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Abstract

We examine data for the 48 contiguous states from calendar years 1990 to 2005 to explore
whether a state’s membership in an organized wholesale market promotes the development of
renewable electricity generation. Since states in regional transmission organizations (RTOs)
generate most of the renewable electricity, some have asserted this is a benefit of RTOs. We find
that, in contrast to wind, much of the development of geothermal, wood, and waste biomass took
place prior to states joining RTOs. The development of solar and geothermal is concentrated in
only a few states, preventing a firm conclusion about the role of RTOs. Our statistical analysis
of wind, wood, and waste estimated a structural model of renewables development using feasible
generalized least squares to correct for autocorrelation and heteroscedasticity. The estimated
coefficients have the hypothesized signs except for the negative, statistically significant
coefficient for membership in an RTO, implying that membership in an RTO impedes the
development of the wind resource. The regressions for wood and waste biomass do not show a
significant coefficient with RTO membership. We explored a wide range of plausible
specifications for the relationship between renewables, membership in an RTO, and other
factors, finding little indication that RTOs promote renewables. We cannot explain the
indication that RTOs are negatively correlated with the development of wind.

1 Introduction

Do organized wholesale markets promote renewable energy? In a recent open letter to the
Federal Energy Regulatory Commission (FERC) and members of congress, representatives from
22 organizations devoted to renewables have asserted that they do [1].

Fueling the speculation that renewable promotion is an unexpected benefit of joining a regional
transmission organization (RTO) or independent system operator (ISO) is the current breakdown
of where wind assets are located. We estimate that 66% of United States wind generated
electricity was produced in RTO states in 2005, even though those states represent only 30% of
US wind resource potential and 48% of national electric generation from all sources' [3, 4].

While RTOs may promote renewables, their concentration in RTO states could also be caused by
higher electric prices or other factors; investments in renewables may even have occurred prior
to states joining RTOs. Several groups have argued that RTOs promote wind by compensating
for wind variability over a large number of traditional generators and via a transparent market
signal to independent power producers (IPPs) [1, 2, 5]. They also state that transmission
planning processes in RTOs have helped integrate remote renewables. These arguments apply to
wind; the non-dispatchability point also applies to solar; the remoteness argument also applies to
geothermal. Only the market transparency point applies to biomass generation.

We do not evaluate these qualitative arguments in detail, but rather we investigate production
data to find whether renewables production actually has increased more in RTO states over
1990-2005. Our hypothesis is that a statistical analysis will find a positive association between
RTO status and renewable production after controlling for other possible structural variables.

' The ISO-RTO Council has claimed that for the US and Canada combined 79% of wind capacity is in RTO territory
with only 44% of wind resources and 53% of electric demand [2].
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2 Data

Table 1 summarizes the data for 1990-2005 for all 48 contiguous states®. These data are
available from the authors upon request. The variables WindPot, BioRes1-BioRes5, and Dem are
constant over time for each state; the other variables change with time.

Table 1. Study data.

Variable Data Units Sources
MWh Total state electric generation MWh
= Wind Wind generation MWh
o
s Solar Solar generation3 MWh 3, 6]
§ Geo Geothermal generation MWh ’
3 Wood Wood biomass fuel consumption for electricity BTU
Waste Waste biomass fuel consumption for electricity BTU
§ RTOFull Years a state has been fully in an RTO years
7-13
5 RTOPart Years a state has been partly in an RTO years [ ]
E RTO Years a state has been either partly or fully in an RTO years
Price State electric price in real dollars 2000$/kWh
% Policyl — Policy8 | Eight variables indicating state policies on renewables -- [14-19]
o)
» GSP Real gross state product per capita’ 20005
Dem Percent democratic vote 2004 presidential® --
()]
£ Y1990-Y2005 Dummy variable for each year 1990 to 2005 -- --
[
“ MWh
§ WindPot Wind resource potential in the state
=]
o [4I 22]
(7]
& | BioRes1 — BioRes5 | Five variables indicating biomass resource potential --

? Alaska and Hawaii are excluded for several reasons. First, many of the specified data such as resource potential
are not available from these sources. Second, both Alaska and Hawaii can be seen as special cases because of their
differences in geography, climate, and distance when compared with the contiguous 48 states.

? The database also contains estimates of residential and commercial solar BTU “consumption” for the combination
of solar thermal and photovoltaic (PV) units, but the numbers are not disaggregated [3]. The estimate is entirely
based on shipments of solar thermal collectors by state and does not account for PV shipments. We do not include
these numbers in our solar generation variable.

* The real gross state product is normalized by the state population according to the 1990 census [18].

> Percent of major party votes after excluding the count of third party votes.

® We also collected data for the renewable resource potentials of solar and geothermal resources and will make those
data available upon request [20, 21]. We do not report them here however because as discussed in Section 3.2 and
3.3, there is not enough output of these types of renewables to perform meaningful regressions with the data.
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We make the following additional notes on data collection.

RTO Status

We use three different classification schemes to account for RTO status. In the first, we track the
number of years that a state territory has been at least partly (and perhaps entirely) within an
RTO with variable RTO. In the second, we distinguish between the number of years that a state
has spent partly within RTO territory RTOPart and fully within RTO territory RTOFull. In the
third we use dummy variables (1 or 0) to account for RTO membership.

The classification of states as fully, partly, or not at all within RTOs required judgment in some cases.
For example, we treat California as fully within an RTO even though there are actually some sections of
California not within California ISO (CAISO) territory. Figure 2 shows our classification of each state
over time. We treat the date that wholesale market operations began as the start date for RTO
classification and count the fraction of the year that the state has been within the RTO.

State Renewables Policies

The status and enacted dates of these 19 state policies’ are from the Database of State Incentives
for Renewables and Efficiency (DSIRE), as shown in Figure 1 [17]. We track the number of
years that each policy has been in effect for each state. Since these 19 variables were correlated,
we calculated their principal components. We use the top eight components, see Appendix A.1

ACAR CA CT DE GA 1A IL KS LA MD Ml MO MT ND NH MM NY Ok PA SC TM UT YT W WY

Portfolio Standard TUONTO Uq i I k I 0Tl

Reguired Green Power Offer

Green Power Purchasing

Canstruction Caode []
Equipment Certification

Interconnection Standards
Met Metering
Generation Mix Disclosure []

Public Benefits Fund H
Production Incentives

Bond Programs

Industry Recruitrent []
Loan Programs I I [] I I [] I I
Grant Programs } %

Rebate Programs
Property Tax Incentives H [] [] I I H I [] I @ E
Sales Tax Incentives I
Corporate Tax Incentives H F

Personal Tax Incentives H
AL AZ CO DC FL HI ID N KY MA ME MM MS MNC NE NJ MY OH OR Rl SD TH WA WA WY

Figure 1. State policies on renewable energy by state [17]. The darker the box, the longer the policy had been in
place as of 2005. A totally black box indicates that the policy had been in place at least since 1990; a totally white
box indicates that the policy was enacted exactly at the end of 2005.

e —|

H

Time
The dummy variables for year implicitly control for factors that are constant across all states in a
given year, e.g., the presence or absence of the federal production tax credit (PTC) [23].

7 The database also contained information on access laws, contractor licensing, and line extension analysis policies
but these are not accounted for here because of difficulty in determining the dates when these policies were enacted
in each state.
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The 28 biomass resource variables indicate total available dry tons of six types of biomass
including urban waste, mill waste, forest residue, agricultural residue, switchgrass, and short
rotation woody crops. The data indicate the quantity of each biomass fuel available at or below
prices of $20, $30, $40, or $50 per dry ton [22]. The data are appropriate indicators of both
wood and waste biomass resources. We controlled for the correlation among the 28 using

principal components, using the top five components, see Appendix A.2.

3 Timing of RTO Formation and Locational Growth in Renewables

The most basic way to evaluate whether RTO status impacts renewables is to ask whether
investments were made before RTO entry. Figure 2 shows RTO entry dates from 1995-2006.

Mot in RTO
Partly in RTO
Fully in RTO

1995

2000

2005

CHLI T = I
égggﬂéﬂgzoo—}BEE<{§L¢muoqmoz—moﬁ}<mzr5}£g#H%*OPﬁﬁﬁﬁ

Figure 2. Timeline of RTO entry by state, Jan 1995-Dec 2005 [7-12].

Figure 3 shows the growth in renewable power over the last half century. Data before 1988
cover utilities only; beginning in 1989 these EIA data also cover independent power producers,
leading to a discontinuity in the figure. There are several interesting features in these data. The
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first is that growth in wind took off starting in 1998. This roughly coincides with the advent of
organized markets; PJM was the first market to begin wholesale operations in April, 1997 [13].

Three factors aside from RTO formation promoted wind at that time. First, many states adopted
renewable portfolio standards (RPSs) in the late 1990s and early 2000s [17]. Second, federal
PTCs that promoted wind production lapsed three times between 1998 and 2005. Samaras has
shown that new wind capacity came online in big jumps just before these lapses in order to lock
in the 10-year PTC guarantee [23]. Third, technology improved significantly in the 1980s and
1990s, driving costs below a critical threshold that made wind profitable in some places; capital
costs decreased from almost $2,500/kW in 1990 to just above $1,500/kW in 1998 [24]. Finally,
this figure does not compare growth rates between RTO and non-RTO states, see Section 3.1.

Figure 3 shows that solar was only 0.5% of the total non-hydroelectric renewables mix in 2006.
Geothermal generation is substantial, but has not grown since the advent of RTOs. Between
2000 and 2001, biomass waste dropped sharply and then rebounded slowly; biomass wood began
growing slowly at the same time.

500
Biomass, Total

450 Biomass, Waste
E ------- Biomass, Wood
5 400 Geothermal
= Wind
= 350
- -===Solar
5
= 300
o
£
2 250
Q
(W)
E 200
<
< 150
2
@
g 100
(=

50

0 -
1865 15870 1875 1980 1385 1950 1995 2000 2005

Year
Figure 3. Fuel consumption® for renewable power generation [25].

