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Abstract—Despite efforts to mitigate blackout risk, the data 

available from the North American Electric Reliability Council 
(NERC) for 1984-2006 indicate that the frequency of large 
blackouts in the United States is not decreasing. This paper 
describes the data and methods used to come to this conclusion 
and several other patterns that appear in the data. These patterns 
have important implications for those who make investment and 
policy decisions in the electricity industry. Several example 
calculations show how these patterns can significantly affect the 
decision-making process. 

I.  INTRODUCTION 
he goals of this paper are (1) to determine what trends 
exist (or do not exist) in the available historical record of 

large blackouts1 in the United States and (2) to show how 
these trends can be important when making decisions that 
could impact the reliability of bulk power system 
infrastructures.  

There are many trends that one might expect to find in these 
blackout data. The following are some plausible trend-related 
hypotheses that are tested in this paper: 
1. Technology improvements and policy changes have 

resulted in an observable decrease in the frequency of 
large blackouts, or at least in the frequency per customer. 

2. There are no seasonal trends in the data. (Blackout 
probability does not change with time-of-year.) 

3. There are no time-of-day trends in the data. (Blackout 
probability does not change with time of day.) 

4. The fit between the blackout data and a power-law 
probability distribution is significantly better than the fit 
to an exponential distribution. 

5. Due to complexity of restoration after a large blackout, 
there is a positive correlation between blackout size and 
blackout duration. 
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1 The term blackout, as used in this paper, refers to any power system event 
that results in multiple involuntary customer interruptions and lasts for more 
than 5 minutes. 

Robust trends in the blackout data can often be valuable inputs 
to the investment and policy decision-making process. For 
example, a power-law relationship between event size and 
probability, as has been noted by [1-3], indicates that it is 
important to design energy delivery infrastructure to be robust 
to large failures rather than focusing narrowly on small 
failures. Section 4 provides several calculations illustrating 
how the observed trends may affect the decision-making 
process. 

A.  The social costs of large blackouts 
When making policy or investment decisions that have the 
potential to impact blackout frequencies, it is often useful to 
translate blackout sizes into some measure of social cost, 
which includes direct economic costs and a monetary measure 
of societal losses. The August 14, 2003 blackout came with 
substantial direct economic costs; it is estimated that there 
were $3 billion in insurance claims [4]. It also resulted in 
significant non-financial losses, such as subway passengers 
stranded underground and emergency vehicles stalled in traffic 
due to failed traffic lights. The social cost of a blackout is a 
function of many factors including the size of the blackout, the 
duration of the blackout, its location and the time of day. 
Clearly, blackout costs increase with both the geographic 
extent of the event and the amount of energy that is left 
unserved as a result of the grid failure. The size of a blackout 
in MW and MWh are useful measures for these two factors. If 
one had a large database of blackout costs, the following 
model could be fit and used to predict the costs (C) of future 
blackouts given its size in MW (P) and MWh (E).  

 Ci = αPi + βPi
2 + γEi + ηEi

2  (1) 
Certainly, other terms could be included in the prediction 
equation. Terms like event duration, time of day, and location 
could explain additional variance in event cost. One could also 
add additional Taylor series terms (cubic, etc). We conjecture, 
however, that Eq. 1 would capture a majority of the variance. 
Unfortunately accurate estimates for the social costs of most 
historical events do not exist, making it difficult to derive 
good estimates for α, β, γ and η. Some data exist for the 
commercial costs to individual customers associated with 
small blackouts, but these data do not provide enough 
information to build good estimates for the parameters α, β, γ 
and η. For example, from a study of 24,800 individual 
customer outages, Lawton et al. [5] found that reported 
commercial and industry customer costs increased, but not 
linearly, with outage duration. In this study, per kWh blackout 
costs increased over the first 9 hours and then decreased 
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thereafter.2 A follow-up study [6] argued from the same data 
that much of the impact of large blackouts results from the 
initial interruption (α) rather than the duration adjusted size 
(γ). On the other hand, after several hours the non-commercial 
costs of a blackout may increase substantially as services such 
as cellular telephone service and water distribution systems 
begin to fail, which would increase γ. 

