Trends in the History of Large Blackouts in the United States
Paul Hines, Jay Apt and Sarosh Talukdar

Abstract—Despite efforts to mitigate blackout risk, the data available from the North American Electric Reliability Council (NERC) for 1984-2006 indicate that the frequency of large blackouts in the United States is not decreasing. This paper describes the data and methods used to come to this conclusion and several other patterns that appear in the data. These patterns have important implications for those who make investment and policy decisions in the electricity industry. Several example calculations show how these patterns can significantly affect the decision-making process.

I. INTRODUCTION

The goals of this paper are (1) to determine what trends exist (or do not exist) in the available historical record of large blackouts\(^1\) in the United States and (2) to show how these trends can be important when making decisions that could impact the reliability of bulk power system infrastructures.

There are many trends that one might expect to find in these blackout data. The following are some plausible trend-related hypotheses that are tested in this paper:

1. Technology improvements and policy changes have resulted in an observable decrease in the frequency of large blackouts, or at least in the frequency per customer.
2. There are no seasonal trends in the data. (Blackout probability does not change with time-of-year.)
3. There are no time-of-day trends in the data. (Blackout probability does not change with time of day.)
4. The fit between the blackout data and a power-law probability distribution is significantly better than the fit to an exponential distribution.
5. Due to complexity of restoration after a large blackout, there is a positive correlation between blackout size and blackout duration.

Robust trends in the blackout data can often be valuable inputs to the investment and policy decision-making process. For example, a power-law relationship between event size and probability, as has been noted by [1-3], indicates that it is important to design energy delivery infrastructure to be robust to large failures rather than focusing narrowly on small failures. Section 4 provides several calculations illustrating how the observed trends may affect the decision-making process.

A. The social costs of large blackouts

When making policy or investment decisions that have the potential to impact blackout frequencies, it is often useful to translate blackout sizes into some measure of social cost, which includes direct economic costs and a monetary measure of societal losses. The August 14, 2003 blackout came with substantial direct economic costs; it is estimated that there were $3 billion in insurance claims [4]. It also resulted in significant non-financial losses, such as subway passengers stranded underground and emergency vehicles stalled in traffic due to failed traffic lights. The social cost of a blackout is a function of many factors including the size of the blackout, the duration of the blackout, its location and the time of day. Clearly, blackout costs increase with both the geographic extent of the event and the amount of energy that is left unserved as a result of the grid failure. The size of a blackout in MW and MWh are useful measures for these two factors. If one had a large database of blackout costs, the following model could be fit and used to predict the costs (C) of future blackouts given its size in MW (P) and MWh (E).

\[
C_i = \alpha P_i^\beta + \beta E_i^\gamma + \eta E_i^2
\]

Certainly, other terms could be included in the prediction equation. Terms like event duration, time of day, and location could explain additional variance in event cost. One could also add additional Taylor series terms (cubic, etc). We conjecture, however, that Eq. 1 would capture a majority of the variance. Unfortunately accurate estimates for the social costs of most historical events do not exist, making it difficult to derive good estimates for \(\alpha\), \(\beta\), \(\gamma\) and \(\eta\). Some data exist for the commercial costs to individual customers associated with small blackouts, but these data do not provide enough information to build good estimates for the parameters \(\alpha\), \(\beta\), \(\gamma\) and \(\eta\). For example, from a study of 24,800 individual customer outages, Lawton et al. [5] found that reported commercial and industry customer costs increased, but not linearly, with outage duration. In this study, per kWh blackout costs increased over the first 9 hours and then decreased.

\(^1\) The term blackout, as used in this paper, refers to any power system event that results in multiple involuntary customer interruptions and lasts for more than 5 minutes.
growth, supply shortages, extreme natural events and the spotty reporting of smaller events. Without this filtering one can draw potentially misleading conclusions about the risk associated with large blackouts.

Similarly, some authors have used theoretical blackout models to develop high-level risk measures for cascading failures. For example [9] describes a probabilistic model of cascading failure risk, which is extended in [23] to describe a power system failure model that accounts for hidden failures. The trends observed in this paper could be useful input parameters to an effective blackout-risk assessment tool.