3.1 Wind Generation over Time

Figure 4 shows wind production over time within each RTO. We do not show Midwest ISO or
Southwest Power Pool data because of their recent market start dates’. PJM has expanded
several times and has many states only partly within its territory; we therefore show only states
that were in PJM territory when it introduced the wholesale market on April 1, 1997. The last
plot in the figure shows the growth of wind in states that had not joined an RTO by 2005.

¥ Solar and wind were converted to BTU using typical heat rates from fossil plants.
? Midwest ISO began market operations on April 1, 2005; the Southwest Power Pool began February 1, 2007
respectively.
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Figure 4. Wind generation timeline for each RTO, vertical lines show market start dates. The last plot shows wind

growth in non-RTO states.
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The left-hand plot of Figure 5 shows the growth of wind from 1990-2006 separating those 14
states'” that were fully within RTOs by the middle of 2002 from the 26 states'' that had not
joined RTOs by the end of 2005. The remaining 11 states'? had either partly or fully joined
RTOs by the end of 2005. The right-hand plot of Figure 5 shows the same data after California
has been removed. Vertical dashed lines indicate the start dates of the five RTOs from Figure 4;
PJM’s expansion in 2002 is not shown.

2000

- - . o —— 5000 : : . . : : :
2B States Not in RTOs by 2005 — 26 States Mot in RTOs by 2005 —]
80ad ¢ 14 States in RTOs by June 2002 1 4500 ¢ 13 RTO States by 52002, CA Removed 1
.......... 11 Other States I....
— — : | 4000 b 11 Other Statesl I . £
o ! o : —
£ Bo00 | P 1 §35””' [ P
G oo G oo i
= oo : - 3000 oo : P
£ sooof oo 1 £ Polob i
i oo £ 2500t 1
5 4000t 5
@ @ 2000} 1
S 3o} Z
= = 1sm0f 1
2000 - -, |
1000 b o0 | |
D " r ' 1 1 D i i il ! 1 1
1990 1992 1994 1995 1999 2000 2002 2004 200 1980 1992 1994 1996 1995 2000 2002 2004 2006
Year Year

Figure 5. Comparison of wind in RTO and non-RTO states, including DC.

The plots in Figure 4 show that in each of the five RTOs examined, the takeoff of the growth in
wind roughly, but only roughly, coincided with the introduction of the organized wholesale
market. The suggestion is weakened however after looking at the growth of wind in non-RTO
states in the last plot of Figure 4. Growth in wind took off in both RTO states and in non-RTO
states at the same time. We proceed to a formal statistical analysis of these data.

Wind generation is concentrated in a few states. Figure 6 and Table 2 show the fraction of total
US wind generation from the top producers. Since California and Texas account for almost half
the wind energy and Iowa and Minnesota adding 18% more, these four states will dominate the
analysis, see Section 4.1.

' This actually refers to 13 states and the District of Columbia: CA, CT, DC, DE, MA, MD, ME, NH, NJ, NY, PA,
RI, TX, and VT.

' The 26 states are: AK, AL, AR, AZ, CO, FL, GA, HL, ID, KS, LA, MO, MS, NM, NV, OK, OR, SC, TN, UT,
WA, and WY.

12 The 11 other states are: IA, IL, IN, KY, ML, MN, MT, NC, ND, NE, OH, SD, VA, W1, and WV.
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Figure 6. Concentration of wind generation.

Table 2. Concentration of wind generation in top producing states.

Wind Generation % in 2005
- — Date of RTO
Cumulative of Top | Individual Entry
Wind Producers State
CA 23.9% 23.9% 4/1/1998
X 47.7% 23.8% 8/1/2001
IA 57.0% 9.2% 4/1/2005
MN 65.9% 8.9% 4/1/2005
OK 70.6% 4.8% 2/1/2007
NM 75.1% 4.5% 2/1/2007
co 79.4% 4.4% Not in RTO
OR 83.6% 4.1% Not in RTO
WYy 87.6% 4.0% Not in RTO
WA 90.4% 2.8% Not in RTO
KS 92.8% 2.4% 2/1/2007

3.2 Solar Generation Over Time

Figure 7 shows the growth of solar between 1990 and 2005. Arizona, California, Texas, and
Virginia are the only states with any history of solar production the power sector'>. In 2005 only
two states produced any solar; California produced 97.5% and Arizona produced the remaining
2.5%.

California solar output was growing steadily over the whole period; Texas solar output hit zero
before commencement of ERCOT market operations. Arizona, a non-RTO state had a dramatic
jump in solar production in both 2004 and 2005.

1 As discussed in Section 2, these data do not track commercial or residential solar electric production.

10
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Virginia, the only solar producer not shown in Figure 7, partly entered PJM in October 2004, and
fully entered PJM in May 2005. Virginia is a very small solar producer, with a maximum annual
output of 0.034 GWh in 1990 and zero output since 1996.

The plots in Figure 7 and the data from Virginia show no indication that RTO status has
influenced the production of solar energy.

CAISO ERCOT
G500 . T - na .
Mot in RTO 045! |
In CAISO H
a50 + 04r 5 E
£ £ 03¢ : .
[} @O :
= 500+ o 03¢ ; |
S = '
pu - 02sr 1
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@ 450+ 5 1 o 0Zf : 1
= ' = :
= & 018k : E
ot . 01t -
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L L ! L ! L L 0 1 T T L L H L
1990 1992 1994 1996 1998 2000 2002 2004 2006 1990 1992 1904 19095 1993 2000 2002 2004 2005
Year Y ear
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g 10+ B
o
£ 8 1
w
o
S B .
0
=
a4t 1
2 L 4
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Figure 7. Solar generation timeline for CAISO and ERCOT, the only two RTOs with solar production between
1990 and 2005. The last plot shows output from AZ, the only non-RTO solar producer.

These data do not indicate a relationship between RTO membership and solar generation.

11
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3.3 Geothermal Generation Over Time

Figure 8 shows the growth of geothermal over time. Only four states have any history of
geothermal generation. California is the only RTO state with any history of Geothermal
Generation; its geothermal output was large well before market operations began in April 1998.
The remaining three geothermal producers, Hawaii, Nevada, and Utah, are shown on the right
have never been in an RTO.

« 10° CAISD States Mot in an RTO
15 T T T n T T T 2200 . . . ——
' Mot in RTO
1457 In CAISO [ 2000 -
141 I
g © 1800t
5 135 | 5
5 T 1600
g 13 g
= = 1400t
£ 125} £
a [1h]
= < (om0}
o 12F J 2
@ . &
115} ; )l 1000

1.1 ! L ! ' L ! L 200 ! I I NN HE Y I
1990 1992 1994 1995 19098 2000 2002 2004 2006 1990 1992 1994 1996 1993 2000 2002 2004 2006
Year Year

Figure 8. Geothermal generation timeline for CAISO with market start date. The right-hand plot shows output from
non-RTO states.

Table 3 shows what fraction of that generation comes from each of the four producing states.

Table 3. Concentration of geothermal generation in all four producing states.
Geothermal Generation % in 2005

Date of

Cumulative of 1\ i idual state | RTO Entry

Top Producers

CA 88.6% 88.6% 4/1/1998
NV 97.2% 8.59% Not in RTO
HI 98.7% 1.51% Not in RTO
) 100% 1.26% Not in RTO

We find no evidence that membership in an RTO promotes geothermal generation.

3.4 Wood Biomass Generation Over Time

Figure 9 shows the growth of wood biomass consumption for electric generation in each RTO.
Although the volatility makes it hard to observe a trend, wood biomass may have increased in
CAISO, ISO-NE, and PJM when markets began operations; over the same time period of 1997-
2002, wood biomass in non-RTO states dropped fairly sharply. These data point to the need for
a statistical analysis.

12
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Figure 9. Wood biomass consumption for electric generation in each RTO with market start dates.
shows consumption from all states that were not in RTOs by the end of 2005.
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The left-hand plot of Figure 10 shows the growth of wood biomass from 1990-2006 separating
those 14 states'* that were fully within RTOs by the middle of 2002 from the 26 states'> that had
not joined RTOs by the end of 2005. The remaining 11 states'® had either partly or fully joined
RTOs by the end of 2005. The right-hand plot of Figure 10 shows the same data after California
has been removed. Vertical dashed lines show the start dates of the five RTOs from Figure 9 and
Figure 4; PJM’s expansion in 2002 is not shown.

Again we observe a drop in wood biomass consumption in non-RTO states as it is increasing in
RTO states between 1997 and 2002, suggesting the need for a statistical analysis.
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Figure 10. Comparison of wood biomass in RTO and non-RTO states, including DC.

' This actually refers to 13 states and the District of Columbia: CA, CT, DC, DE, MA, MD, ME, NH, NJ, NY, PA,
RI, TX, and VT.

15 The 26 states are: AK, AL, AR, AZ, CO, FL, GA, HL, ID, KS, LA, MO, MS, NM, NV, OK, OR, SC, TN, UT,
WA, and WY.

16 The 11 other states are: IA, IL, IN, KY, ML, MN, MT, NC, ND, NE, OH, SD, VA, W1, and WV.

14
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Table 4 shows the fraction of wood biomass consumption for electric generation occurs in the
top wood biomass states. As in the cases of other renewables, we see that almost half of the
consumption is in two states.

Table 4. Concentration of biomass wood consumption for electric generation in top producing states.
Wood Biomass % in 2005

) . Date of
Cumulative of Individual RTO Entry
Top Consumers State
CA 26.6% 26.6% 4/1/1998
ME 48.0% 21.5% 5/1/1999
MmI 56.5% 8.46% 10/1/2004"
FL 62.4% 5.93% Not in RTO
NH 67.7% 5.33% 5/1/1999
WA 72.4% 4.62% Not in RTO
VA 75.9% 3.57% 10/1/2004"®
SC 79.4% 3.48% Not in RTO
OR 82.8% 3.41% Not in RTO
NC 85.8% 2.96% 5/1/2005"
VT 88.6% 2.86% 5/1/1999
NY 91.2% 2.51% 12/1/1999
PA 93.2% 2.07% 4/1/1997%°
AL 95.1% 1.82% Not in RTO

3.5 Waste Biomass Generation Over Time

Figure 11 shows the growth of waste biomass consumption for electric power production over
time within each RTO formed before 2002. The last plot also shows consumption in the states
that were not in RTOs by the end of 2005. Any trends that may be related to RTO formation are
not clear given the volatility, but none of the RTOs appears to have had growth in waste biomass
that is different from the slow growth in non-RTO states.