If one were to perform a regression analysis using Eq. 1, 
one would certainly obtain positive multipliers for α and γ, 
since blackout costs increase with both the initial size (P) and 
the duration adjusted size (E). The quadratic terms (β and η), 
on the other hand, might have opposite signs. One could argue 
that costs would grow super-linearly with β due to 
compounding social costs that come from the scale of a 
blackout. For example, a blackout that disabled all of the 
traffic lights in an entire city for 1 hour would likely be more 
costly than 2 blackouts that disabled 1/2 of the city's traffic 
lights each for 1 hour. The larger blackout might remove all 
alternate paths for traffic, and cause a much larger traffic 
problem. On the other hand, the authors of [5] argue that costs 
scale sub-linearly with duration (i.e. η<0). This may be the 
result of organizations adapting to the situation as the blackout 
extends in time or may be an artifact of the method used in [5]. 
On the other hand, one could get super-linear cost increases as 
major services fail after backup energy supplies fail (UPS 
systems run out of batteries, etc.). 
 Regardless, there is broad agreement in the literature that 
blackout costs increase with size (α>0), duration [20] and 
unserved energy (γ>0) [21, 22]. This paper thus focuses on 
extracting information from the time-history of blackout sizes 
in MW and customers, in order to eventually provide better 
models for understanding blackout cost and risk. 

B.  Related research results 
Several recent papers note useful patterns in the North 
American blackout data available from NERC. Carreras et al. 
[1, 2] show that large blackout sizes follow a power-law 
probability distribution function (pdf). Talukdar et al. [3] show 
that the data fit a power-law statistic far better than they do to 
an exponential (Weibull) pdf. Carreras et al. [2] argue that 
time-correlations in the blackout data (using the Hurst 
parameter, which measures auto-correlation over multiple 
time-scales) is evidence of self-organized criticality, which 
would provide a plausible explanation for the power-law tail. 
While some have questioned the self-organized criticality 
conclusion, arguing that seasonal effects provide a better 
explanation for the clustering [7], the power-law statistic in the 
blackout size distribution is not disputed.  
 In [8], researchers study these data from the perspective of 
assessing the risk associated with a terrorist attack using a 
logistic regression model. 

The analysis presented in this paper uses a more extensive 
data set (1984-2006) than the existing studies and filters the 
data in several ways to remove effects associated with demand 

                                                           
2 This study actually argues that total (not marginal) blackout costs begin 

to decrease after about 12 hours. This is highly non-intuitive (longer blackouts 
must be more expensive than short ones, all other things being equal) and may 
be the result of data-filtering methods used in [5] or over-projection from their 
quadratic model. 

growth, supply shortages, extreme natural events and the 
spotty reporting of smaller events. Without this filtering one 
can draw potentially misleading conclusions about the risk 
associated with large blackouts.  

Similarly, some authors have used theoretical blackout 
models to develop high-level risk measures for cascading 
failures. For example [9] describes a probabilistic model of 
cascading failure risk, which is extended in [23] to describe a 
power system failure model that accounts for hidden failures. 
The trends observed in this paper could be useful input 
parameters to an effective blackout-risk assessment tool. 
 This paper is organized as follows. Section 2 describes the 
blackout data that are used in this study. Section 3 describes 
the trends that are found (or not found) in these data. Section 4 
provides some example calculations illustrating how these 
trends affect decision-making. Finally, Section 5 draws some 
conclusions including a discussion of various explanations for 
the finding that the frequency of large blackouts has not 
decreased in time. 

II.  THE NERC DAWG DATA FOR 1984-2006 
Both the US Department of Energy (DOE) and the North 
American Electric Reliability Council (NERC) require that 
organizations submit reports when sufficiently large 
disturbances occur within their territories. DOE publishes the 
resulting data as "Form 417'' reports, and NERC provides the 
data through its Disturbance Analysis Working Group 
(DAWG) database. By law, utilities and other load serving 
entities must report all disturbances that interrupt more than 
300 MW or 50,000 customers [10]. Some smaller disturbances 
are also included in these reports, but on a less predictable 
basis. Since the NERC DAWG database [11] is the more 
complete of the two sources, providing data on blackouts from 
1984 to 2006, the statistical analysis presented here is based 
on the NERC data. In total there are 933 event reports in the 
NERC data. In some of these reports, several entries from 
different organizations refer to a single large blackout. For 
example, the August 14, 2003 event spans 6 reports. In order 
to accurately record these blackouts, such reports are 
combined into a single event record. This reduces the number 
of events to 861. Also, the majority of the reported events are 
smaller than the 50,000 customer, 300 MW limit at which 
reporting is required by law. Since small event reporting is 
largely optional and spotty, this analysis focuses on the larger 
events. Table 1 shows some descriptive statistics for these data 
with and without the smaller events.  
 

