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Abstract 
 
Since bulk electricity cannot be stored economically, inefficient, low-capital cost 
generators satisfy peak demand.  A fixed retail price encourages demand spikes whether 
the hourly marginal generation cost is $1 or $0 per kWh.  For PJM, 15% of the capacity 
was used only 1.1% of the time in 2006.  If retail price reflected hourly marginal cost, 
installed generation and transmission capacity could be reduced with a greater proportion 
of capacity in base-load plants that have higher capital costs, but lower average and 
marginal costs.  We focus on current data from PJM to estimate the savings to both 
consumers and producers from two changes in pricing.  The first is “real time pricing” 
(RTP) where retail prices reflect the hourly marginal cost of providing power and “time 
of use” (TOU) pricing that varies price by daily on-peak and off-peak periods to reflect 
the average annual price for each period.  The surprising result is that a shift to RTP has a 
relatively small effect on price; consumer plus producer surplus rises 2.9%-3.3% with 
RTP and 0.6%-0.7% with TOU pricing.  Peak capacity savings are seven times larger 
with RTP than with TOU.  In the short-term, plausible consumer responses would drop 
peak load by 10.4-17.7% for RTP and 1.1-2.4% for TOU pricing.  Half of all possible 
customer savings from load shifting can be obtained by shifting only 1.7% of all MWh to 
another time of day, indicating that small demand-side changes can make a large 
difference; only the largest customers need smart meters in order to get the majority of 
savings from RTP or TOU pricing.  
 

1 Introduction 
The electricity industry uses much of its generation and transmission capacity only a 
small fraction of the time.  Over the calendar year 2006, 15% of the generation capacity 
in the Pennsylvania-New Jersey-Maryland (PJM) territory ran only 1.1% or fewer hours, 
and 20% of capacity ran only 2.3% or fewer hours [1] 1.  The result is tens of billions of 
dollars2 invested in generation that has low capital cost, but high generation cost and life 
cycle social cost.  
 
The expensive excess capacity has two causes.  The first is technical: bulk electricity 
cannot be stored economically, so there must be enough generation and transmission 
capacity to satisfy demand in real time, or there will be a blackout.  The second is 
regulatory: most customers pay a constant flat price that is averaged over a year rather 
than the changing hourly price of generation and transmission.  For example, a customer 
whose retail rate is $0.10/kWh will pay that price no matter whether the wholesale price 
of electricity reaches its limit of $1/kWh or drops to $0/kWh.  If customers faced the 
wholesale price volatility of electricity, as they do with gasoline, natural gas, fruits and 
vegetables, and many other products, they would buy less power at $1/kWh and more at 

                                                 
1 This is based on the entire PJM hourly load profile in 2006 [1].  Even at peak load, the system had 17.5% 
excess available generation capacity.  We do not include generation excess at coincident peak load in this 
calculation because some generation excess is necessary for reliability purposes.   
2 At $600/kW, a reasonable natural gas generator cost, this 15% of PJM’s generation capacity is worth $13 
billion.  At $1800/kW, a reasonable price for a coal generator, 15% of PJM’s capacity is worth.$39 billion.  
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$0/kWh.  In doing so they would level demand over time, enabling society to diminish 
investments in peaking generators, instead focusing on base-load units that have higher 
capital costs, but low generation cost. 
 
Some electricity customers face “time of use” (TOU) pricing that charges them a higher 
price during on-peak hours, with the fixed on-peak and off-peak rates calculated as the 
delivered cost averaged over months.  Other customers face “real time pricing” (RTP) 
where the hourly wholesale generation price determines the retail price.  The TOU price 
gives better information and incentives than a single fixed tariff, but does not account for 
the times when wholesale prices spike because of high demand or equipment problems.  
Some view a TOU rate as a good compromise that frees customers from having to be 
informed about constantly changing prices and adjusting their consumption accordingly.   
 