' Partly entered PJM on 10/1/2004; the remainder of the state entered MISO on 4/1/2005.

'8 Partly entered PJM on 10/1/2004; the state wasn’t fully integrated into PJM until 5/1/2005.
1% Is only partly within PJM territory.
2 partly entered PTIM on 10/1/2004; the state wasn’t fully integrated into PJM until 4/1/2002.
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Figure 11. Waste biomass consumption for electric generation in each RTO with market start dates. The last plot
shows consumption from all states that were not in RTOs by the end of 2005.
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Figure 12 shows the growth of waste biomass from 1990-2006 separating those 14 states®' that
were fully within RTOs by the middle of 2002 from the 26 states™* that had not joined RTOs by
the end of 2005. The remaining 11 states™ had either partly or fully joined RTOs by the end of
2005. Vertical dashed lines show the start dates of the five RTOs from Figure 11 and Figure 4;
PJM’s expansion in 2002 is not shown. Figure 12 shows slow, steady growth in waste biomass

5
g x 10
| = 25 States Mot in RTOs by 2005 .
14 States in RTOs by June 2002 | :
""""" 11 Other States !
2 L H E
1687 1

Waste Biomass Fuel, hillion BTU

0 s s R L s

1990 1992 1994 1996 1998 2000 2002 2004 2006
ear

Figure 12. Comparison of wood biomass in RTO and non-RTO states, including DC.

*! This actually refers to 13 states and the District of Columbia: CA, CT, DC, DE, MA, MD, ME, NH, NJ, NY, PA,
RI, TX, and VT.

22 The 26 states are: AK, AL, AR, AZ, CO, FL, GA, HI, ID, KS, LA, MO, MS, NM, NV, OK, OR, SC, TN, UT,
WA, and WY.

2 The 11 other states are: 1A, IL, IN, KY, MI, MN, MT, NC, ND, NE, OH, SD, VA, WI, and WV.
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Table 5 shows the consumption of biomass waste for electricity generation in the top consuming
states. Four states account for almost half the waste biomass consumption.

Table 5. Concentration of biomass wood consumption for electric generation in top producing states.

Waste Biomass % in 2005
Cumulative - Date of RTO
of Top Individual Entry

Consumers State
FL 19.0% 19.0% Not in RTO
NY 30.5% 11.5% 12/1/1999
MA 40.1% 9.66% 5/1/1999
PA 49.5% 9.37% 4/1/1997*
CA 57.6% 8.07% 4/1/1998
cT 65.3% 7.73% 5/1/1999
NJ 71.3% 6.01% 4/1/1997
MD 75.1% 3.80% 4/1/1997
VA 78.7% 3.61% 10/1/2004%
MN 82.3% 3.55% 4/1/2005
Ml 85.3% 3.06% 10/1/2004%
I 87.8% 2.44% 5/1/2004%
ME 89.7% 1.90% 5/1/1999
wi 91.2% 1.57% 4/1/2005
HI 92.5% 1.30% Not in RTO
NH 93.7% 1.15% 5/1/1999

4 Renewable Production as a Function of RTO Status

The graphical analysis comparing RTO with non-RTO states before and after establishing these
RTOs does not make a case that RTOs promote renewables. We now turn to more formal
statistical analysis to explore the relationships between renewables and RTO. For solar and
geothermal, there is so little use outside a few states that a statistical analysis cannot contribute
our sorting out the effect of RTOs.

4.1 Notes on Regression Methods

We use two different approaches to exploring the statistical relationship between membership in
an RTO and the use of renewables. In one we build a model we regard as structural and fit it to
the data. In the other we explore the relationship between the two variables of interest fitting a
wide range of specifications that appear to be plausible in controlling for other factors that
influence the use of renewables. We use “feasible generalized least squares” (FGLS) to estimate

 Partly entered PJM on 10/1/2004; the state wasn’t fully integrated into PJM until 4/1/2002.
% Partly entered PJM on 10/1/2004; the state wasn’t fully integrated into PJM until 5/1/2005.
26 Partly entered PJM on 10/1/2004; the remainder of the state entered MISO on 4/1/2005.

?7 Partly entered PJM on 5/1/2004; the remainder of the state entered MISO on 4/1/2005.
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the structural model in order to correct for autocorrelation and heteroscedasticity in the residuals
[26]. For exploration, we use both FGLS and ordinary least squares (OLS).

Data Transformation — All variables except the dummy variables have been centered and
scaled so that the tranformed variables all have a mean of 0 and a standard deviation of
This means that the signs and relative magnitudes of variable coefficients are meaningful,
but that the absolute magnitudes of variable coefficients must be interpreted with care. In
our regressions, a coefficient of 0.5 means that a change of one standard deviation in the
right-hand variable is associated with a positive change of 0.5 standard deviations in the
left-hand variable.

128

Principal Component Analysis — For some groups of input data that may be highly
multicollinear such as biomass resource potential variables and state renewables policies,
we have transformed these data into their principal components. We then use the principal
components as independent variables in these regressions as discussed in Appendix A.

Autocorrelation — The assumption under OLS is that the errors (observed renewable generation
minus the regression’s predicted value) are independently, identically distributed. This
assumption implies, among other things, that the observation of wind output from one year
is assumed to be independent of the wind output from the previous year. This assumption
is violated because most of the capacity installed last year will still be installed this year.
Since the regression generates errors that are related to output, the systematic pattern in
output leads to a systematic pattern in the error terms.

Heteroscedasticity — As noted in Section 3, wind, wood, and waste are concentrated in just a
few states. This means that both the magnitude of generation outputs and the magnitude of
variability in those outputs are much larger in some states than in others. Under OLS, this
means that the large magnitude and variation in renewables output in California would
skew the regression results severely.

Feasible Generalized Least Squares®® — We run a regression on panel data using FGLS, which
corrects both autocorrelation and heteroscedasticity [26].

Ordinary Least Squares — We run a variety of different regressions using OLS to explore the
robustness of relationships in the data to many plausible specifications. These results are
primarily for illustration however, because the OLS method does not account for
autocorrelation or heteroscedasticity. These results must be interpreted only as a statistical
exploration of the data.

We apply the FGLS method to the data on state outputs of wind, biomass wood, and biomass
waste. The models for wood and biomass waste are similar to that for wind.

8 The mean and standard deviation are taken for each variable. For each datum, the mean is subtracted and the
result is divided by the standard deviation. The transformed data then have a mean of zero and standard deviation of
one.

¥ We use the econometrics program Stata to implement these methods. The Stata command used for FGLS with
panel data is Xtgls with options panels(heteroskedastic) and corr(psarl) implemented to account
for heteroscedasticity and autocorrelation respectively [27].
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4.2 Wind Results

RTO Significance

We fit Equation (1) to the data, where the left-hand variable is the change in wind output from
yeart - 1 to year t, divided by total state generation in year 2005. Because we are predicting the
change in wind, we lose the 1990 observation, with 1991 representing the change from 1990, etc.
to 2005; our yearly dummy variables span 1992-2005, since the first one must be excluded. The
change in wind from one year to the next is a function of the variables introduced in Table 1 as
follows.

RTO The number of years that the state has been at least partly in an RTO is included to test
whether being a member of an RTO induces more renewables.

GSP Gross state product per capita, since wind would be selected on environmental-
sustainability grounds, not because it is the cheapest source

MWhThe total amount of electricity generated in the state, since larger states should find it
easier to incorporate wind into their grid.

Price The price of electricity in the state, since the higher the price, the more attractive wind is.

Dem The proportion of the major-party votes won by the democratic presidential candidate in
2004, since the liberals are more likely to favor the environmentally-sustainable
electricity source.

WindPot The potential wind resource in each state, since the states with the greatest wind
resource are likely to have the lowest cost.

PolicyP The eight transformed variables that characterize state incentives to develop wind
such as tax benefits and renewable portfolio standards.

YT Dummy variables for each year 1992- 2005. Year 1992 is 1 in each state for 1992 and 0
for other years; 1993 is 1 in each state for 1993 and 0 otherwise, etc. These dummy
variables account for any factor that is common to all states in each particular year, such
as the expiration of the federal production tax credit.

We hypothesize that the estimated coefficients of the variables will be positive. Some of the
yearly dummy variables have negative coefficient, as might some policy variables.

- 8 2005
(1) f/lv\\//v':bd = &, + 2z RTO+a;GSP+a, MWh+ o P rice+ o, Dem-+ar,WindPot+ " oz, PolicyP+ > a, YT
’ p=1 T=1992
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Table 6 displays the primary results. Parameters significant at the p < 0.05 level are in bold. As
hypothesized, the estimated coefficients of state income, electricity generation, electricity price,
Democratic vote, and wind potential are all positive, but none attain statistical significance. As
hypothesized, the state policy variables are statistically significant as a group with F(8, 691) =
5.323, p-value = 0.000. Likewise, the yearly dummy variables are significant as a group with
F(14, 691) =2.183, p-value = 0.007.

