at room temperature throughout the test mainly 

for convenience.  It is acknowledged, however, that the rate of capacity loss would almost 
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certainly have been greater for cells kept at elevated temperatures during testing.  Elevated and 

variable temperature testing will be conducted in our labs to explore this possibility.  

 

5.  Summary 

The composition of a test “cycle” is important when quantifying battery degradation, and 

using depth of discharge (DoD) per cycle as an independent variable when studying capacity 

fade can be misleading in cases where each cycle is laden with rapid discharge and charge 

events.  Analyses performed here show that the strongest indicator of capacity fade for the type 

of cell tested (A123Systems M1 Cell) was the integrated capacity or energy processed, 

regardless of the DoD experienced.   Furthermore, statistical analyses show that using a PHEV 

battery for V2G energy incurs approximately half the capacity loss per unit energy processed 

compared to that associated with more rapid cycling encountered while driving, and DoD was 

not important in either case except as a reflection of energy processed. The percent capacity lost 

per normalized Wh or Ah processed is quite low: -6.0x10-3 % for driving support and -2.70x10-3 

% for V2G support.  These values show that several thousand driving/V2G driving days incur 

substantially less than 10% capacity loss regardless of the amount of V2G support used.  

However, V2G modes that are more intermittent in nature will lead to more rapid battery 

capacity fade and should be avoided to minimize battery capacity loss over many years of use.   
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Figure Captions 

Figure 1: The daily driving profile used in cell testing.  This profile is an aggregate of data taken 

from all 3 cities included in study. (Horizontal portions show when vehicle is parked, while 

diagonal portions represent driving). 

 

Figure 2: Portions of urban dynamometer driving schedule (UDDS) were chosen to closely 

match driving profile shown in figure 1 in terms of duration and average velocity. 

 

Figure 3: Example of relationship between acceleration (red) and power required (in C-rate, 

blue) for trips 1 and 4.  A negative C-rate corresponds to discharge rate from pack.  Deceleration 

can lead to regenerative braking if it is significant - in this case, around 7% of the energy is 

regained via regenerative braking.   

 

Figure 4: Cumulative distribution function of power requirements for daily driving (all 4 trips).  

Given large pack size the current rates are low most of the time.  The near-vertical portion is a 
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result of times when velocity and acceleration are low and the base load to run accessories 

dominates the power needs for vehicle. 

 

Figure 5: Test current profile used to simulate driving day for cells showing all trips. The times 

after trips 3 and 4 when V2G discharge was simulated are indicated. 

 

Figure 6: Degradation of cells versus driving days simulated (a) full range, (b) same information 

zoomed, (c) with highly variable cells from lot 1 dropped. 

 

Figure 7: Laboratory results overlaid onto VARTA curves illustrating more linear response in 

cycle life as a function of depth of discharge for the cells tested.  

 

Figure 8: Voltage profiles of a cell that reached an ultimate DoD value of 73% each driving day.  

The initial, 1000th and 2000th baseline discharge curves are shown.  

 

Figure 9: Degradation as a function of (a) capacity (Ah) processed by cell or (b) energy (Wh) 

processed by cell for all but lot 1 cells.  Both appear linearly related, as expected given the 

nominally linear discharge profile of the LiFePO4/graphite system.   

 

Figure 10: Capacity degradation as a function of energy processed for two cells tested with 

contrasting end-of-cycle depth of discharge values (35% and 73% DoD). The slight observed 

difference would indicate less degradation for higher DoD/cycle cell, however the 95% 

confidence interval of slopes overlaps for these fits, so they are not statistically discernable. 
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Figure 11: Q-Q plot shows errors are normally distributed for multiple linear regression.  The 

line represents expected values for a normal distribution. 
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Table 1 

Trip characteristics for 3 cities modeled and combined data used for battery testing 

City Trip Start Time Duration (min) Average Trip 

Velocity (kph) 

Distance (km) 

BOS 1 8:48 14 38.6 7.2 

2 12:28 14.5 33.9 8.0 

3 15:00 10 32.2 6.4 

4 17:30 14.5 32.2 6.4 

PHL 1 9:00 15 38.6 6.4 

2 12:04 11 38.6 6.4 

3 15:15 10 32.2 6.4 

4 17:00 15 32.2 8.0 

ROC 1 8:43 15 45.1 9.7 

2 12:30 12 38.6 8.0 

3 15:40 10 38.6 6.4 

4 17:30 15 41.4 8.0 

Combined 1 8:45 15 38.6 8.0 

2 12:16 12 38.6 6.4 

3 16:30 10 34.8 6.4 

4 17:20 15 38.6 8.0 
 



Table 2 

 

Forces considered when calculating energy use for PHEV in charge depleting mode 

Force Considered Equation 

Example: 

Velocity=10 m/s 

Acceleration=1m/s
2
 

Acceleration F = ma 1590kg*1=1590N 

Air resistance Far =  ½ ρv
2
CdA 

½*1.23
3m

kg
*

2

s

m
10

0.28*2.67m
2
=45.8N 

Rolling Resistance Frr = Crrmg 0.01*1590kg*9.8m/s
2
=156N 

 
  



Table 3 

 

Testing regimens used on cells 

Test cycle 
Length of first V2G 

Discharge (s) 

Voltage at end of second 

V2G discharge 

1 0 NA 

2 995 NA 

3 1715 NA 

4 1715 3.2 

5 1715 2.5 

 

  



Table 4 

Results of multiple linear regression 

Coefficient Value t-stat 
Confidence 

Interval 

Wh discharged 

driving 
-5.99E-5 -34.9 1.71E-6 

Wh discharged 

arbitrage 
-2.71E-5 -14.6 1.85E-6 

Constant 1.00 2120 4.7E-4 

 

  



 

Table 5 

Example using results of multiple linear regression to 

calculate battery capacity degradation 

Coefficient Value Normalized 

Multiplied 

by 

Coefficient 

Wh discharged 

driving 
3000 Wh 462 -0.027 

Wh discharge 

arbitrage 
1500 Wh 231 -0.0062 

Initial Capacity 6.5 Wh 1  

Capacity 

Remaining 
97% 
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