This paper is organized as follows. Section 2 describes the blackout data that are used in this study. Section 3 describes the trends that are found (or not found) in these data. Section 4 provides some example calculations illustrating how these trends affect decision-making. Finally, Section 5 draws some conclusions including a discussion of various explanations for the finding that the frequency of large blackouts has not decreased in time.

II. THE NERC DAWG DATA FOR 1984-2006

Both the US Department of Energy (DOE) and the North American Electric Reliability Council (NERC) require that organizations submit reports when sufficiently large disturbances occur within their territories. DOE publishes the resulting data as “Form 417” reports, and NERC provides the data through its Disturbance Analysis Working Group (DAWG) database. By law, utilities and other load serving entities must report all disturbances that interrupt more than 300 MW or 50,000 customers [10]. Some smaller disturbances are also included in these reports, but on a less predictable basis. Since the NERC DAWG database [11] is the more complete of the two sources, providing data on blackouts from 1984 to 2006, the statistical analysis presented here is based on the NERC data. In total there are 933 event reports in the NERC data. In some of these reports, several entries from different organizations refer to a single large blackout. For example, the August 14, 2003 event spans 6 reports. In order to accurately record these blackouts, such reports are combined into a single event record. This reduces the number of events to 861. Also, the majority of the reported events are smaller than the 50,000 customer, 300 MW limit at which reporting is required by law. Since small event reporting is largely optional and spotty, this analysis focuses on the larger events. Table 1 shows some descriptive statistics for these data with and without the smaller events.

A. Estimating the percentage of all customer interruptions (SAIFI) represented in the NERC data

Given the number of customers interrupted in each blackout, one can calculate the total annual customer interruptions reflected in these data. With this value, one can

2 This study actually argues that total (not marginal) blackout costs begin to decrease after about 12 hours. This is highly non-intuitive (longer blackouts must be more expensive than short ones, all other things being equal) and may be the result of data-filtering methods used in [5] or over-projection from their quadratic model.
calculate the apparent System Average Interruption Frequency Index (SAIFI), a measure of reliability commonly used in the electricity industry. After adjusting for demand growth, such that the data are scaled to year 2000 customers, and dividing by the number of electricity customers in the US in the year 2000, the apparent SAIFI from the NERC data is:

\[
\text{SAIFI} = \frac{(219,643,512 \text{ interruptions})}{(23 \text{ years})(127,568,517 \text{ customers})} = 0.075 \quad (2)
\]

According to [6] SAIFI in the United States is approximately 1.2 or 1.3. Thus the disturbances in the NERC data represent about 6% of all customer interruptions recorded in the national SAIFI numbers. Since utilities do not report all blackouts in their SAIFI numbers, it is likely that the NERC data represent somewhat less than 5% of all US customer interruptions. It is important to note this, because conclusions drawn from these data may be biased by the fact that they only represent a twentieth part of all customer interruptions and, since most blackouts are very small, a much smaller portion of all blackouts.

B. Blackout initiating events

Disturbances recorded in the DAWG data proceed from a wide variety of triggering events including natural disasters, storms, human error and mechanical failure. For this analysis we place disturbances into the following initiating-event categories: earthquakes, tornadoes, hurricanes or tropical storms, ice storms, lightning, wind or rain storms, other cold weather, fire, intentional attack, supply shortage, other external (not-human or equipment) event, equipment failure, operator error, voltage reduction and volunteer power reductions. Some records indicate multiple initiating events. It is important to note that some events were initiated by a natural cause, such as lightning, but grew through a set of cascading outages or operator errors. It is difficult to isolate all of the events that were exacerbated by cascading failures with certainty, thus making it difficult to calculate the total impact of cascading failures. For example, many reports describing blackouts initiated by lightning do not describe the sequence of events in detail, which could obscure a dependant sequence of switching events worsening the resulting blackout. Still, these data allow us to calculate a rough upper bound on the historical impact of cascading failures, assuming that all of the large cascading failures are included in the NERC records.

Figure 1 shows the relative frequency of blackouts in each cause category. Table 2 provides the same results in tabular form and includes average event sizes.

Figure 1. The proportion of blackouts and disturbances in the NERC DAWG data for 1984-2006 with various initiating events. The totals are greater than 100% because some records fall into multiple initiating-event categories.