Contrary to our hypothesis, the RTO status variable is negative and significant. The coefficient
of RTO continues to be negative and significant for most alternative specifications as elaborated
below: replacing RTO with RTOFull and RTOPart, we find that signs and magnitudes of the
other significant predictors do not change and that both of these other variables are significant
negative predictors. The size of the negative relationship is small; the RTO coefficient of -
0.0661 indicates that 1.57 years in an RTO (one standard deviation of RTO) predicts that the
normalized growth rate of wind would be reduced by 6.61% of a standard deviation.
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Table 6. FGLS results for regressing wind output on RTO status and other possible structural variables.

www.cmu.edu/electricity

FGLS Model Regression on Wind

Estimated Covariances 48 Number of Groups 48
Estimated Autocorrelations 48 Time Periods 15
Estimated Coefficients 29 Wald ¢*(28) 62.7
Number of Observations 720 | Prob >y’ 0.0002
Variable Coefficient Standard , P> 2| 95% Confidence
Estimate Error Interval
RTO -0.0661 0.0151 -4.39 0.000 -0.0956 -0.0366
GSP 0.0306 0.0263 1.16 0.245 -0.0210 0.0822
MWh 0.0281 0.0388 0.72 0.469 -0.0480 0.1042
Price 0.0108 0.0326 0.33 0.740 -0.0530 0.0746
Dem 0.0130 0.0593 0.22 0.826 -0.1032 0.1292
WindPot 0.0762 0.0522 1.46 0.145 -0.0263 0.1786
Policyl 0.0173 0.0363 0.48 0.633 -0.0538 0.0885
Policy2 0.0730 0.0325 2.25 0.025 0.0093 0.1367
Policy3 0.0957 0.0330 2.90 0.004 0.0310 0.1604
Policy4 0.0118 0.0367 0.32 0.749 -0.0602 0.0837
Policy5 -0.0322 0.0311 -1.04 0.300 -0.0932 0.0288
Policy6 0.0824 0.0395 2.08 0.037 0.0049 0.1598
Policy7 0.0267 0.0384 0.69 0.487 -0.0486 0.1020
Policy8 0.0512 0.0318 1.61 0.108 -0.0111 0.1135
Y1992 -0.0014 0.0328 -0.04 0.966 -0.0656 0.0629
Y1993 -0.0016 0.0422 -0.04 0.970 -0.0843 0.0811
Y1994 -0.0009 0.0474 -0.02 0.984 -0.0939 0.0920
Y1995 0.0003 0.0506 0.01 0.995 -0.0989 0.0995
Y1996 0.0082 0.0530 0.15 0.878 -0.0957 0.1120
Y1997 0.0194 0.0548 0.35 0.723 -0.0880 0.1269
Y1998 0.0532 0.0573 0.93 0.353 -0.0592 0.1655
Y1999 0.0965 0.0609 1.58 0.113 -0.0228 0.2158
Y2000 0.1327 0.0655 2.03 0.043 0.0044 0.2610
Y2001 0.1716 0.0697 2.46 0.014 0.0349 0.3082
Y2002 0.2271 0.0781 2,91 0.004 0.0739 0.3802
Y2003 0.2447 0.0856 2.86 0.004 0.0771 0.4124
Y2004 0.3045 0.0945 3.22 0.001 0.1193 0.4898
Y2005 0.3073 0.1052 2.92 0.003 0.1011 0.5134
Constant -0.1021 0.0530 -1.93 0.054 -0.2059 0.0017
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Individual State Policies

To explore the effects of state renewables policies, we replaced the transformed state policy
variables with the number of years in effect for each of the actual 19 policies, as shown in Table
7. For example, a state with a renewable portfolio standard would have a 1 for this variable
while states without this policy would have a zero. As measured by the Wald y” statistic, this
regression is better than that in Table 6. The RTO coefficient is half as large and loses statistical
significance. Two of the structural variables change sign, although neither passed the test for
statistical significance under either regression. The statistically significant state programs
associated with renewables are rebates, loan programs, net metering, required green power
offering, and renewable portfolio standards. Sales tax incentives have a significant negative
association. Corporate tax incentives are almost significant. The other 12 state programs are not
significant.

For each of the significant state policies, we look into the possibility that multicollinearity could
be causing us to find spurious correlation due to multicollinearity among state policies.

e Sales tax incentives are collinear with corporate tax incentives (with correlation
coefficient p=0.4811) and net metering (p = 0.3310), when excluding corporate tax
incentives and net metering from the regression, the sales tax incentive is still negative
but no longer significant (p = 0.500). When sales tax incentives are excluded, corporate
tax incentives is no longer anywhere close to significant (p = 0.898).

e Rebate programs are not collinear with the other state policies.

e Although loan programs are collinear with some other policies, with correlation
coefficients as high as 0.3390 with interconnection standards, it is only highly collinear
with other state policies that have positive coefficients. This means that if those other
state policies are excluded from the regression, loan programs appear to be more
significantly positive.

e Net metering is positively collinear with several other state policies listed here.
Excluding the other significant policies, or even all of the policies, makes net metering
appear more significantly positive because of the positive associations.

e Required green power offering is collinear with net metering (p = 0.3052). Because they
have the same sign, when one is excluded the other becomes more significant.

e RPS is collinear with net metering (p = 0.490). Because they have the same sign, when
one is excluded the other becomes more significant.

Based on these observations, we believe that the positive and negative associations between
corporate and sales tax incentives are spurious. We do believe that the associations between
wind and rebate programs, loan programs, net metering, required green power offering, and
RPSes are real.

23



Carnegie Mellon Electricity Industry Center Working Paper CEIC-07-14 www.cmu.edu/electricity

Table 7. Wind regression with all 19 state variables.

FGLS Model Regression on Wind with 19 State Policy Variables
Estimated Covariances 48 Number of Groups 48
Estimated Autocorrelations 48 Time Periods 15
Estimated Coefficients 40 Wald %*(28) 97.1
Number of Observations 720 Prob > y* 0.0000
Variable Coefficient Standard , P>z 95% Confidence
Estimate Error Interval
RTO -0.0306 0.0182 -1.68 0.093 | -0.0663 | 0.0051
GSP -0.0348 0.0445 -0.78 0.434 | -0.1219 | 0.0524
MWh 0.0156 0.0338 0.46 0.644 | -0.0506 | 0.0819
Price -0.0037 0.0322 -0.12 0.908 | -0.0668 | 0.0594
Dem 0.0229 0.0494 0.46 0.643 | -0.0739 | 0.1198
WindPot 0.0512 0.0414 1.24 0.217 | -0.0300 | 0.1324
Personal Tax Incentives -0.0634 0.0462 -1.37 0.170 | -0.1538 | 0.0271
Corporate Tax Incentives 0.1114 0.0574 1.94 0.052 | -0.0011 | 0.2238
Sales Tax Incentives -0.1085 0.0448 -2.42 0.016 | -0.1964 | -0.0206
Property Tax Incentives 0.0007 0.0328 0.02 0.984 | -0.0636 | 0.0649
Rebate Programs 0.0939 0.0272 3.45 0.001 | 0.0406 | 0.1473
Grant Programs -0.0261 0.0443 -0.59 0.556 | -0.1128 | 0.0607
Loan Programs 0.0986 0.0454 2.17 0.030 | 0.0096 | 0.1876
Industry Recruitment -0.0242 0.0364 -0.67 0.505 | -0.0956 | 0.0471
Bond Programs 0.0018 0.0079 0.23 0.817 | -0.0136 | 0.0173
Production Incentives -0.0076 0.0161 -0.47 0.637 | -0.0392 | 0.0240
Public Benefits Fund -0.0379 0.0329 -1.15 0.249 | -0.1023 | 0.0265
Generation Mix Disclosure -0.0283 0.0294 -0.96 0.335 | -0.0859 | 0.0292
Net Metering 0.0902 0.0428 2.11 0.035 | 0.0063 | 0.1741
Interconnection Standards 0.0606 0.0391 1.55 0.121 | -0.0161 | 0.1373
Equipment Certification -0.0499 0.0351 -1.42 0.155 | -0.1188 | 0.0189
Construction and Design Codes 0.0496 0.0317 1.56 0.118 | -0.0126 | 0.1118
Green Power Purchasing -0.0101 0.0220 -0.46 0.646 | -0.0533 | 0.0330
Required Green Power Offering 0.1703 0.0579 2.94 0.003 | 0.0568 | 0.2838
Renewable Portfolio Standard 0.0706 0.0284 2.49 0.013 | 0.0150 | 0.1263
Y1992 -0.0015 0.0312 -0.05 0.962 | -0.0627 | 0.0598
Y1993 -0.0017 0.0394 -0.04 0.965 | -0.0790 | 0.0755
Y1994 0.0005 0.0439 0.01 0.991 | -0.0855 | 0.0865
Y1995 0.0011 0.0466 0.02 0.981 | -0.0903 | 0.0925
Y1996 0.0081 0.0491 0.17 0.868 | -0.0882 | 0.1044
Y1997 0.0200 0.0524 0.38 0.703 | -0.0828 | 0.1228
Y1998 0.0382 0.0568 0.67 0.502 | -0.0731 | 0.1494
Y1999 0.0683 0.0616 1.11 0.268 | -0.0524 | 0.1890
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Y2000 0.0879 0.0660 1.33 0.182 | -0.0413 | 0.2172
Y2001 0.1097 0.0690 1.59 0.112 | -0.0254 | 0.2449
Y2002 0.1349 0.0748 1.80 0.071 | -0.0117 | 0.2816
Y2003 0.1290 0.0811 1.59 0.112 | -0.0299 | 0.2879
Y2004 0.1415 0.0889 1.59 0.112 | -0.0329 | 0.3158
Y2005 0.1062 0.0971 1.09 0.274 | -0.0840 | 0.2965
Constant -0.0867 0.0571 -1.52 0.129 | -0.1987 | 0.0253

Exploration of Alternative Specifications

To explore the robustness of the negative association of RTO with renewables, we estimated a
number of different specifications. The first was to rerun the regression in Table 6 excluding the
6 states with no wind potential’®. Since these states have no possibility of generating electricity
from wind, they could be argued to be irrelevant to the analysis. The regression, shown in
Appendix B, continues to have RTO as a negative significant coefficient. A second run excluded
the 25 states that had no generation from wind in 2005°'. Some of these states may be on the
brink of constructing wind turbines and others may have considered and rejected wind turbines.
Thus, these states represent a number of different cases, but all are lumped into zero wind. We
reestimated the regression in Table 6 with just the states that had at least some wind generation.
Again the results are not much different from the regression with all 48 states, as shown in the
appendix. The RTO coefficient is still negative and significant.