TABLE 1. DESCRIPTIVE STATISTICS FOR THE NERC DAWG DATA, 1984-2006 
 All ≥ 300 MW ≥ 50k cust. 
Total # of events  861   277  320 
Mean size in MW  584   1,706  1,111 
Median size in MW  90   637  274 
Std. dev. MW  3,272   5,610  5,163 
Mean size in cust.  62,640   288,720  429,180 
Median size in cust.  1,000   71,000  149,750 
Std. dev. in cust.  87,150   1,020,200  1,076,700 

A.  Estimating the percentage of all customer interruptions 
(SAIFI) represented in the NERC data 

Given the number of customers interrupted in each 
blackout, one can calculate the total annual customer 
interruptions reflected in these data. With this value, one can 
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calculate the apparent System Average Interruption Frequency 
Index (SAIFI), a measure of reliability commonly used in the 
electricity industry. After adjusting for demand growth, such 
that the data are scaled to year 2000 customers, and dividing 
by the number of electricity customers in the US in the year 
2000, the apparent SAIFI from the NERC data is: 

 SAIFI =
(219,643,512 interruptions)

(23 years)(127,568,517 customers)
= 0.075  (2) 

According to [6] SAIFI in the United States is approximately 
1.2 or 1.3. Thus the disturbances in the NERC data represent 
about 6% of all customer interruptions recorded in the national 
SAIFI numbers. Since utilities do not report all blackouts in 
their SAIFI numbers, it is likely that the NERC data represent 
somewhat less than 5% of all US customer interruptions. It is 
important to note this, because conclusions drawn from these 
data may be biased by the fact that they only represent a 
twentieth part of all customer interruptions and, since most 
blackouts are very small, a much smaller portion of all 
blackouts. 

B.  Blackout initiating events 
Disturbances recorded in the DAWG data proceed from a 
wide variety of triggering events including natural disasters, 
storms, human error and mechanical failure. For this analysis 
we place disturbances into the following initiating-event 
categories: earthquakes, tornados, hurricanes or tropical 
storms, ice storms, lightning, wind or rain storms, other cold 
weather, fire, intentional attack, supply shortage, other 
external (not-human or equipment) event, equipment failure, 
operator error, voltage reduction and volunteer power 
reductions. Some records indicate multiple initiating events. It 
is important to note that some events were initiated by a 
natural cause, such as lightning, but grew through a set of 
cascading outages or operator errors. It is difficult to isolate all 
of the events that were exacerbated by cascading failures with 
certainty, thus making it difficult to calculate the total impact 
of cascading failures. For example, many reports describing 
blackouts initiated by lightning do not describe the sequence 
of events in detail, which could obscure a dependant sequence 
of switching events worsening the resulting blackout. Still, 
these data allow us to calculate a rough upper bound on the 
historical impact of cascading failures, assuming that all of the 
large cascading failures are included in the NERC records. 

Figure 1 shows the relative frequency of blackouts in each 
cause category. Table 2 provides the same results in tabular 
form and includes average event sizes.  

Figure 1. The proportion of blackouts and disturbances in the NERC DAWG 
data for 1984-2006 with various initiating events. The totals are greater than 
100% because some records fall into multiple initiating-event categories. 