<table>
<thead>
<tr>
<th>Cause Category</th>
<th>% of events</th>
<th>Mean size in MW</th>
<th>Mean size in customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthquake</td>
<td>0.8</td>
<td>1,408</td>
<td>375,900</td>
</tr>
<tr>
<td>Tornado</td>
<td>2.8</td>
<td>367</td>
<td>115,439</td>
</tr>
<tr>
<td>Hurricane/tropical storm</td>
<td>4.2</td>
<td>1,309</td>
<td>782,695</td>
</tr>
<tr>
<td>Ice storm</td>
<td>5.0</td>
<td>1,152</td>
<td>343,448</td>
</tr>
<tr>
<td>Lightning</td>
<td>11.3</td>
<td>270</td>
<td>70,944</td>
</tr>
<tr>
<td>Wind/rain</td>
<td>14.8</td>
<td>793</td>
<td>185,199</td>
</tr>
<tr>
<td>Other cold weather</td>
<td>5.5</td>
<td>542</td>
<td>150,255</td>
</tr>
<tr>
<td>Fire</td>
<td>5.2</td>
<td>431</td>
<td>111,244</td>
</tr>
<tr>
<td>Intentional attack</td>
<td>1.6</td>
<td>340</td>
<td>24,572</td>
</tr>
<tr>
<td>Supply shortage</td>
<td>5.3</td>
<td>341</td>
<td>138,957</td>
</tr>
<tr>
<td>Other external cause</td>
<td>4.8</td>
<td>710</td>
<td>246,071</td>
</tr>
<tr>
<td>Equipment failure</td>
<td>29.7</td>
<td>379</td>
<td>57,140</td>
</tr>
<tr>
<td>Operator error</td>
<td>10.1</td>
<td>489</td>
<td>105,322</td>
</tr>
<tr>
<td>Voltage reduction</td>
<td>7.7</td>
<td>153</td>
<td>212,900</td>
</tr>
<tr>
<td>Volunteer reduction</td>
<td>5.9</td>
<td>190</td>
<td>134,543</td>
</tr>
</tbody>
</table>

C. Data filtering

In order to ensure the reliability of the trend-analysis described in Section 3, the data are filtered in several ways. Firstly, we remove events in the “volunteer reduction” and “voltage reduction” categories since these do not generally disrupt electricity service and reporting may be unreliable. Secondly, some of the records include event size in either MW or customers, but not both. To avoid the loss of potentially useful data, missing MW or customer entries were filled according to average customers per MW from the records where both are provided (about 465 customers per MW). Several additional filtering methods are used specific to the individual trend analyses, as detailed in Section 3.

III. TRENDS IN THE BLACKOUT DATA

In the introduction we posit five hypotheses regarding trends in the blackout data. Sections A, B and C below focus on time-trends in the data and Sections D and E focus on the power-law trend and the relationship between blackout size and restoration time.

A. Has blackout frequency decreased with time?

In this section we test the hypothesis that the frequency of large blackouts is decreasing with time. Figure 2 shows the number of blackouts per year in various size categories (with size measured in MW) for all 933 event records. At first glance the data indicate a clear increase in the number of blackouts per year. Beginning in 1995 apparent blackout frequency increases almost linearly. But a good portion of this increase occurs within the smaller event categories, indicating that the observed increase could be the result of increased voluntary reporting of smaller blackouts. Also, it is plausible that some of the increase could be a simple result of increases in demand. To control for these two factors and test our hypothesis, we normalize event sizes by either electricity demand\(^3\) or population\(^4\) and eliminate small events (those smaller than 400 MW or 100,000 customers after normalizing). Figure 3 shows the blackout frequency after filtering the data for demand growth and small events. While

\(^3\) Electricity demand is measured using net generation as reported to the US-EIA (www.eia.doc.gov).

\(^4\) Population is taken from US census annual population estimates (www.census.gov).
the observed increase is largely eliminated, there is no observable decrease.

In order to test our hypothesis more thoroughly, several statistical tests were employed. Table 3 shows the results of several Kolmogorov-Smirnov (K-S) t-tests, testing the hypothesis that two sets of non-Gaussian data (event frequency before and after the mid-point year) come from the same probability distribution. While the results do not show a clear increase in blackout frequency, one can conclude with some certainty that blackout frequency is not decreasing in time, and thus reject the hypothesis that blackout frequency has decreased.