Within the FGLS framework, we changed the state policy variables from the number of years a
state had these policies to a dummy variable indicating whether they had these policies. The
only substantial change was that the wind potential variable became statistically significant.
Another variation was to change the RTO variable so that instead of the number of years a state
was in an RTO, we used a dummy variable indicating whether it was in an RTO. This
specification used principle components for the state policy variables. The principal effect of
this change in the RTO specification was to make the RTO coefficient statistically insignificant,
although it continued to have a negative sign. One other variation was to estimate a model
whether RTO status was represented as a dummy variable and all 19 state policy variables were
used. In this regression, the RTO coefficient was positive but was not statistically significant.
We observe that there is a high correlation between the dummy variable for RTO membership
and some of the 19 state policy variables, although that problem is eliminated when using
principle components to represent the state policy variables.

We also estimated a number of different specifications for wind using OLS. In Appendix C.1 we
show summary results from 48 different regressions including every permutation of the
following:

3% AL, FL, IN, KY, LA, and MS.
3SUAL, AR, AZ, CT, DE, FL, GA, ID, IN, KY, LA, MA, MD, ME, MO, MS, MT, NC, NH, NJ, NV, RI, SC, UT,
and VA.
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Dependent Variable Specification — We examine six ways of measuring wind output: absolute
output Wind in MWh, as a percent of total MWh output %Wind, change in MWh of wind
output from the previous year AWind, change normalized by total MWh AWind/MWh,
change normalized by year 2005 MWh AWind/MWhys, and change in percentage wind
A(%Wind). Some of these options for specifying the independent variable partially
mitigate the autocorrelation problem because they deal with the change in wind output
rather than the value at any one time.

RTO Status Specification — We specify RTO status in one of the four ways. In two of the ways
we use the number of years with a particluar RTO status with RTO or the combination of
the two variables RTOFull and RTOPart. In the remaining two ways we use the analogous
dummy variables for status.

Lagged Left-Hand Variable — We run the regressions in two ways. Once by excluding any
lagged variable and once by including the value of the left-hand variable that applied in the
previous year.

Summary results from these 48 specifications are contained in Appendix C.1. A summary of the
regression results indicates the robustness of our finding of a negative correlation between RTO
membership and wind.

Of these specifications we find the following summary results relating to the possible
relationship between wind and RTO status.

e In 3 specifications, the estimated coefficient of RTO is positive and significant. These
estimates are unreliable because the three specifications have the worst problems with
autocorrelation. We restimated these specifications using FGLS to correct for
autocorrelation and heterskedasticity. When the problems with the residuals are
corrected, two of the three regressions change in that the positive coefficient of RTO
loses statistical significance. Thus, after correcting for problems in the residuals, only
one regression has a positive, significant coefficient of RTO.

e In 24 specifications, the estimated coefficient of RTO is negative and significant.
Various problems make some of these estimates unreliable.

e In 21 specifications, the estimated coefficients are not statistically significant, although
most are negative.

Given the range of specifications for the relationship between wind generation and membership
in an RTO, we think it unlikely that a plausible alternative specification with these data that
performs well on measures of autocorrelation and heteroscedasticity would find a positive
relationship that was statistically significant. From these results we see that the data do not show
evidence of a positive association between RTO membership and wind output, controlling for
other factors. The data suggest rather that there is a negative relationship between the two,
although we cannot assert that the relationship is causal.
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4.3 Solar and Geothermal

Our analysis of solar and geothermal indicated that too few states have developed these resources
to conclude whether there was a relationship between their development and membership in an
RTO.

4.4 Wood Biomass Results

RTO Significance

Investigating the relationship for wood biomass, we modified Equation (1) slightly by
substituting variables for the size of the biomass resource for the size of the wind resource to get
Equation (2).

S 8 2005
(2) iﬂv\\md = a, +agRTO+a GSP+a,, MWh+ o P rice+ o, Dem+ Yo, BioResh + D " PolicyP+ > o YT
5 b=1 p=l1 T=1992

Figure 8 displays the results from running the FGLS regression. The model does not fit the data;
the Wald y” test is not significant. None of the other variables are significant, although they are
positive except for GSP. The estimated coefficient of RTO is negative and insignificant. Even
after dropping all of the other variables, RTO status does not show a statistically significant
relationship with wood. This is probably because, as observed in Section 3, the variability of
wood output over time is much larger than any trend we could observe within any of the RTOs.
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Table 8. FGLS results regressing wood for electric generation on RTO status and other possible causal variables.

www.cmu.edu/electricity

FGLS Model Regression on Wood

Estimated Covariances 48 Number of Groups 48
Estimated Autocorrelations 48 Time Periods 15
Estimated Coefficients 33 Wald ¢*(28) 5.68
Number of Obs 720 | Prob >y’ 1.000
Variable Coefficient Standard z P> |z| 95% Confidence Interval
Estimate Error
RTO -0.0017 0.0075 -0.22 0.824 -0.0164 0.0131
GSP -0.0070 0.0246 -0.28 0.777 -0.0552 0.0413
MWh 0.0050 0.0230 0.22 0.827 -0.0400 0.0501
Price 0.0087 0.0194 0.45 0.655 -0.0294 0.0468
Dem 0.0114 0.0196 0.58 0.561 -0.0271 0.0499
BioRes1 0.0021 0.0133 0.16 0.874 -0.0239 0.0281
BioRes2 0.0000 0.0100 0.00 0.998 -0.0196 0.0197
BioRes3 0.0001 0.0151 0.01 0.993 -0.0295 0.0297
BioRes4 0.0016 0.0116 0.14 0.888 -0.0211 0.0244
BioRes5 0.0090 0.0168 0.53 0.593 -0.0239 0.0418
Policyl -0.0021 0.0114 -0.19 0.852 -0.0245 0.0202
Policy2 -0.0004 0.0101 -0.04 0.967 -0.0201 0.0193
Policy3 -0.0047 0.0144 -0.33 0.741 -0.0329 0.0234
Policy4 0.0075 0.0155 0.48 0.628 -0.0228 0.0378
Policy5 -0.0008 0.0122 -0.06 0.950 -0.0247 0.0232
Policy6 0.0069 0.0168 0.41 0.682 -0.0260 0.0398
Policy7 -0.0032 0.0149 -0.21 0.832 -0.0325 0.0261
Policy8 0.0031 0.0112 0.27 0.784 -0.0190 0.0251
Y1992 0.0154 0.0340 0.45 0.651 -0.0513 0.0820
Y1993 0.0152 0.0379 0.40 0.689 -0.0592 0.0895
Y1994 -0.0048 0.0396 -0.12 0.904 -0.0824 0.0728
Y1995 -0.0152 0.0409 -0.37 0.710 -0.0954 0.0650
Y1996 0.0078 0.0426 0.18 0.856 -0.0758 0.0913
Y1997 0.0042 0.0449 0.09 0.926 -0.0839 0.0922
Y1998 -0.0015 0.0478 -0.03 0.975 -0.0952 0.0922
Y1999 -0.0069 0.0509 -0.14 0.892 -0.1067 0.0928
Y2000 0.0018 0.0533 0.03 0.973 -0.1027 0.1063
Y2001 0.0028 0.0536 0.05 0.958 -0.1022 0.1078
Y2002 0.0294 0.0562 0.52 0.601 -0.0808 0.1395
Y2003 0.0303 0.0574 0.53 0.598 -0.0823 0.1428
Y2004 0.0238 0.0597 0.40 0.690 -0.0933 0.1409
Y2005 0.0266 0.0617 0.43 0.667 -0.0943 0.1475
Constant -0.0470 0.0343 -1.37 0.170 -0.1142 0.0201
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Exploration of Alternative Specifications

Again we have used OLS to estimate a wide range of plausible specifications with different
characterizations of wood consumption for electric generation as the dependent variable and
different explanatory variables. In Appendix C.2 we show summary results from 48 different
regressions including every permutation of the following:

Dependent Variable Specification — We examine six ways of measuring wood biomass
consumption for electric power production; consumption Wood in BTU, normalized by
total MWh output Wood/MWh, change in wood consumption from the previous year
AWood, change normalized by total MWh AWo0od/MWhy, change normalized by year 2005
MWh AWoo0d/MWhgs, and change in normalized wood consumption A(Wood/MWh). Some
of these options for specifying the independent variable will mitigate the autocorrelation
problem because they deal with the change in output rather than the value at any one time.

RTO Status Specification — We specify RTO status in one of the four ways. In two of the ways
we use the number of years with a particluar RTO status with RTO or the combination of
the two variables RTOFull and RTOPart. In the remaining two ways we use the analogous
dummy variables for status.

Lagged Left-Hand Variable — We run the regressions in two ways. Once by excluding any
lagged variable and once by including the value of the left-hand variable that applied in the
previous year.

Of these specifications we find the following summary results relating to the possible
relationship between wood and RTO status.
¢ In 8 specifications, the estimated coefficient of RTO is positive and statistically
significant. These results are unreliable because of autocorrelation.
e Under no specifications is the estimated coefficient of RTO negative and significant.
e In 40 specifications, the estimated coefficient of RTO is not statistically significant.

The regressions show that there may be a positive association between RTOs and the use of

wood biomass for production of electricity, but this is inconclusive because the relationship is
not statistically significant.
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45 Waste Biomass Results

RTO Significance

Because the biomass resource variables are indicators of both waste biomass and wood biomass
as discussed in Section 2, we have used the same explanation variables for waste biomass as for
wood biomass.

5 8 2005
= a, + g RTO+a; GSP+a,, MWh+ P rice+a, Dem+ Y ¢, BioResh+ >, PolicyP+ > a YT
b=1

p=1 T=1992

( 3) AWaste
MW

5

Table 9 displays the results from the FGLS regression Once again, the model does not pass the
Wald y? test for significance. However, the coefficients of the explanatory variables remain
positive and total generation, electricity price, and one of the biomass resources are statistically
significant. The estimated coefficient of RTO status remains negative and is bordering on
significant. When non-significant variables are omitted one at a time until only significant
variables remain®’, RTO status does become a significant negative predictor™.

32 In this case the remaining variables are RTO, Dem, and BioResb. The coefficient on Dem is positive and it has p-
value 0.001. The Wald y statistic then shows model significance with p-value = 0.0002.
33 With p-value 0.038.
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Table 9. FGLS results regressing waste for electric generation on RTO status and other possible causal variables.