 
TABLE 2. STATISTICS FOR DATA CAUSE CATEGORIES 

 % of 
events 

Mean size 
in MW 

Mean size in 
customers 

Earthquake 0.8  1,408  375,900 
Tornado 2.8  367  115,439 
Hurricane/tropical storm 4.2  1,309  782,695 
Ice storm 5.0  1,152  343,448 
Lightning 11.3  270  70,944 
Wind/rain 14.8  793  185,199 
Other cold weather 5.5  542  150,255 
Fire 5.2  431  111,244 
Intentional attack 1.6  340  24,572 
Supply shortage 5.3  341  138,957 
Other external cause 4.8  710  246,071 
Equipment failure 29.7  379  57,140 
Operator error 10.1  489  105,322 
Voltage reduction 7.7  153  212,900 
Volunteer reduction 5.9  190  134,543 

C.  Data filtering 
In order to ensure the reliability of the trend-analysis described 
in Section 3, the data are filtered in several ways. Firstly, we 
remove events in the “volunteer reduction” and “voltage 
reduction” categories since these do not generally disrupt 
electricity service and reporting may be unreliable. Secondly, 
some of the records include event size in either MW or 
customers, but not both. To avoid the loss of potentially useful 
data, missing MW or customer entries were filled according to 
average customers per MW from the records where both are 
provided (about 465 customers per MW). Several additional 
filtering methods are used specific to the individual trend 
analyses, as detailed in Section 3. 

III.  TRENDS IN THE BLACKOUT DATA 
In the introduction we posit five hypotheses regarding trends 
in the blackout data. Sections A, B and C below focus on time-
trends in the data and Sections D and E focus on the power-
law trend and the relationship between blackout size and 
restoration time.  

A.  Has blackout frequency decreased with time? 
In this section we test the hypothesis that the frequency of 
large blackouts is decreasing with time. Figure 2 shows the 
number of blackouts per year in various size categories (with 
size measured in MW) for all 933 event records. At first 
glance the data indicate a clear increase in the number of 
blackouts per year. Beginning in 1995 apparent blackout 
frequency increases almost linearly. But a good portion of this 
increase occurs within the smaller event categories, indicating 
that the observed increase could be the result of increased 
voluntary reporting of smaller blackouts. Also, it is plausible 
that some of the increase could be a simple result of increases 
in demand. To control for these two factors and test our 
hypothesis, we normalize event sizes by either electricity 
demand3 or population4 and eliminate small events (those 
smaller than 400 MW or 100,000 customers after 
normalizing). Figure 3 shows the blackout frequency after 
filtering the data for demand growth and small events. While 
                                                           

3 Electricity demand is measured using net generation as reported to the 
US-EIA (www.eia.doe.gov). 

4 Population is taken from US census annual population estimates 
(www.census.gov). 
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the observed increase is largely eliminated, there is no 
observable decrease.  
 In order to test our hypothesis more thoroughly, several 
statistical tests were employed. Table 3 shows the results of 
several Kolmogorov-Smirnov (K-S) t-tests, testing the 
hypothesis that two sets of non-Gaussian data (event 
frequency before and after the mid-point year) come from the 
same probability distribution. While the results do not show a 
clear increase in blackout frequency, one can conclude with 
some certainty that blackout frequency is not decreasing in 
time, and thus reject the hypothesis that blackout frequency 
has decreased. 

TABLE 3. STATISTICAL TESTS FOR THE HYPOTYESIS THAT BLACKOUT 
FREQUENCY IS DECREASING WITH TIME.  

 Correlation1  ‘84-‘95 ‘96-‘06 P from 
Data2 ρ P Median3 Median4 K-S t-test4 
≥50k cust. 0.59 0.003 10 18 0.047 
≥50k y2k cust.  0.46 0.029 10 15 0.147 
≥100k cust. 0.53 0.009 7 10 0.147 
≥100k y2k cust. 0.34 0.112 8 10 0.985 
≥300 MW 0.42 0.046 8 10 0.736 
≥300 y2k MW 0.16 0.457 10 10 1.000 
≥500 MW 0.40 0.059 5 8 0.147 
≥500 y2k MW 0.09 0.690 7 8 0.736 
1Correlation measures the relationship between the year and the number of blackouts 
during that year. 2“y2k” sizes indicate that the data were scaled to account for demand or 
population growth using 2000 as a base year. 3Medians indicate the median events per 
year. 4The K-S P-value measures the probability that the observed differences between 
the ’84-’95 and ’96-’06 data are due to chance.   
 

 
Figure 2. The number of blackouts recorded during each year in the full data 
set of 933 events. Note that the number of small blackouts reported has 
increased significantly, but the number of large blackouts is relatively 
constant. 
 