Few end users have any ability to react to real-time market conditions or to the location-
specific costs of generation and transmission.  A PJM survey of load-serving entities 
(LSE) reported that only 5% of end users are on rates directly or indirectly related to the 
real-time or day-ahead locational marginal price (LMP) [2, 3]3.  Companies currently 
offering RTP rates usually have a variety of partial-hedging options as well [4].  Some 
additional customers are enrolled in direct load control, interruptible contracts, or other 
subsidy programs that offer curtailment incentives during the top few load hours per year.  
A Federal Energy Regulatory Committee (FERC) report estimates that 4% of peak load 
in ReliabilityFirst Corporation (RFC) territory4 could potentially be curtailed via these 
programs, but the maximum response in 2005 was only 0.7% [5].  Actual reductions are 
usually much smaller than program enrollments, partly because reduction is often 
voluntary [6].   
 
We view the current flat tariff as both inefficient and inequitable.  It is inefficient in 
raising the cost of electricity and using much more capital equipment to deliver the same 
quantity of power to end users.  It is inequitable since customers whose consumption 
pattern is flat over the day or greatest at off-peak hours subsidize customers whose 
consumption patterns raise coincident peak demand.   
 
We present a short-run analysis of a change to a more responsive demand-side market.  In 
Section  4.3, we use one year of PJM data to build a supply model that implicitly accounts 
for dispatch constraints and load variation conditions observed in a year.  We use this 
model in three different simulations to determine the impacts of responsive load.  The 
first in Section  5 is an assumed load-shifting scenario that finds the effects of small 
changes in load profile on overall price.  The load-shifting simulation does not consider 
customer time preference, but does show how quickly savings could be achieved.  The 
final two simulations in Section  6 are more realistic; they use hourly demand curves to 
predict short-run impacts from change toward TOU or RTP from flat-rate pricing 
 

                                                 
3 Estimate is from 3653 MW on locational marginal price (LMP) based rates and 69,063 MW represented 
in survey responses.  We do not include load listed as switched to third-party suppliers in the calculation. 
4 The RFC territory does not match up exactly with PJM territory. 
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2 Literature Review 
Borenstein’s long-run RTP analysis predicts more than double the peak load savings we 
predict, see Section  6.2 [7].  His conclusion results from using a long-term supply curve 
with a short-term demand curve to predict equilibrium conditions.  Because Borenstein 
includes capital costs in his supply curves, he predicts hourly prices up to $90,772/MWh; 
this implies that customers would spend 22% of the yearly bill in one peak demand hour.  
Those high prices are impossible since prices are hard-capped at $1000/MWh5 in all but 
one United States market [9].   
 
Holland and Mansur predict less than half the short-term peak load savings that we 
predict from RTP, see Section  6.2 [10, 11].  The modest impact is due to their method of 
using one constant stacked marginal cost curve to represent supply6.  The approach here 
is similar, although we use the actual observed prices to account for transmission and 
other constraints while they assume constraint-free economic dispatch of system 
generators at marginal cost.   The system stacked marginal cost curve underestimates 
price in most hours and, more importantly, it also underestimates the slope of the real 
supply curve.  The supply curve slope determines the impact that a small change in load 
has on price, see  Appendix B. 
 
Power engineers account for real-time transmission constraints by solving the security-
constrained direct-current optimal power flow (DCOPF) problem in example cases.  This 
approach is similar to how PJM sets market prices.  Wang, Redondo, and Galiana used a 
DCOPF-based model to examine demand-side participation in wholesale energy and 
ancillary services markets [12].  Their results indicate that demand participation erodes 
generator market power.  However, results from test systems with a few buses do not 
translate directly into implications for the PJM system with roughly 7800 pricing points.  
Fitting supply curves to daily market data incorporates these constraints.  
 
Consumer responsiveness to price is not known with confidence.  Most studies examine 
decreasing load after an increase in fixed price.  With TOU or RTP, customers can also 
shift their use to hours with lower price.  After 5 years of experience with default RTP for 
customers larger than 2 MW, Niagara-Mohawk Power Corporation has observed an 
average demand elasticity of substitution of -0.11 [13, 14].  Based on their experience 
and select other studies, the plausible reaction to TOU or RTP pricing is a short-term 
demand elasticity between 0 and -0.4, see Section  4.2 [15, 16].  As customers get more 
time to adjust and understand that the new tariffs will be permanent, the elasticity will 
rise, perhaps to -0.9.  
 