FGLS Model Regression on Waste
Estimated Covariances 48 Number of Groups 48
Estimated Autocorrelations 48 Time Periods 15
Estimated Coefficients 33 Wald ¢*(28) 31.92
Number of Obs 720 Prob > y° 0.471
Variable Coefficient Standard , P>zl 95% Confidence
Estimate Error Interval

RTO -0.0202 0.0110 -1.83 0.068 -0.0418 | 0.0015

GSP 0.0107 0.0187 0.57 0.569 -0.0261 | 0.0474
MWh 0.0426 0.0193 2.21 0.027 0.0048 | 0.0804
Price 0.0418 0.0212 1.97 0.048 0.0003 | 0.0834
Dem 0.0150 0.0183 0.82 0.413 -0.0209 | 0.0510
BioRes1 0.0158 0.0123 1.28 0.201 -0.0084 | 0.0399
BioRes2 -0.0274 0.0106 -2.60 0.009 -0.0481 | -0.0067
BioRes3 -0.0129 0.0097 -1.33 0.184 -0.0320 | 0.0061
BioRes4 0.0052 0.0093 0.56 0.576 -0.0130 | 0.0235
BioRes5 -0.0023 0.0119 -0.19 0.848 -0.0255 | 0.0210
Policyl -0.0124 0.0134 -0.92 0.357 -0.0387 | 0.0140
Policy2 0.0114 0.0120 0.96 0.339 -0.0120 | 0.0349
Policy3 0.0164 0.0130 1.26 0.209 -0.0092 | 0.0419
Policy4 0.0007 0.0148 0.05 0.962 -0.0282 | 0.0296
Policy5 0.0043 0.0152 0.28 0.778 -0.0255 | 0.0341
Policy6 0.0057 0.0137 0.42 0.675 -0.0211 | 0.0326
Policy7 -0.0169 0.0127 -1.33 0.182 -0.0417 | 0.0079
Policy8 -0.0131 0.0113 -1.16 0.245 -0.0352 | 0.0090
Y1992 0.0064 0.0294 0.22 0.829 -0.0513 | 0.0640
Y1993 -0.0220 0.0332 -0.66 0.508 -0.0870 | 0.0431
Y1994 0.0035 0.0346 0.10 0.919 -0.0643 | 0.0714
Y1995 0.0027 0.0357 0.08 0.939 -0.0672 | 0.0726
Y1996 -0.0015 0.0369 -0.04 0.967 -0.0739 | 0.0708
Y1997 -0.0025 0.0383 -0.06 0.949 -0.0775 | 0.0726
Y1998 -0.0128 0.0397 -0.32 0.747 -0.0907 | 0.0651
Y1999 -0.0124 0.0413 -0.30 0.765 -0.0934 | 0.0686
Y2000 -0.0030 0.0428 -0.07 0.944 -0.0869 | 0.0808
Y2001 -0.0050 0.0427 -0.12 0.906 -0.0887 | 0.0786
Y2002 0.0029 0.0443 0.07 0.947 -0.0840 | 0.0898
Y2003 -0.0233 0.0454 -0.51 0.607 -0.1123 | 0.0656
Y2004 -0.0235 0.0471 -0.50 0.618 -0.1159 | 0.0689
Y2005 -0.0407 0.0490 -0.83 0.406 -0.1368 | 0.0554
Constant 0.0078 0.0310 0.25 0.802 -0.0530 | 0.0686
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Exploration of Alternative Specifications

Again we have used OLS to estimate a wide range of plausible specifications with different
characterizations of waste consumption for electric generation as the dependent variable and
different explanatory variables. In Appendix C.3 we show summary results from 48 different
regressions including every permutation of the following:

Dependent Variable Specification — We examine six ways of measuring wood biomass
consumption for electric power production; consumption Wood in BTU, normalized by
total MWh output Waste/MWh, change in wood consumption from the previous year
AWaste, change normalized by total MWh AWaste/MWhy, change normalized by year 2005
MWh AWaste/MWhys, and change in normalized wood consumption A(Waste/MWh).

Some of these options for specifying the independent variable will mitigate the
autocorrelation problem because they deal with the change in output rather than the value
at any one time.

RTO Status Specification — We specify RTO status in one of the four ways. In two of the ways
we use the number of years with a particluar RTO status with RTO or the combination of
the two variables RTOFull and RTOPart. In the remaining two ways we use the analogous
dummy variables for status.

Lagged Left-Hand Variable — We run the regressions in two ways. Once by excluding any
lagged variable and once by including the value of the left-hand variable that applied in the
previous year.

Of these specifications we find the following summary results relating to the possible
relationship between waste and RTO status.
e In I specification, the data show a significant, positive correlation between RTO
membership and waste. This regression shows some of the worst autocorrelation.
e In 2 specifications, the data show a significant, negative correlation between RTO
membership and geothermal. Each regression shows problematic autocorrelation.
e In 45 specifications, the data show no significant correlation between RTO membership
and waste biomass. Some of these regressions have autocorrelation problems or low
explanatory power, but many of them have neither problem.

Based on the results from the OLS and FGLS investigations, we find some weak evidence for a
negative relationship between RTO membership and waste biomass, but the finding is not robust.
Although we cannot say decisively whether there is or is not a negative relationship between
RTOs and waste, these results show that there certainly is not a positive relationship.
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5 Conclusions and Recommendations

The development of renewables began well before the RTOs were organized, although the use of
wind grew rapidly after RTOs began. A feasible generalized least squares analysis of a structural
model showed that, after accounting for factors known to influence wind development, the
relationship between wind and RTO was negative and statistically significant. We explored a
wide range of alternative specifications using both FGLS and ordinary least squares to explore a
wide range of plausible specifications. In 48 regressions, the RTO coefficient was significantly
positive under 3 specifications, significant and negative under 24 different specifications, and
insignificant under 21 specifications. When the three regressions with positive, significant
coefficients for RTO under OLS were reestimated using FGLS, only one continued to be
statistically significant.

For solar and geothermal, too few states have developed these resources to allow a confident
statement about the relationship between development of these renewables and membership in an
RTO. For wood waste and biomass waste, the models did not fit the data well. Membership in
an RTO was negatively correlated with development of these resources under FGLS, although
the relationships are so weak that they do not pass significance tests. There is a hint of a positive
relationship between electricity from wood and RTO membership.

We conclude that there is no evidence that membership in an RTO promoted the development of
renewables. The statistical analysis indicates that membership in an RTO is negatively
correlated with wind development, but we have no explanation as to why this would be true and
so leave this result for further investigation.
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Appendix A Principal Components

The sets of raw data representing state renewables policies and biomass resource
availability are highly multicollinear. To remedy the problems, we computed the
principal components within each data set and kept a smaller number of principal
components that explain most of the variation.

A.l1  State Renewables Policy Data

Figure 13 shows the variance accounted for versus the number of principal components
for state renewables policies. The variable is the number of years since 1990 that the
policy has been in place. If a policy has been in place longer than 1990, only the length
of time since 1990 is counted. We keep the top eight principal components from Figure
13 to use our regressions. Adding the next component would represent less than 4% of
the variation in the data.

Years in Effect of Renewables Policies
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Figure 13. Variance accounted for versus number of principal components, years with state renewables
policies.
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A.2 Biomass Resource Data

Figure 14 shows variance accounted for versus number of principal components for the
28 biomass resource variables available by state. We keep the top five principal
components to use in our regressions. The next component explains roughly another 2%
of the variation in the data.

Biormass Resource Data
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Figure 14. Variance accounted for versus number of principal components, biomass resource variables.
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Appendix B FGLS Regressions without the No-Wind States

Table 8 and Table 9 show the wind regression from Table 6 after excluding the 6 states
with no wind potential and the 25 states with no wind output by 2005 respectively.

Table 8. Wind Regression from Table 6 after removing states with no wind potential34.

FGLS Model Regression on Wind

Estimated Covariances 42 Number of Groups 42
Estimated Autocorrelations 42 Time Periods 15
Estimated Coefficients 29 Wald x°(28) 88.2
Number of Obs 630 Prob >y’ 0.0000
Variable Coefficient | Standard Error z P> |z| 95% Interval
RTO -0.0971 0.0172 -5.65 0.000 -0.1307 | -0.0634
GSP 0.0567 0.0307 1.85 0.065 -0.0035 | 0.1169
MWh 0.0247 0.0414 0.60 0.552 -0.0565 | 0.1058
Price 0.0224 0.0343 0.65 0.514 -0.0448 | 0.0897
Dem -0.0180 0.0631 -0.29 0.775 -0.1417 | 0.1057
WindPot 0.0457 0.0564 0.81 0.418 -0.0649 | 0.1563
Policyl -0.0049 0.0372 -0.13 0.896 -0.0778 | 0.0681
Policy2 0.1170 0.0380 3.08 0.002 0.0426 | 0.1914
Policy3 0.1635 0.0374 4.37 0.000 0.0902 | 0.2368
Policya 0.1228 0.0524 2.34 0.019 0.0200 | 0.2256
Policy5 -0.1520 0.0516 -2.94 0.003 -0.2532 | -0.0508
Policy6 0.1375 0.0464 2.96 0.003 0.0466 | 0.2284
Policy7 0.0881 0.0430 2.05 0.041 0.0038 | 0.1723
Policy8 0.0213 0.0349 0.61 0.541 -0.0470 | 0.0896
Y1992 -0.0009 0.0422 -0.02 0.983 -0.0835 | 0.0818
Y1993 0.0003 0.0521 0.01 0.995 -0.1018 | 0.1024
Y1994 0.0006 0.0566 0.01 0.991 -0.1102 | 0.1115
Y1995 0.0004 0.0588 0.01 0.995 -0.1149 | 0.1157
Y1996 0.0093 0.0605 0.15 0.878 -0.1092 | 0.1279
Y1997 0.0239 0.0618 0.39 0.698 -0.0971 | 0.1450
Y1998 0.0742 0.0638 1.16 0.245 -0.0509 | 0.1993
Y1999 0.1469 0.0676 2.17 0.030 0.0144 | 0.2793
Y2000 0.2111 0.0731 2.89 0.004 0.0678 | 0.3544
Y2001 0.2821 0.0791 3.57 0.000 0.1270 | 0.4372
Y2002 0.3887 0.0898 4.33 0.000 0.2127 | 0.5646
Y2003 0.4274 0.0996 4.29 0.000 0.2322 | 0.6227
Y2004 0.5557 0.1113 4.99 0.000 0.3377 | 0.7738
Y2005 0.5854 0.1256 4.66 0.000 0.3392 | 0.8315
Constant -0.1548 0.0597 -2.59 0.009 -0.2718 | -0.0378