Figure 3. The number of large blackouts per year after removing small events, 
and controlling for increasing demand. Event size above is shown in year-2000 
MW. 

B.  Do blackouts show seasonal trends? 
In this section we test the hypothesis that blackout frequency 
does not change seasonally. To do so, we estimate monthly 
blackout frequencies using 3-month rolling-average windows. 
The rolling average smoothes out some of the noise in the 
monthly average, showing a clear seasonal trend in the data. 
Clearly from Fig. 4, blackout frequency increases significantly 
during the late summer and mid-winter months, indicating that 
we can safely reject this hypothesis and conclude that blackout 
risk does change with time-of-year. 
 

 
Figure 4. Blackout frequency as a function of time-of-year, where each bar 
represents a 3-month average blackout frequency. Blackouts are as much as 
four times more frequent during the late-summer and mid-winter months. It is 
also useful to note trends in blackout-initiating causes as a function of season. 

C.  Do blackouts show time-of-day trends? 
In this section we test the hypothesis that blackout probability 
does not change with the time-of-day. Figure 5 shows a rolling 
3-hour hour blackout counts for all 24 hours in the day (after 
excluding the events that do not have a start time recorded). 
This figure clearly shows that blackout probability increases 
substantially during the peak hours. In fact blackouts are about 
four times more likely to start during the late afternoon hours, 
relative to the early morning hours. Two explanations for this 
observation are defensible. Storm activity typically increases 
during the mid-afternoon hours, which may account for some 
of the increase. In fact, Fig. 5 shows a substantial increase in 
weather related events during the mid-afternoon hours. 
Alternatively (or perhaps additionally), this may be the result 
of power networks being more stressed during mid-afternoon 
hours, indicating proximity to critical points at which blackout 
probability increases sharply [2, 12, 24]. 

 
Figure 5. Blackout frequency as a function of time-of-day. The vertical axis 
shows the total number of events in 3-hour windows about each hour. This 
figure indicates that blackouts are 3-4 times more likely during peak hours 
relative to the early morning hours. 
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D.  Do blackouts follow a power-law size-frequency 
relationship? 
It is well known that the sizes of large blackouts in the United 
States follow a power-law probability distribution [1-3]. 
International blackout data also show a power-law size-
frequency relationship [24], indicating that this relationship is 
fundamental to the structure of power networks.  
 Power-law probability distributions come in a number of 
forms, but one of the most common is the Pareto distribution. 
Because it naturally accounts for data with a fixed minimum 
value, it is a natural fit for the blackout data. The cumulative 
distribution function (cdf) for a Pareto-distributed random 
variable x with minimum value xmin, can be written as follows: 
  P(x ≤ X) = 1−

xmin

X
⎛ 
⎝ 

⎞ 
⎠ 

k

 (2) 

where k is the scaling exponent. The probability density 
function (pdf) is: 

  P(x = X) =
kxmin

k

X k +1
 (3) 

and the expected value (mean) is: 

  E[x] =
kxmin

k −1
, k > 1

∞, k < 1

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (4) 

Fig. 6 compares the empirical cdf with power-law and 
exponential fits to the blackout size data after adjusting for 
demand and population growth. A least-squares fit of the data 
to a Pareto distribution produces exponents (k) of 1.06 and 
0.91 for blackout sizes in year-2000 MW and customers 
respectively. Comparing this to a minimum-value Weibull 
distribution whose cdf has the form: 
  P(x ≤ X) = 1− e−(x−xmin ) /λ   (5) 
shows the clear superiority of the power-law fit. Table 4 
shows parameter estimates and standard errors for the two 
models. 
 

 
Figure 6. The cumulative probability distribution of blackout sizes in MW 
(left, for events ≥800 MW) and customers (right, for events ≥300k cust.). 
Comparing power-law (straight lines) and exponential (curved lines) fits to the 
data show the clear superiority of the power-law fit. 
 