TABLE 3. STATISTICAL TESTS FOR THE HYPOTHESIS THAT BLACKOUT FREQUENCY IS DECREASING WITH TIME.

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Data (y/2k)</th>
<th>Median (y/2k)</th>
<th>P from K-S t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>P</td>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>0.59</td>
<td>0.003</td>
<td>10</td>
<td>0.047</td>
</tr>
<tr>
<td>0.46</td>
<td>0.029</td>
<td>10</td>
<td>0.147</td>
</tr>
<tr>
<td>0.53</td>
<td>0.009</td>
<td>7</td>
<td>0.147</td>
</tr>
<tr>
<td>0.34</td>
<td>0.112</td>
<td>10</td>
<td>0.985</td>
</tr>
<tr>
<td>0.42</td>
<td>0.046</td>
<td>8</td>
<td>0.736</td>
</tr>
<tr>
<td>0.16</td>
<td>0.457</td>
<td>10</td>
<td>1.000</td>
</tr>
<tr>
<td>0.40</td>
<td>0.059</td>
<td>5</td>
<td>0.147</td>
</tr>
<tr>
<td>0.09</td>
<td>0.690</td>
<td>7</td>
<td>0.736</td>
</tr>
</tbody>
</table>

Correlation measures the relationship between the year and the number of blackouts during that year. "y/2k" sizes indicate that the data were scaled to account for demand or population growth using 2000 as a base year. Medians indicate the median events per year. The K-S P-value measures the probability that the observed differences between the '84-'95 and '96-'06 data are due to chance.

Figure 2. The number of blackouts recorded during each year in the full data set of 933 events. Note that the number of small blackouts reported has increased significantly, but the number of large blackouts is relatively constant.

Figure 3. The number of large blackouts per year after removing small events, and controlling for increasing demand. Event size above is shown in year-2000 MW.

B. Do blackouts show seasonal trends?

In this section we test the hypothesis that blackout frequency does not change seasonally. To do so, we estimate monthly blackout frequencies using 3-month rolling-average windows. The rolling average smooths out some of the noise in the monthly average, showing a clear seasonal trend in the data. Clearly from Fig. 4, blackout frequency increases significantly during the late summer and mid-winter months, indicating that we can safely reject this hypothesis and conclude that blackout risk does change with time-of-year.

Figure 4. Blackout frequency as a function of time-of-year, where each bar represents a 3-month average blackout frequency. Blackouts are as much as four times more frequent during the late-summer and mid-winter months. It is also useful to note trends in blackout-initiating causes as a function of season.

C. Do blackouts show time-of-day trends?

In this section we test the hypothesis that blackout probability does not change with the time-of-day. Figure 5 shows a rolling 3-hour hour blackout counts for all 24 hours in the day (after excluding the events that do not have a start time recorded). This figure clearly shows that blackout probability increases substantially during the peak hours. In fact blackouts are about four times more likely to start during the late afternoon hours, relative to the early morning hours. Two explanations for this observation are defensible. Storm activity typically increases during the mid-afternoon hours, which may account for some of the increase. In fact, Fig. 5 shows a substantial increase in weather related events during the mid-afternoon hours. Alternatively (or perhaps additionally), this may be the result of power networks being more stressed during mid-afternoon hours, indicating proximity to critical points at which blackout probability increases sharply [2, 12, 24].

Figure 5. Blackout frequency as a function of time-of-day. The vertical axis shows the total number of events in 3-hour windows about each hour. This figure indicates that blackouts are 3-4 times more likely during peak hours relative to the early morning hours.
D. Do blackouts follow a power-law size-frequency relationship?

It is well known that the sizes of large blackouts in the United States follow a power-law probability distribution [1-3]. International blackout data also show a power-law size-frequency relationship [24], indicating that this relationship is fundamental to the structure of power networks.