                                                 
5 California ISO is the exception with a $400/MWh soft cap on energy and ancillary service bids [8].  
Generators may bid above a soft price cap and will be paid as bid; other generators will receive payment 
only as high as the cap.  The neighboring Western Electricity Coordinating Council (WECC) has the same 
price caps although WECC is not a market operator.   
6 Their stacked marginal cost curve is based on generator heat rates, fuel prices, emissions prices, and other 
publicly available data for the time frame in question.  
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3 Data  
Our data are system-wide average PJM market clearing prices and loads in the day-ahead 
and real-time markets over 2006 [1].  Day-ahead demand bids LDA from LSEs are 
charged at the day-ahead price PDA, the real-time increment or decrement LRT-LDA is 
charged or credited at the real-time price PRT.  Overall revenue and price are calculated in 
Equations (1) and (2). 
 

(1) ( ) RTDARTDADA PDDPDR ⋅−+⋅=  

(2) 
∑
∑

=

hours
RT

hours

L

R
P0  

 
Overall realized price and the real-time demand for each hour are the most accurate data 
for evaluating demand response.   In the implementation of RTP rates, customers should 
have access to both day-ahead and real-time market prices.  We assume that nearly all 
power continues to be purchased in the day-ahead market; both markets are counted as 
RTP.  

4 Market Model 
We construct a short-term equilibrium model accounting for producer, consumer, and 
local utility participation.  Results from the full model for RTP and TOU pricing are in 
Section  6.  The load-shifting scenario in Section  5 uses only the supply side developed in 
Section  4.3. 
 

4.1 Short-Term Equilibrium Model 
Almost all consumers currently pay a flat rate P0 for all their power.   The market 
operator assumes that demand is completely unresponsive to price, L0.  While each hour 
has wholesale price above or below retail price, the profits and losses sum to zero over 
the year.   
 
This base case model represents the disconnect between wholesale and retail; the result is 
the same as if there were RTP but end users had an elasticity of zero.  This is a good 
characterization of current behavior since few customers face RTP [2, 3, 5, 15, 16].  
 
Under TOU the retail price takes on a value of pon during on-peak hours and poff during 
off-peak hours.  In PJM off-peak hours are weeknights 11 PM to 7 AM and all day on 
weekends and the six NERC holidays [17].  On and off-peak prices are set so that local 
utility profit sums to zero over on-peak hours and off-peak hours separately.   
 
When all customers are exposed to RTP, the retail price differs from the wholesale price 
only by the local delivery charge.  If the generators bid their marginal cost, the RTP will 
produce the efficient, socially optimal price and consumption. 
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4.2 Demand Side 
We assume that each hour has a unique demand curve with constant elasticity as shown 
in Equation (3) where the hourly offset parameters β are determined by base case price 
and hourly load [7, 10].   
 

(3)  
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1
0

0

1

=

⋅=

β
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The left side of (3) is replaced with the retail price PD(L) that applies in the flat (4), TOU 
(5), or RTP (6) cases.  
 
 (4) ( ) 0pLPD =  

 (5) ( )
⎩
⎨
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==
off
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p
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 (6) ( ) ( )LPLP SD =  
 
A high price will get a consumer to lower demand or to shift demand to a cheaper hour.  
Given more time to respond, the consumer can buy more energy efficient appliances or 
equipment that enables shifting load to a later hour.  The first type of response is a price 
elasticity and the second an elasticity of substitution, either short- or long-run.  
 
A 19847 review of 34 studies found short run and long run price elasticities to be 
approximately -0.20 and -0.90 respectively, implying that a 10% price increase would 
reduce consumption by 2% in the short-run and 9% in the long-run  [15].  A Department 
of Energy study reviewed published price elasticities of substitution under TOU, critical 
peak pricing (CPP), and day-ahead RTP situations [16].  The range of elasticities of 
substitution was 0.02 to 0.27.   
 