 
 
 

 
TABLE 4. BLACKOUT SIZE FIT STATISTICS 

  Power-law fit Weibull fit 
Data xmin k std. error λ std. error 
MW 800 1.06 0.021 1,100 0.065 
Cust. 300,000 0.91 0.028 570,000 0.069 

 
 Given the substantially reduced standard error provided by 
the power-law fit we conclude that, as indicated by previous 
studies [1-3], there is indeed a power-law relationship between 
blackout size and frequency. This is true, even after 
controlling for demand and population growth. Also, the 
scaling exponent is very nearly equal to the critical value, k=1, 
where the expected value of the distribution is infinite, 
indicating that large events contribute substantially to overall 
blackout risk. 

E.  Is there a relationship between blackout size and 
restoration time? 
Many large blackouts require extended restoration periods. It 
can take days or event weeks to restore customers after the 
losses from a natural disaster. Due to difficulties associated 
with starting large power plants without off-site power, 
restoration can take many hours, even if no equipment damage 
has occurred. It thus seems reasonable to expect to find 
correlation between the size of a blackout and its duration.  

Table 5 shows the result of correlation tests. In both the 
MW and customer cases only the events that include both 
duration and the size measure (MW or customers) were 
included in the analysis. Surprisingly only a weak, statistically 
insignificant correlation exists between event size and 
duration. This is also clear in Fig. 7, which shows no 
relationship between blackout size and restoration time. In a 
few cause-categories, there is a significant positive correlation 
between size and duration (lightning, wind/rain, and “other 
external cause”), but in some other categories a weak 
(insignificant) negative correlation exists resulting in no 
significant correlation for the data set as a whole.  

 
TABLE 5. CORRELATION TESTS FOR THE HYPOTHESIS THAT LARGE BLACKOUTS 

RESULT IN LONG RESTORATION TIMES 
 N Corr. coef. (ρ) P-value 

With size in MW 388 0.0135 0.7907 
With size in customers 349 0.0971 0.0701 

 

 
Figure 7. Blackout size in MW plotted against blackout duration. The two 
variables are almost perfectly uncorrelated (see Table 5 for statistics). The log-
log scale is used here for clarity—the linear-scale figure shows a similar 
relationship. 
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F.  Summary of trends found in the blackout data 
To summarize, we find (A) that blackout frequency has not 

decreased from 1984 to 2006, (B) that blackouts are 
substantially more frequent in the summer and winter and (C) 
during mid-afternoon hours, (D) that large blackouts occur 
much more frequently than would be expected from a 
exponential statistics, and (E) that there is no apparent 
correlation between blackout size and restoration time. 

IV.  RELEVANCE OF TRENDS TO POLICY PROBLEMS 
The trends described in Section III can have a significant 
impact on investment and policy choices in the electricity 
industry. A careful consideration of these trends could lead to 
better decisions, which in turn should increase reliability and 
efficiency. Ignoring these trends could result in significant 
mis-allocation of scarce resources. This section provides a few 
calculations that illustrate the importance of these trends to 
reliability-related decisions in the electricity industry.  

In all of the calculations below we assume that blackout 
cost scales linearly with blackout size as measured in MW, 
essentially assuming that β=0, γ=0, and η=0 in Eq. 1. While an 
imperfect assumption, the lack of correlation between blackout 
size and duration make this assumption somewhat more 
reasonable. If there is no correlation between size and duration 
and the error is Gaussian, the expected size of a randomly 
chosen blackout in MWh will be a constant function of its size 
in MW. 

A.  Relevance of the fact that blackout frequency is not 
decreasing in time 
The data clearly indicate that the frequency of large blackouts 
is not decreasing. This trend is important because it allows us 
to assume that without dramatic changes within the industry 
blackout risk will remain roughly constant. This assumption is 
employed in the expected value calculations that follow in 
Sections B and C. 

B.  Relevance of the time-of-day and time-of-year trends 
Because blackout risk changes with time-of-day and time-of-
year, it is rational to focus the bulk of our blackout risk 
reduction efforts on peak periods. Consider a utility 
considering two policy changes. Under option 1 it deems that 
by doubling the number of on duty operators during all hours 
it can reduce the blackout probability at all hours by 50%, 
without changing the blackout size distribution. The cost of 
this option is C1. Under option 2 it deems that it can reduce 
blackout frequency during the highest risk hours by doubling 
is operator staff during only these hours. Let us assume that it 
can increase its staff during 50% of all hours for 50% of C1 
(C2=C1/2). The cost of option 2 is C2. Let P(B|h) and P’(B|h) 
represent the probability of a blackout at hour h before and 
after the policy change, cb be the average per MW blackout 
cost and E[S] be the expected value for the utility’s blackout 
size distribution. The expected value of either decision can be 
calculated as follows: 