Power-law probability distributions come in a number of forms, but one of the most common is the Pareto distribution. Because it naturally accounts for data with a fixed minimum value, it is a natural fit for the blackout data. The cumulative distribution function (cdf) for a Pareto-distributed random variable \(x \) with minimum value \(x_{\text{min}} \), can be written as follows:

\[
P(x \leq X) = 1 - \left(\frac{x_{\text{min}}}{X} \right)^k
\]

where \(k \) is the scaling exponent. The probability density function (pdf) is:

\[
P(x = X) = \frac{k x_{\text{min}}^k}{X^{k+1}}
\]

and the expected value (mean) is:

\[
E[x] = \begin{cases}
x_{\text{min}}, & k > 1 \\
\infty, & k < 1
\end{cases}
\]

Fig. 6 compares the empirical cdf with power-law and exponential fits to the blackout size data after adjusting for demand and population growth. A least-squares fit of the data to a Pareto distribution produces exponents \(k \) of 1.06 and 0.91 for blackout sizes in year-2000 MW and customers respectively. Comparing this to a minimum-value Weibull distribution whose cdf has the form:

\[
P(x \leq X) = 1 - e^{-(x-x_{\text{min}})/\lambda}
\]

shows the clear superiority of the power-law fit. Table 4 shows parameter estimates and standard errors for the two models.

Given the substantially reduced standard error provided by the power-law fit we conclude that, as indicated by previous studies [1-3], there is indeed a power-law relationship between blackout size and frequency. This is true, even after controlling for demand and population growth. Also, the scaling exponent is very nearly equal to the critical value, \(k=1 \), where the expected value of the distribution is infinite, indicating that large events contribute substantially to overall blackout risk.

E. Is there a relationship between blackout size and restoration time?

Many large blackouts require extended restoration periods. It can take days or event weeks to restore customers after the losses from a natural disaster. Due to difficulties associated with starting large power plants without off-site power, restoration can take many hours, even if no equipment damage has occurred. It thus seems reasonable to expect to find correlation between the size of a blackout and its duration.

Table 5 shows the result of correlation tests. In both the MW and customer cases only the events that include both duration and the size measure (MW or customers) were included in the analysis. Surprisingly only a weak, statistically insignificant correlation exists between event size and duration. This is also clear in Fig. 7, which shows no relationship between blackout size and restoration time. In a few cause-categories, there is a significant positive correlation between size and duration (lightning, wind/rain, and “other external cause”), but in some other categories a weak (insignificant) negative correlation exists resulting in no significant correlation for the data set as a whole.

Table 5. Correlation tests for the hypothesis that large blackouts result in long restoration times

<table>
<thead>
<tr>
<th>N</th>
<th>Corr. coef. (p)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>With size in MW</td>
<td>388</td>
<td>0.0135</td>
</tr>
<tr>
<td>With size in customers</td>
<td>349</td>
<td>0.0971</td>
</tr>
</tbody>
</table>

Figure 7. Blackout size in MW plotted against blackout duration. The two variables are almost perfectly uncorrelated (see Table 5 for statistics). The log-log scale is used here for clarity—the linear-scale figure shows a similar relationship.
F. Summary of trends found in the blackout data

To summarize, we find (A) that blackout frequency has not decreased from 1984 to 2006, (B) that blackouts are substantially more frequent in the summer and winter and (C) during mid-afternoon hours, (D) that large blackouts occur much more frequently than would be expected from an exponential statistics, and (E) that there is no apparent correlation between blackout size and restoration time.

IV. RELEVANCE OF TRENDS TO POLICY PROBLEMS

The trends described in Section III can have a significant impact on investment and policy choices in the electricity industry. A careful consideration of these trends could lead to better decisions, which in turn should increase reliability and efficiency. Ignoring these trends could result in significant mis-allocation of scarce resources. This section provides a few calculations that illustrate the importance of these trends to reliability-related decisions in the electricity industry.

In all of the calculations below we assume that blackout cost scales linearly with blackout size as measured in MW, essentially assuming that \(\beta = 0 \), \(\gamma = 0 \), and \(\eta = 0 \) in Eq. 1. While an imperfect assumption, the lack of correlation between blackout size and duration make this assumption somewhat more reasonable. If there is no correlation between size and duration and the error is Gaussian, the expected size of a randomly chosen blackout in MWh will be a constant function of its size in MW.

A. Relevance of the fact that blackout frequency is not decreasing in time

The data clearly indicate that the frequency of large blackouts is not decreasing. This trend is important because it allows us to assume that without dramatic changes within the industry blackout risk will remain roughly constant. This assumption is employed in the expected value calculations that follow in Sections B and C.