Even though responsiveness is uncertain, we judge the short-run response to be between 
0 and -0.4 under RTP conditions.  We examine the full range of elasticities to examine 
the possible effects of short-and long-term responses.  
 

4.3 Wholesale Supply Side 
At one extreme, we might hypothesize that the supply-side relationship between price 
and load is the same over an entire year.  At the other extreme, we might hypothesize that 
the relationship is unique to each day. The bids for a specified load may differ from one 
day to another because some generating units or transmission lines are not available, fuel 
prices have changed, or weather is impeding supply.  Fitting unique parameters for each 
day would give a better fit than insisting that one set of parameters must fit the entire 

                                                 
7 The short run numbers were recently updated in another review of 36 estimates with a median of -0.28. 
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year.  However, the former is not a parsimonious model and says nothing about what 
parameter values should be used in future days.   
 
The delivered price of electricity for each hour in a day follows a predictable pattern of 
being low in the early morning and at night with one or two peaks during the day.  We fit 
the price and load data for each day with a third-degree polynomial.  To investigate the 
similarity of the polynomial parameters across days, we employ dummy variables, which 
function as on-off switches, taking on values of 0 or 1. 
 
Equation (7) models price as a function of load represented by an intercept, load, load 
squared, and load cubed.  The equation uses dummy variables δ1 and δ0 to allow for the 
possibility that the coefficient of load and the intercept might vary each day.  We also 
examined the possibility that the coefficients of the squared and cubed terms take on 
unique values each day but determined that the additional dummy variables improved 
explanatory power very little.  Appendix A presents the results from trying a range of 
models.  We selected (7) as a model with good explanatory power, only half the number 
of parameters as employing the additional two dummy variables, and as a good fit to the 
plotted data.   
 

 (7)  ( ) { }∑
=

⋅+⋅⋅+⋅+⋅=
n

t
ttS dLcLbLaLP

1
01

23 δδ  

 
 

The adjusted R2 is 0.949, the F-statistic of 223 is highly significant8, and the estimated 
parameters a and b are highly significant9 all with p-values á 0.001. 

                                                 
8 Model significance test has F(731,8028) = 223 with p-value á 0.001. 
9 Studentized t-test have ta(8028) = 10.9 and tb(8028) = 33.0 with p-values á 0.001 in each case. 
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4.4 Economic Result Definitions 
Changes in consumer surplus ΔCS and producer surplus ΔPS between flat rate and RTP 
conditions are calculated in Equations (8) and (9) and shown graphically in Figure 1.  
Producer surplus is easier to calculate by integrating over load than over price.  Change in 
consumer surplus in Equation (8) can be calculated in the TOU case by replacing P* with 
the retail TOU price poff or pon.  Change in producer surplus calculated in Equation (9) is 
the same formula under a change toward TOU or RTP because the wholesale electric 
price determines the producer surplus.   
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With flat-rate or TOU pricing there is deadweight loss in both high-priced hours and low-
priced hours.  Because the RTP case has no deadweight loss, we calculate the deadweight 
loss in the flat rate and TOU cases based on the surplus changes in Equation (10).  Both 
deadweight loss and LSE profit are shown in Figure 1 for a high-priced hour.  Although 
the local utility may have a positive or negative profit in any one hour with TOU or flat 
rate, it has zero profit over the year under any of these pricing scenarios. 
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Figure 1. From left: local utility loss, producer surplus drop, consumer surplus drop, and deadweight loss.  
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5 Load Shifting  
Assume, for whatever reason, that customers can be induced to shift their demand to be 
more level over the day.  Although the resulting load profiles may not be realistic, the 
simulation shows how much shifting is necessary to flatten load and how quickly savings 
can be achieved. 

5.1 Method 
We scale possible consumer savings from demand response by incrementally shifting 
load to achieve a totally flat daily load profile without changing total consumption.  
Although this method does not consider real-world preference effects, it does set an upper 
bound on customer savings.  The simulation allows load shifting to any other time of day 
but does not allow shifting from one day to another.   
 