  E[V ] = cb P(B | h) − P '(B | h)( )E[S]
h=1

8760

∑  (6) 5 

Because cb and E[S] remain unchanged, option 1 will reduce 
blackout costs in the utility’s service area by 50%. Option 2 
however will not reduce risk as much, but does so during peak 
periods. If option 2 reduces risk by 50% during the 12 highest 
risk hours (7am-7pm) given the time-of-day blackout 
frequency trend shown in Fig. 5, option 2 would reduce 
overall blackout costs by 34%. The utility can obtain most of 
the desired risk reduction with half the cost by doubling staff 
only during peak periods. 

C.  Relevance of the power-law relationship between blackout 
size and frequency 

The existence of a power-law probability distribution is 
important because it indicates that large events are 
substantially more common than one would predict from 
exponential distributions such as a Gaussian or Weibull, which 
are commonly used in engineering reliability analysis. The end 
result is that a blackout of any size (up to the extent of the 
entire network) has a significant, non-zero probability. More 
practically, this result indicates that blackout mitigation efforts 
should focus on the largest events in nearly equal proportion 
to the smaller events.  

Another effect of the power-law distribution is apparent 
when calculating the size of a 100-year blackout, using 
methods commonly applied to storm impact assessment. Given 
that the sizes of large blackouts (size greater than 800 MW) 
follow a Pareto distribution with k=1.15, and given that an 
event equal in size to Aug. 14, 2003 occurs once in every 23 
years (the extent of the available data) the following gives the 
size of the 100 year blackout: 

 

S23 = 56,465MW
P23 = P(S ≥ 56,465 | S ≥ 800) = 0.006

P100 = P23
23years

100years
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 0.00138

S100 = 800(10− log P100 /1.15) = 246,000MW

 

where SX indicates the size of the X-year event, with PX giving 
the conditional probability that a blackout larger than 800 MW 
is size S or larger. By comparison, according to DOE/EIA 
data, the peak demand (EIA: "Net Internal Demand'') for the 
continental US in 2000 (the base year for the size measures) 
was 681,000 MW. Thus, if the observed statistical pattern 
holds for very large blackouts, and if the US were to see a 
100-year blackout next year, it would interrupt about one third 
of all electricity service in the continental US. 
 In terms of Eq. 5, the power-law relationship between size 
and probability can significantly effect the calculation of E[S]. 
Let us assume that one would like to evaluate a technology 
that will reduce the probability of all blackouts larger than 
300MW by a fixed portion. If we calculate E[S] over this 
range by just taking the average blackout size from the 
observed data we get E[S] = 1744 MW. However, if we use 
the power-law statistic to get the expected size, we get E[S] = 

                                                           
5 This equation assumes that blackout size and blackout probability are 

independent.  
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2400 MW. By ignoring the power-law relationship one would 
undervalue this technology by about 30%.  

V.  CONCLUSIONS 
In this paper we show that the frequency of large blackouts in 
the United States has not decreased during the years 1984-
2006. In fact, by some measures, a slight increase in blackout 
frequency is observable. This is true despite the fact that the 
electricity industry has invested substantially to improve 
system-wide reliability. 
 We also show that a number of other trends exist in the 
historical blackout data. Blackout frequency changes 
substantially with the time of day and the time of year, and 
confirming past results, there is a clear power-law relationship 
between blackout size and probability. Several example 
calculations show that these trends can have a significant 
effect on the value of various decisions within the industry.  