B. Relevance of the time-of-day and time-of-year trends

Because blackout risk changes with time-of-day and time-of-year, it is rational to focus the bulk of our blackout risk reduction efforts on peak periods. Consider a utility considering two policy changes. Under option 1 it deems that by doubling the number of on duty operators during all hours it can reduce blackout probability at all hours by 50%, without changing the blackout size distribution. The cost of this option is \(C_1 \). Under option 2 it deems that it can reduce blackout frequency during the highest risk hours by doubling is operator staff during only these hours. Let us assume that it can increase its staff during 50% of all hours for 50% of \(C_1 \) (\(C_2 = C_1 / 2 \)). The cost of option 2 is \(C_2 \). Let \(P(B|h) \) and \(P'(B|h) \) represent the probability of a blackout at hour \(h \) before and after the policy change, \(c_0 \) be the average per MW blackout cost and \(E[S] \) be the expected value for the utility’s blackout size distribution. The expected value of either decision can be calculated as follows:

\[
E[V] = c_0 \sum_{h=1}^{8760} (P(B|h) - P'(B|h))E[S]
\]

Because \(c_0 \) and \(E[S] \) remain unchanged, option 1 will reduce blackout costs in the utility’s service area by 50%. Option 2 however will not reduce risk as much, but does so during peak periods. If option 2 reduces risk by 50% during the 12 highest risk hours (7am-7pm) given the time-of-day blackout frequency trend shown in Fig. 5, option 2 would reduce overall blackout costs by 34%. The utility can obtain most of the desired risk reduction with half the cost by doubling staff only during peak periods.

C. Relevance of the power-law relationship between blackout size and frequency

The existence of a power-law probability distribution is important because it indicates that large events are substantially more common than one would predict from exponential distributions such as a Gaussian or Weibull, which are commonly used in engineering reliability analysis. The end result is that a blackout of any size (up to the extent of the entire network) has a significant, non-zero probability. More practically, this result indicates that blackout mitigation efforts should focus on the largest events in nearly equal proportion to the smaller events.

Another effect of the power-law distribution is apparent when calculating the size of a 100-year blackout, using methods commonly applied to storm impact assessment. Given that the sizes of large blackouts (size greater than 800 MW) follow a Pareto distribution with \(k=1.15 \), and given that an event equal in size to Aug. 14, 2003 occurs once in every 23 years (the extent of the available data) the following gives the size of the 100 year blackout:

\[
S_{100} = 800(10^{-log_{1.15}(1/23)}) = 246,000MW
\]

where \(S_X \) indicates the size of the \(X \)-year event, with \(P_S \) giving the conditional probability that a blackout larger than 800 MW is size \(S \) or larger. By comparison, according to DOE/EIA data, the peak demand (EIA: "Net Internal Demand") for the continental US in 2000 (the base year for the size measures) was 681,000 MW. Thus, if the observed statistical pattern holds for very large blackouts, and if the US were to see a 100-year blackout next year, it would interrupt about one third of all electricity service in the continental US.

In terms of Eq. 5, the power-law relationship between size and probability can significantly effect the calculation of \(E[S] \). Let us assume that one would like to evaluate a technology that will reduce the probability of all blackouts larger than 300MW by a fixed portion. If we calculate \(E[S] \) over this range by just taking the average blackout size from the observed data we get \(E[S] = 1744 \text{ MW} \). However, if we use the power-law statistic to get the expected size, we get \(E[S] = \)

5 This equation assumes that blackout size and blackout probability are independent.
2400 MW. By ignoring the power-law relationship one would undervalue this technology by about 30%.

V. CONCLUSIONS

In this paper we show that the frequency of large blackouts in the United States has not decreased during the years 1984-2006. In fact, by some measures, a slight increase in blackout frequency is observable. This is true despite the fact that the electricity industry has invested substantially to improve system-wide reliability.

We also show that a number of other trends exist in the historical blackout data. Blackout frequency changes substantially with the time of day and the time of year, and confirming past results, there is a clear power-law relationship between blackout size and probability. Several example calculations show that these trends can have a significant effect on the value of various decisions within the industry.

A. Explanations for the lack of reduction in blackout frequency

Given that blackout frequency is not decreasing and given the significant investment in technologies and policies to control blackout risk, it is natural to look for an explanation for the observed trend (or lack thereof). Unfortunately the data alone do not provide an explanation, as the granularity is not sufficient to empirically evaluate the effects of any particular policy or technical change. Nevertheless, some discussion of commonly espoused explanations may be useful.