3 AL, FL, IN, KY, LA, and MS.
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Table 9. Wind Regression from Table 6 after removing states with no wind output by 2005
FGLS Model Regression on Wind
Estimated Covariances 25 Number of Groups 25
Estimated Autocorrelations 25 Time Periods 15

Estimated Coefficients 29 Wald ¢*(28) 145.5
Number of Obs 375 | Prob>y® 0.0000

Variable Coefficient Standard , P>z 95% Confidence

Estimate Error Interval

RTO -0.1809 0.0386 -4.69 0.000 -0.2565 | -0.1052
GSP 0.2008 0.0897 2.24 0.025 0.0250 | 0.3766
MWh -0.0082 0.0662 -0.12 0.901 -0.1379 | 0.1215
Price 0.0757 0.0886 0.85 0.393 -0.0979 | 0.2492
Dem -0.0281 0.0992 -0.28 0.777 -0.2225 | 0.1663
WindPot 0.0008 0.0003 2.29 0.022 0.0001 | 0.0014
Policyl -0.0276 0.0917 -0.30 0.764 -0.2073 | 0.1522
Policy?2 0.0531 0.1025 0.52 0.605 -0.1478 | 0.2540
Policy3 0.1324 0.1547 0.86 0.392 -0.1707 | 0.4355
Policy4 -0.2145 0.3159 -0.68 0.497 -0.8336 | 0.4045
Policy5 0.2797 0.3809 0.73 0.463 -0.4669 | 1.0262
Policy6 0.1186 0.0800 1.48 0.138 -0.0382 | 0.2755
Policy7 0.0212 0.1082 0.20 0.845 -0.1910 | 0.2333
Policy8 0.0918 0.0704 1.30 0.193 -0.0463 | 0.2298
Y1992 -0.0485 0.1044 -0.46 0.643 -0.2531 | 0.1562
Y1993 -0.0371 0.1305 -0.28 0.776 -0.2928 | 0.2187
Y1994 -0.0503 0.1437 -0.35 0.726 -0.3319 | 0.2314
Y1995 -0.0807 0.1508 -0.54 0.592 -0.3762 | 0.2148
Y1996 -0.0793 0.1562 -0.51 0.612 -0.3854 | 0.2268
Y1997 -0.0832 0.1608 -0.52 0.605 -0.3985 | 0.2320
Y1998 -0.0052 0.1681 -0.03 0.975 -0.3347 | 0.3243
Y1999 0.1338 0.1790 0.75 0.455 -0.2170 | 0.4846
Y2000 0.1783 0.1822 0.98 0.328 -0.1789 | 0.5355
Y2001 0.2868 0.1904 1.51 0.132 -0.0864 | 0.6600
Y2002 0.5914 0.2054 2.88 0.004 0.1889 | 0.9940
Y2003 0.5409 0.2157 2.51 0.012 0.1181 | 0.9636
Y2004 1.0117 0.2373 4.26 0.000 0.5466 | 1.4769
Y2005 0.8365 0.2597 3.22 0.001 0.3275 | 1.3455
Constant 0.1251 0.1947 0.64 0.521 -0.2565 | 0.5066

¥ AL, AR, AZ, CT, DE, FL, GA, ID, IN, KY, LA, MA, MD, ME, MO, MS, MT, NC, NH, NJ, NV, RI,

SC, UT, and VA.
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Appendix C RTO Significance under Other Specifications

This appendix contains summary results for various specifications of the OLS regression
equations outlined in Section 4. The summary data contain only primary model results
and results relating to the RTO status variables.

For each specification we report the Durbin-Watson statistic d as generalized for panel
data [28]. A value very close to 2 indicates no autocorrelation; the closer the value is to
0, the greater the autocorrelation and the less reliable the regression results. We also
report adjusted R” values.

The following results represent parsimonious models that include only significant
predictors and yearly dummy variables. We have used the following algorithm for
selecting significant predictor variables. Start with no predictor variables in the model.
Add a variable if it has the lowest p-value for available additional variables and it has p-
value < 0.05 from the t-test. Then subtract any variables that have p-values > 0.05
starting with the highest first. Stop adding and removing variables when no variables
meet the criteria for adding or subtracting variables.

Variables representing RTO status are not only those introduced in Table 1 RTO,
RTOFull, and RTOPart indicating the number of years that a state has had a particular
RTO status, but also their analogous dummy variables ORTO, SRTOFull, and SRTOPart
that indicate the corresponding RTO status. When states changed RTO status mid-year,
the dummy variables are given fractional values representing the fraction of the year that
the state had a particular status.

For each renewables type, we have separated the results into two tables. The first table
has results for all of the specifications that do not include a lagged left-hand variable in
the regression. The second table contains the results under specifications that do include
a lagged variable.
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Table 10. Regression results for 24 different model specifications predicting wind generation as a function

of RTO status without using lagged variables.

Dependent Overall Model Results ORTOFull ORTOPart
Variable Adj R? d Coefficient | p-value | Coefficient | p-value
Wind 0.6764 0.1020 0.1172 0.0000 -0.0225 0.2820
% 0.4722 0.2117 -0.1014 0.0016 -0.0492 0.0748
AWind 0.2558 1.5999 0.0663 0.0779 -0.0479 0.1519
AWind/MWh 0.1518 1.3935 -0.0607 0.1175 -0.0597 0.0934
AWind/MWhs 0.1533 1.4029 -0.0660 0.0923 -0.0741 0.0375
A(%Wind) 0.1621 1.4222 -0.0724 0.0648 -0.0685 0.0540
Dependent Overall Model Results RTOFull RTOPart
Variable Adj R’ d Coefficient | p-value | Coefficient p-value
Wind 0.6726 0.1017 0.0749 0.0033 -0.0424 0.0497
% 0.4925 0.2097 -0.1393 0.0000 -0.1367 0.0000
AWind 0.2558 1.5999 -0.0193 0.6092 -0.0446 0.1951
AWind/MWh 0.1823 1.4520 -0.1795 0.0000 -0.0991 0.0079
AWind/MWhs 0.1798 1.4687 -0.1755 0.0000 -0.1025 0.0061
A(%Wind) 0.1906 1.4759 -0.1792 0.0000 -0.1045 0.0049
Dependent Overall Model Results ORTO
Variable Adj R® d Coefficient | p-value
Wind 0.6727 0.1012 0.0885 0.0006
% 0.4737 0.2132 -0.1180 0.0003
AWind 0.2558 1.5999 0.0366 0.3386
AWind/MWh 0.1654 1.4317 -0.1367 0.0017
AWind/MWh; 0.1635 1.4489 -0.1376 0.0016
A(%Wind) 0.1737 1.4559 -0.1418 0.0010
Dependent Overall Model Results RTO
Variable Adj R? d coefficient | p-value
Wind 0.6694 0.1007 0.0391 0.1288
% 0.4917 0.2090 -0.1990 0.0000
AWind 0.2558 1.5999 -0.0397 0.2992
AWind/MWh 0.1833 1.4525 -0.2117 0.0000
AWind/MWhs 0.1806 1.4695 -0.2097 0.0000
A(%Wind) 0.1914 1.4765 -0.2141 0.0000

C-42



Spees and Lave
Appendices

Table 11. Regression results for 24 different model specifications predicting wind generation as a function
of RTO status including lagged variables.

Dependent Overall Model Results ORTOFull ORTOPart
Variable Adj R? d Coefficient p-value Coefficient p-value
Wind 0.9732 1.6883 0.0089 0.2120 -0.0085 0.1785
% 0.9063 1.6060 -0.0166 0.2071 -0.0176 0.1356
AWind 0.2568 1.6000 0.0663 0.0777 -0.0479 0.1516
AWind/MWh 0.1830 1.6790 -0.0498 0.2118 -0.0717 0.0483
AWind/MWh; 0.1776 1.6663 -0.0465 0.2452 -0.0865 0.0176
A(%Wind) 0.1848 1.6695 -0.0480 0.2291 -0.0858 0.0180
Dependent Overall Model Results RTOFull RTOPart
Variable Adj R d Coefficient p-value | Coefficient | p-value
Wind 0.9732 1.6883 -0.0064 0.3750 -0.0071 0.2729
% 0.9081 1.6391 -0.0479 0.0004 -0.0236 0.0543
AWind 0.2568 1.6000 -0.0193 0.6090 -0.0446 0.1948
AWind/MWh 0.1991 1.6862 -0.1438 0.0006 -0.1030 0.0066
AWind/MWhs 0.1920 1.6747 -0.1421 0.0008 -0.1077 0.0047
A(%Wind) 0.2040 1.6779 -0.1589 0.0002 -0.0995 0.0091
Dependent Overall Model Results ORTO
Variable Adj R? d Coefficient p-value
Wind 0.9732 1.6883 0.0037 0.6053
% 0.9062 1.6060 -0.0259 0.0555
AWind 0.2568 1.6000 0.0366 0.3382
AWind/MWh 0.1794 1.6764 -0.0753 0.0649
AWind/MWhs 0.1717 1.6635 -0.0778 0.0576
A(%Wind) 0.1790 1.6664 -0.0789 0.0531
Dependent Overall Model Results RTO
Variable Adj R d coefficient p-value
Wind 0.9732 1.6883 -0.0091 0.2029
% 0.9085 1.6369 -0.0565 0.0001
AWind 0.2568 1.6000 -0.0397 0.2989
AWind/MWh 0.1993 1.6856 -0.1802 0.0000
AWind/MWh; 0.1919 1.6740 -0.1809 0.0000
A(%Wind) 0.2048 1.6775 -0.1930 0.0000
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C.2  Additional Biomass Wood Specifications

Table 12. Regression results for 24 different model specifications predicting biomass wood consumption
for electric generation as a function of RTO status without using lagged variables.

