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Power produced by utility-scale solar photovoltaic (PV) systems has fluctuations on 

both short and long timescales.  Power spectral density analysis provides 

information on the character of these power fluctuations. Examination of the 

correlation and step size of the power output between several PV sites within a 

multi-site system allows assessment of geographic diversification for addressing 

intermittency. Both techniques provide insight into the characteristics of required 

firm power and / or demand response required to accommodate large-scale PV 

deployment. 
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1. INTRODUCTION 

 
At large scale, the intermittent character of power generated from sources such as 

wind and solar photovoltaic (PV) systems can affect power quality and reliability. The 

effects of PV intermittency on grid voltage have been previously modeled.1, 2 Recently, 

the effects of PV at high penetration levels in a traditional electricity system have been 

examined by using hourly average insolation as a proxy for PV power output and real 

load data with hourly time resolution.3 Monthly averages of real power output data from 

large-scale photovoltaic power plants have been published.4, 5 

Here, we present analyses of real power output data with 10 second and 1 minute 

resolution from a single 4 MW site and data with 10 minute resolution from three ~100 

kW sites. The power spectral density (PSD) of the output of large-scale PV can provide 

insight into the character of both cyclic (daily and seasonal) and non-cyclic (weather-

related) fluctuations associated with array output. Power spectral analysis can give an 

indication of the type of firm power or demand response appropriate to compliment PV, 

including required ramp rate.6 Comparison of the output from several distributed sites 

provides information about geographic smoothing, previously examined for distributed 

wind power.6-9 The statistics of correlation between distributed sites in the time domain 

can also be used to assess geographic smoothing, an approach used previously to evaluate 

the impact of site diversity on wind power.10 

 

2. DATA 

 
Data were obtained from two sources. The first was a 4.59 MWp fixed latitude-tilt, 

south facing array operated by Tucson Electric Power (TEP) on a 44 acre site in 

northeastern Arizona.11 Real power output data sampled at 10 second intervals were 

obtained for two months, January - February 2007: a portion is shown in Figure 1.12 The 

observed capacity factor for these two winter months was 18.1%. Real power output data 

were also obtained with a sampling rate of once per minute for 2 years (January 2004 - 

December 2005). Figure 2 presents an example of power output from the array on June 3, 

2004.13 The observed capacity factor over the two years was 19.1%. 
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The second data source was three single-axis, horizontal tracking (east to west) 

systems operated by Arizona Public Service (APS): a 228.5 kWp system in Prescott, 

Arizona, a 144 kWp system in Scottsdale, Arizona, and a 121 kWp system in Yuma, 

Arizona14 (relative locations are shown in Figure 3). Approximately one month of 

consecutive data (June 22 - July 27, 2006) with 10 minute sampling frequency was 

analyzed (four days of these data are shown in Figure 4). The capacity factors over this 

summer period were 24.2, 26.7 and 26.8% for the three locations respectively. We also 

calculated winter capacity factors for the APS arrays for December 21, 2005 (14:00:00) 

to January 17, 2006 (08:00:00); they were 13.3, 11.9, and 13.2%, respectively. 

 

3. GEOGRAPHIC CORRELATION AND STEP SIZE ANALYSIS 

 
The linear correlation of the real power output between pairs of the 3 APS sites was 

computed using data from daylight hours and normalizing the arrays to nameplate peak 

capacity. The sites exhibit a high degree of positive correlation despite their geographic 

separation (Table 1), which will constrain the use of site diversification for damping 

fluctuations in this geographic region.  

One technique used in wind analysis is to calculate the step size of the difference in 

power between two consecutive power output samples.10 As for wind, the average, 

maximum, and standard deviation of the magnitude of the step sizes decrease for the sum 

of the three APS sites relative to the sites individually (Table 2). The histogram of steps 

(Figure 5) indicates that some damping of the higher magnitude fluctuations (above about 

20% of nameplate capacity) occurs (Figure 5b), as previously observed for wind power 

output.8, 9 We caution that these data are 10-minute samples, and that one array (Prescott) 

has twice the peak power output either of the other two. Samples at higher time resolution 

may show different behavior, and the variability of the Prescott data dominates the sum. 

 

4. POWER SPECTRA  

 
The method used to estimate the power spectrum of power output has been described 

previously.6 The power spectrum was estimated for the TEP site for 2 years of 1 minute 

resolution data (Figure 6) and for 2 months of 10 second resolution data (Figure 7). In 
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both, a peak is observed at a frequency of 1.16 x 10-5 Hz (24 hours) and is an expected 

result of the cyclic daily availability of the solar resource; higher harmonics of 1 day are 

also present, as expected in a Fourier transform. The linear region of the power spectrum 

(frequency f greater than approximately 2 x 10-3 Hz) is well fit by a function of the form  

f -1.3 for all data sets. In contrast, the power spectrum of wind turbine output power is a 

Kolmogorov spectrum (f -5/3).6 

The flatter PV power spectrum implies that fluctuations in the 10 minute to several 

hour range are relatively larger in magnitude for PV than for wind at the sites examined. 

Assuming an electric power system like the one in place today, this implies an increased 

need for dispatchable power or dispatchable demand response to compensate for PV 

fluctuations in this frequency region relative to wind, which is likely to make 

compensating for the intermittency of PV more expensive than for wind.  