A.  Explanations for the lack of reduction in blackout 
frequency 
Given that blackout frequency is not decreasing and given the 
significant investment in technologies and policies to control 
blackout risk, it is natural to look for an explanation for the 
observed trend (or lack thereof). Unfortunately the data alone 
do not provide an explanation, as the granularity is not 
sufficient to empirically evaluate the effects of any particular 
policy or technical change. Nevertheless, some discussion of 
commonly espoused explanations may be useful. 
    1)  Market restructuring 
The restructuring of the electricity industry, beginning with 
FERC Order 888, which required open access to transmission 
capacity, has been blamed for numerous problems in the US 
electricity industry. While it is likely that open access has 
resulted in additional use of transmission resources for long 
distance transfers, it is difficult to say from the blackout data 
that restructuring has had a direct effect on blackout risk. A 
detailed analysis of the effects of restructuring on blackout 
risk would require state-level or LSE-level CAIDI, SAIDI, and 
SAIFI statistics, which are not easily accessible in the United 
States (and in some states require a Freedom of Information 
Act request). 
    2)  Inadequate transmission investment 
Industry members often assert that a lack of transmission 
system investment has led to unsatisfactory performance of the 
transmission system. The national transmission grid study 
notes that the frequency of transmission loading relief (TLR) 
events (a rough measure of system stress) has increased 
simultaneously while transmission system investment has 
decreased. Hirst [13] shows that the quantity of available 
transmission has, over the period (1999 - 2002), steadily 
decreased when normalized by summer peak demand. 
Vajjhala and Fischbeck [14] show that in many US states 
where new transmission is most needed, it is particularly 
difficult to build new transmission.  

On the other hand, perhaps due to the attention that this 
issue has received, transmission investment has increased 
fairly steadily since 1999 [13]. And there are many ways to 
increase the capability of transmission systems without 
actually building new lines. Composite conductors can 

increase the thermal ratings, and phase-shifting transformers 
or FACTS devices can relieve bottleneck constraints by 
changing the apparent impedance of transmission lines. 
Finally, Blumsack [15] shows that some transmission 
construction can have a negative impact on reliability. While 
transmission investment can, but is not guaranteed to [25], 
have a positive impact on cascading failure risk and reliability, 
transmission constriction alone is a costly, and potentially 
ineffective, solution to reliability problems.  
    3)  A lack of enforceable reliability rules and system-wide 
reliability management 

After the August 14, 2003 blackout, many in industry and 
government argued that the voluntary reliability rules, as 
established and operated by NERC, were an insufficient 
instrument for managing reliability in a competitive electricity 
industry. As a result of this discussion, the Energy Policy Act 
of 2005 gave FERC the authority to appoint an Electricity 
Reliability Organization (the role that NERC now fills), with 
the authority to design and enforce mandatory reliability rules 
nationwide. 

Relatedly, Apt et al. [16, 17] argue that insufficient system-
wide management of the electricity network (similar to FAA's 
management of the air-traffic control system in the US) 
contributes to the overall blackout risk. Apt et al. argue that a 
systems approach to risk mitigation has significantly reduced 
the accident frequency in commercial air travel, and that 
similar actions within the US electricity system could result in 
similar risk reductions. 

The events of August 2003 do provide some evidence that 
unenforceable reliability rules contributed to the cascading 
failure. But since 2003 FERC and NERC have significantly 
increased their oversight of transmission assets and the annual 
number of large blackouts remains relatively constant. While 
system-wide policy changes are necessary to solving the 
blackout problem, they are not sufficient. The cascading 
failure problem is the result of both policy and technology 
failures.  
    4)  System protection and problem formulation 
Another explanation, argued in [19], is that the design of 
protection systems in electrical power networks is poorly 
aligned with the objectives of the system as a whole. 
Protective relays remove components from the network when 
the components are stressed. While this strategy effectively 
minimizes equipment damage, it is frequently sub-optimal 
with respect to the goal of the system as a whole—delivering 
energy to customers. A better strategy would protect the 
equipment when it is cost-effective to do so, while also 
ensuring that the system continues its mission of delivering 
energy to customers. 

B.  Future work 
The observed blackout frequencies, when sorted according to 
time-of-day, time-of-year, location, cause, etc., can be used to 
create a set of conditional blackout probabilities. When 
combined one could use these probabilities to create a Baysian 
risk model. The risk model could be used to calculate the 
relative likelihood of a blackout given a set of input factors. 
This could be used as a prior probability and adjusted for real-
time conditions to give information to operators in real time. 
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This type of model could also be used to project staffing 
requirements, schedule maintenance, or even for short-term 
investment planning. Future work will focus on the design of 
such a risk model. 
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