1) Market restructuring

The restructuring of the electricity industry, beginning with FERC Order 888, which required open access to transmission capacity, has been blamed for numerous problems in the US electricity industry. While it is likely that open access has resulted in additional use of transmission resources for long distance transfers, it is difficult to say from the blackout data that restructuring has had a direct effect on blackout risk. A detailed analysis of the effects of restructuring on blackout risk would require state-level or LSE-level CAIDI, SAIDI, and SAIFI statistics, which are not easily accessible in the United States (and in some states require a Freedom of Information Act request).

2) Inadequate transmission investment

Industry members often assert that a lack of transmission system investment has led to unsatisfactory performance of the transmission system. The national transmission grid study notes that the frequency of transmission loading relief (TRL) events (a rough measure of system stress) has increased simultaneously while transmission system investment has decreased. Hirst [13] shows that the quantity of available transmission has, over the period (1999 - 2002), steadily decreased when normalized by summer peak demand. Vajjhala and Fischbeck [14] show that in many US states where new transmission is most needed, it is particularly difficult to build new transmission.

On the other hand, perhaps due to the attention that this issue has received, transmission investment has increased fairly steadily since 1999 [13]. And there are many ways to increase the capability of transmission systems without actually building new lines. Composite conductors can increase the thermal ratings, and phase-shifting transformers or FACTS devices can relieve bottleneck constraints by changing the apparent impedance of transmission lines. Finally, Blumsack [15] shows that some transmission construction can have a negative impact on reliability. While transmission investment can, but is not guaranteed to [25], have a positive impact on cascading failure risk and reliability, transmission constriction alone is a costly, and potentially ineffective, solution to reliability problems.

3) A lack of enforceable reliability rules and system-wide reliability management

After the August 14, 2003 blackout, many in industry and government argued that the voluntary reliability rules, as established and operated by NERC, were an insufficient instrument for managing reliability in a competitive electricity industry. As a result of this discussion, the Energy Policy Act of 2005 gave FERC the authority to appoint an Electricity Reliability Organization (the role that NERC now fills), with the authority to design and enforce mandatory reliability rules nationwide.

Relatley, Apt et al. [16, 17] argue that insufficient system-wide management of the electricity network (similar to FAA's management of the air-traffic control system in the US) contributes to the overall blackout risk. Apt et al. argue that a systems approach to risk mitigation has significantly reduced the accident frequency in commercial air travel, and that similar actions within the US electricity system could result in similar risk reductions.

The events of August 2003 do provide some evidence that unenforceable reliability rules contributed to the cascading failure. But since 2003 FERC and NERC have significantly increased their oversight of transmission assets and the annual number of large blackouts remains relatively constant. While system-wide policy changes are necessary to solving the blackout problem, they are not sufficient. The cascading failure problem is the result of both policy and technology failures.

4) System protection and problem formulation

Another explanation, argued in [19], is that the design of protection systems in electrical power networks is poorly aligned with the objectives of the system as a whole. Protective relays remove components from the network when the components are stressed. While this strategy effectively minimizes equipment damage, it is frequently sub-optimal with respect to the goal of the system as a whole—delivering energy to customers. A better strategy would protect the equipment when it is cost-effective to do so, while also ensuring that the system continues its mission of delivering energy to customers.

B. Future work

The observed blackout frequencies, when sorted according to time-of-day, time-of-year, location, cause, etc., can be used to create a set of conditional blackout probabilities. When combined one could use these probabilities to create a Baysian risk model. The risk model could be used to calculate the relative likelihood of a blackout given a set of input factors. This could be used as a prior probability and adjusted for real-time conditions to give information to operators in real time.
This type of model could also be used to project staffing requirements, schedule maintenance, or even for short-term investment planning. Future work will focus on the design of such a risk model.

VI. ACKNOWLEDGMENT

The authors gratefully acknowledge Edward Curtis at the US DOE National Energy Technology Laboratory for assisting with the blackout data analysis. P.H. acknowledges support from the DOE Office of Electricity Delivery and Energy Reliability, under the RDS contract DE-AC26-04NT41817. J.A. acknowledges support from the US National Science Foundation under grants SES-0345798 and CNS-0428404.

VII. REFERENCES