The high frequency attenuation of fluctuations (above ~ 5 x 10-3 Hz, Figures 6 and 7) 

may be due in part to the time required for a cloud shadow to cross the full array. If this 

hypothesis is correct, it might be expected that the low-pass filtering effect seen in the 

PSD of a small portion of the array would be shifted to higher frequencies relative to the 

PSD of the full array. We have examined sub-array data for 2007 at 10 second resolution, 

and the power spectrum from a single, 135 kWp unit within the larger TEP array (Figure 

8) appears to confirm this hypotheses.  

The power spectrum for a single APS site is very similar to that from the three 

combined sites (Figure 9). For wind, Nanahara et al. report smoothing when combining 

output from six turbines relative to a single turbine as a change in the slope of the power 

spectrum; they report an attenuation of the magnitude of fluctuations of frequencies 

above ~1.0 x 10-3 Hz.8 The available data for the present study limits our observations to 

frequencies below 8.3 x 10-4 Hz, but it appears from the spectral analysis that fluctuations 

slower than this frequency (20 minutes) and faster than ~2 x 10-5 Hz (14 hours) are not 

significantly diminished due to site diversity over several hundred km. 

For wind, at frequencies between 1 hour and 2.5 minutes the slope of the power 

spectrum has been reported to be very close to that of load.6 Therefore over that interval, 

it appears reasonable to treat wind as negative load (although because load and wind 

power are not anti-correlated, this is not the same as stating that the two cancel each other 
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out to create a smooth match between load and supply). PV power output exhibits no 

similar match in slope with the power spectrum of load in any frequency region, implying 

a need for increased firm power relative to wind. 

 

5. DISCUSSION 

 
The intermittency of large-scale PV power for four sites in the American southwest 

desert is significant, even during daylight hours. These data also imply that site diversity 

over a ~280 km range does not dampen PV intermittency sufficiently to eliminate the 

need for substantial firm power or dispatchable demand response.  

The high correlation between geographically dispersed arrays may indicate that high, 

widespread clouds are responsible for a portion of the intermittency. Observed rapid and 

deep fluctuations at time scales of 10 seconds to several minutes may indicate that a 

component of the intermittency is due to low, scattered clouds with significant opacity. 

We observe a number of examples of output power rising above nameplate capacity 

before and after deep drops in power. This may be due to focusing of sunlight around the 

edges of low clouds. 

If PV becomes economically attractive enough to be deployed at large scale, 

intermittency is likely to be matched with dispatchable power, storage, and / or demand 

response. It may be argued that the intermittency of solar PV is not an integration issue 

because wind is also intermittent and has been integrated at scale. In systems with 

relatively large fractions of wind, control issues are generally solved by fast-ramping 

assets either within the control area or through an interconnection.15 Such compensation 

has economic costs. Knowledge of the character of the intermittency can be used to 

minimize the costs. As argued previously for the case of wind,6 an ensemble of 

generators, energy storage, and demand response would likely be a more economically 

efficient solution to match the linear region observed in the power spectrum of 

photovoltaic array output power than a source with a single ramp rate. 
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TABLES 

 

Table 1. Output power correlation between 3 pairs of sites in APS for daylight hours over 

35 days. 

 Prescott Yuma 
Scottsdale 0.70 0.73 
Yuma 0.57  
 

 

Table 2. Comparison of statistics of the absolute value of the step size as a fraction of 

maximum output for the 3 APS sites individually and the sum of the 3 sites.  

 Prescott Scottsdale Yuma Sum 
Average 0.066 0.052 0.049 0.049 
Maximum 0.77 0.63 0.64 0.41 
Standard deviation 0.10 0.076 0.071 0.055 
Stdev,10% of max and lower 0.026 0.025 0.026 0.026 
Stdev, 20% of max and higher 0.12 0.089 0.080 0.047 
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FIGURES  

 

 

 
Figure 1. Real power output data from TEP over 6 days at 10 second sampling frequency. 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-07-05               www.cmu.edu/electricity 

11 

 
 

Figure 2. Real power output data from TEP over one full day in summer (June 3, 2004) at 

1 minute sampling frequency. 
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Figure 3. Relative locations of the three APS tracking array sites in Arizona. 
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Figure 4. Real power output data from individual APS arrays over ~4 days at 10 minute 

resolution. 
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Figure 5. Change in fluctuation of power output from APS arrays with site diversity: (a) 

histogram of 10 minute steps (daylight only) and (b) detail of the tails of this distribution. 
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Figure 6. Power spectrum of TEP array over 2 years at 1 minute sampling frequency with 

overlaid f -1.3 spectrum. 
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Figure 7. Power spectrum of TEP array over 2 months at 10 second sampling frequency 

with overlaid f -1.3 spectrum. 
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Figure 8. Power spectrum of TEP sub-array for 1 month at 10 second resolution. The sub-

array low-pass filter behavior is shifted to higher frequencies relative to the full array 

(Figs. 6 and 7). 
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Figure 9. Power spectra of APS tracking PV arrays for 35 days at 10 minute resolution.  

Prescott site (lower spectrum) with overlaid f -1.3 spectrum and sum of all three APS sites 

(upper spectrum). The upper spectrum has been multiplied by 5 to offset the two spectra 

for clarity. 