Dependent Overall Model Results ORTOFull ORTOPart
Variable Adj R’ d Coefficient p-value Coefficient p-value
Wood 0.4891 0.0773 0.0750 0.0350 -0.0015 0.9578
Wood/MWh 0.2994 0.0908 0.1490 0.0002 -0.0034 0.9138
AWood 0.0170 2.1854 0.0555 0.1758 -0.0070 0.8523
AWood/MWh -0.0032 2.0056 0.0147 0.7111 -0.0083 0.8227
AWood/MWh;s 0.0050 1.4993 0.0851 0.0320 -0.0036 0.9217
A(Wood/MWh) 0.0019 1.4569 0.0776 0.0505 -0.0119 0.7469
Dependent Overall Model Results RTOFull RTOPart
Variable Adj R d Coefficient | p-value | Coefficient | p-value
Wood 0.4898 0.0758 0.0809 0.0198 -0.0186 0.5315
Wood/MWh 0.2963 0.0868 0.1281 0.0013 -0.0152 0.6321
AWood 0.0170 2.1854 0.0626 0.1266 -0.0186 0.6217
AWood/MWh -0.0032 2.0056 0.0240 0.5480 -0.0084 0.8208
AWood/MWh;s 0.0002 1.4861 0.0620 0.1202 -0.0162 0.6611
A(Wood/MWh) 0.0019 1.4569 0.0539 0.1766 -0.0147 0.6895
Dependent Overall Model Results JORTO
Variable Adj R? d Coefficient | p-value
Wood 0.4867 0.0756 0.0625 0.0811
Wood/MWh 0.2919 0.0883 0.1237 0.0020
AWood 0.0170 2.1854 0.0497 0.2360
AWood/MWh -0.0032 2.0056 0.0102 0.8019
AWood/MWhs 0.0002 1.4861 0.0762 0.0603
A(Wood/MWh) 0.0019 1.4569 0.0693 0.0876
Dependent Overall Model Results RTO
Variable Adj R d coefficient p-value
Wood 0.4867 0.0756 0.0613 0.0795
Wood/MWh 0.2918 0.0866 0.0999 0.0108
AWood 0.0170 2.1854 0.0478 0.2517
AWood/MWh -0.0032 2.0056 0.0183 0.6518
AWood/MWh;s 0.0002 1.4861 0.0498 0.2190
A(Wood/MWh) 0.0019 1.4569 0.0430 0.2886
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Table 13. Regression results for 24 different model specifications predicting biomass wood consumption
for electric generation as a function of RTO status including lagged variables.

Dependent Overall Model Results ORTOFull ORTOPart
Variable Adj R’ d Coefficient | p-value | Coefficient | p-value
Wood 0.9604 2.1730 0.0136 0.1072 -0.0017 0.8252
Wood/MWh 0.9452 2.0073 0.0034 0.7221 -0.0019 0.8267
AWood 0.0164 2.1860 0.0555 0.1760 -0.0070 0.8524
AWood/MWh -0.0038 2.0066 0.0147 0.7112 -0.0083 0.8227
AWood/MWh s 0.0058 1.4998 0.0851 0.0319 -0.0036 0.9217
A(Wood/MWh) 0.0027 1.4574 0.0776 0.0504 -0.0119 0.7468
Dependent Overall Model Results RTOFull RTOPart
Variable Adj R? d Coefficient | p-value | Coefficient | p-value
Wood 0.9604 2.1730 0.0153 0.0716 -0.0040 0.5958
Wood/MWh 0.9452 2.0073 0.0057 0.5531 -0.0019 0.8247
AWood 0.0164 2.1860 0.0626 0.1267 -0.0186 0.6218
AWood/MWh -0.0038 2.0066 0.0240 0.5481 -0.0084 0.8209
AWood/MWhys 0.0010 1.4866 0.0620 0.1200 -0.0162 0.6610
A(Wood/MWh) 0.0027 1.4574 0.0539 0.1764 -0.0147 0.6894
Dependent Overall Model Results ORTO
Variable Adj R’ d Coefficient | p-value
Wood 0.9604 2.1730 0.0120 0.1624
Wood/MWh 0.9452 2.0073 0.0023 0.8157
AWood 0.0164 2.1860 0.0497 0.2361
AWood/MWh -0.0038 2.0066 0.0102 0.8019
AWood/MWhs 0.0010 1.4866 0.0762 0.0601
A(Wood/MWh) 0.0027 1.4574 0.0693 0.0875
Dependent Overall Model Results RTO
Variable Adj R® d coefficient | p-value
Wood 0.9604 2.1730 0.0115 0.1759
Wood/MWh 0.9452 2.0073 0.0043 0.6604
AWood 0.0164 2.1860 0.0478 0.2519
AWood/MWh -0.0038 2.0066 0.0183 0.6519
AWood/MWh;s 0.0010 1.4866 0.0498 0.2189
A(Wood/MWh) 0.0027 1.4574 0.0430 0.2884

C-45



Spees and Lave
Appendices

C.3 Additional Biomass Waste Specifications

Table 14. Regression results for 24 different model specifications predicting biomass waste consumption
for electric generation as a function of RTO status without using lagged variables.

Dependent Overall Model Results ORTOFull ORTOPart
Variable Adj R? d Coefficient p-value Coefficient | p-value
Waste 0.8368 0.1485 0.0114 0.5788 0.0606 0.0001
Waste /MWh 0.5449 0.1225 -0.0256 0.4353 0.0232 0.3738
A Waste 0.0361 2.3457 -0.0083 0.8378 0.0277 0.4603
A Waste /MWh -0.0032 1.9637 -0.0535 0.1784 0.0178 0.6317
A Waste /MWhs 0.0028 2.5983 0.0092 0.8172 0.0159 0.6665
A( Waste /MWh) 0.0122 2.2305 0.0037 0.9281 0.0136 0.7201
Dependent Overall Model Results RTOFull RTOPart
Variable Adj R d Coefficient | p-value | Coefficient | p-value
Waste 0.8355 0.1396 -0.0331 0.0951 0.0523 0.0027
Waste /MWh 0.5490 0.1240 -0.0886 0.0054 0.0150 0.5925
A Waste 0.0361 2.3457 -0.0403 0.3209 0.0189 0.6142
A Waste /MWh -0.0032 1.9637 -0.0568 0.1552 0.0122 0.7405
A Waste /MWhs 0.0028 2.5983 -0.0304 0.4461 0.0138 0.7091
A( Waste /MWh) 0.0122 2.2305 -0.0614 0.1351 0.0133 0.7247
Dependent Overall Model Results ORTO
Variable Adj R d Coefficient | p-value
Waste 0.8344 0.1394 0.0423 0.0399
Waste /MWh 0.5443 0.1225 -0.0084 0.8014
A Waste 0.0361 2.3457 0.0063 0.8797
A Waste /MWh -0.0032 1.9637 -0.0431 0.2889
A Waste /MWhgs 0.0028 2.5983 0.0167 0.6812
A( Waste /MWh) 0.0122 2.2305 0.0106 0.8013
Dependent Overall Model Results RTO
Variable Adj R® d coefficient p-value
Waste 0.8337 0.1379 -0.0014 0.9430
Waste /MWh 0.5467 0.1234 -0.0718 0.0276
A Waste 0.0361 2.3457 -0.0274 0.5075
A Waste /MWh -0.0032 1.9637 -0.0469 0.2486
A Waste /MWhs 0.0028 2.5983 -0.0217 0.5918
A( Waste /MWh) 0.0122 2.2305 -0.0493 0.2382
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Table 15. Regression results for 24 different model specifications predicting biomass waste consumption

for electric generation as a function of RTO status including lagged variables.

Dependent Overall Model Results ORTOFull ORTOPart
Variable Adj R? d Coefficient | p-value | Coefficient | p-value
Waste 0.9780 2.3454 -0.0013 0.8351 0.0043 0.4564
Waste /MWh 0.9374 1.9281 0.0004 0.9683 0.0046 0.6200
A Waste 0.0373 2.3458 -0.0083 0.8377 0.0277 0.4600
A Waste /MWh -0.0019 1.9637 -0.0535 0.1781 0.0178 0.6315
A Waste /MWhs 0.0040 2.5983 0.0092 0.8171 0.0159 0.6663
A( Waste /MWh) 0.0133 2.2305 0.0037 0.9281 0.0136 0.7199
Dependent Overall Model Results RTOFull RTOPart
Variable Adj R d Coefficient | p-value | Coefficient | p-value
Waste 0.9780 2.3454 -0.0065 0.3075 0.0030 0.6048
Waste /MWh 0.9374 1.9281 -0.0031 0.7638 0.0052 0.5754
A Waste 0.0373 2.3458 -0.0403 0.3207 0.0189 0.6140
A Waste /MWh -0.0019 1.9637 -0.0568 0.1549 0.0122 0.7403
A Waste /MWhys 0.0040 2.5983 -0.0304 0.4458 0.0138 0.7089
A( Waste /MWh) 0.0133 2.2305 -0.0614 0.1349 0.0133 0.7245
Dependent Overall Model Results JORTO
Variable Adj R? d Coefficient | p-value
Waste 0.9780 2.3454 0.0011 0.8683
Waste /MWh 0.9373 1.9281 0.0029 0.7877
A Waste 0.0373 2.3458 0.0063 0.8796
A Waste /MWh -0.0019 1.9637 -0.0431 0.2886
A Waste /MWhy;s 0.0040 2.5983 0.0167 0.6810
A( Waste /MWh) 0.0133 2.2305 0.0106 0.8012
Dependent Overall Model Results RTO
Variable Adj R d coefficient | p-value
Waste 0.9780 2.3454 -0.0046 0.4889
Waste /MWh 0.9373 1.9281 -0.0003 0.9769
A Waste 0.0373 2.3458 -0.0274 0.5072
A Waste /MWh -0.0019 1.9637 -0.0469 0.2483
A Waste /MWhs 0.0040 2.5983 -0.0217 0.5916
A( Waste /MWh) 0.0133 2.2305 -0.0493 0.2379
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