For a particular day, shift an increment of demand from the highest load hour to the 
lowest load hour.  Continue shifting demand increments so that there is one price for the 
hours of greatest use and another (lower) price for the hours of least use.  Stop shifting 
use when the quantity and price are the same for the high and low-priced hours.  The 
maximum fraction f that is curtailed off the peak load hours is the same for all days. 
 
Figure 2 illustrates the effects of shifting on load and price profiles of one week 
beginning Monday, June 19, 2006.  This week originally exhibited moderately high load 
and price.  Results are shown when 3% of all yearly MWh are shifted and after the 
maximum 5.3% of MWh are shifted.  This method does not change total daily 
consumption in MWh, but the extremes of usage and price variation are reduced. 
 

 
Figure 2. Load and price profiles for a July week; base case, 3% shifting (f = 0.093), and maximum shift. 
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5.2 Results 
We remind the reader that the load shifts are imposed, rather than resulting from 
consumer preferences and so no conclusions can be drawn about consumers being better 
or worse off.   
 
Customer expenditure savings from load shifting are shown in Figure 3.  Savings are also 
split out by the amounts received by shifters and those received by free riders that do 
nothing.  The left-hand plot in Figure 3 displays decreasing marginal savings with more 
shifting; when the daily load is leveled, there are no further savings.   The right-hand plot 
of Figure 3 shows that shifters’ percentage savings drop with increased shifting.  This is 
because the price differential over a given day can be large under current conditions but 
approaches zero in the limit; small marginal savings steadily reduce average calculated 
savings. Total customer savings increase with the amount of shifting with an ultimate 
limit of 10.7% of the annual electric bill. 
 

 
Figure 3. Savings to shifters, free riders, and total in dollars (left) and as a percentage of bill (right). 
 
Load shifting reduces peak load dramatically as shown in Table 1, obviating the need for 
costly investment in generation and transmission.   

 
Table 1. Peak load and overall cost savings with daily shifting. 

Shifted 
Load, % 

Peak 
Load, GW 

Peak Load 
Saved 

Total Expense, 
$Billion 

Average Cost, 
$/MWh 

Customer Bill 
Savings 

0% 145 0.0% $36.17 $51.96 0.0% 
1% 138 4.8% $34.90 $50.13 3.5% 
2% 134 7.3% $34.03 $48.88 5.9% 
3% 131 9.3% $33.37 $47.94 7.7% 
4% 128 11.6% $32.84 $47.17 9.2% 
5% 122 15.8% $32.38 $46.51 10.5% 

5.3% 122 15.8% $32.32 $46.43 10.7% 
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Table 2 shows how quickly customer savings are reached by load shifting.  Half of all the 
possible savings from load shifting are achieved by shifting only 1.69% of all energy.  
This indicates that a small amount of demand response is all that is needed to get most of 
the benefits. 

 
Table 2. Load shifting necessary to achieve a portion of limiting savings with daily shifting. 

% of Savings 
in Limit % Load Shifted 

Maximum 
Hourly % 
Curtailed  

25% 0.70% 3.9% 
50% 1.69% 6.6% 
75% 3.15% 9.6% 
90% 4.26% 12.4% 
95% 4.66% 14.0% 
99% 5.06% 16.5% 
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6 Time of Use and Real Time Pricing 
A simulation is used to determine the magnitude of effects from RTP and TOU in the 
wholesale market.   

6.1 Sample Price and Load Profiles  
The new price and load under RTP and TOU conditions are calculated as in Section  4.1.  
Figure 4 shows price and load profiles over a week in the base case, under TOU, and 
under RTP conditions with elasticity -0.2.  For reference the retail rates p0 and pTOU are 
shown in dashed lines for the flat-rate and TOU cases respectively.  The June week 
shown originally had moderately high load and wholesale price, so the RTP case shows 
steep drops in price and load during peak hours.   
 
The left-hand graph in Figure 4 shows that RTP reduces peak loads much more than 
TOU pricing, which is only slightly better than flat rate pricing.  The right-hand graph 
shows wholesale prices reflecting the marginal generation cost as solid lines; retail tariffs 
are in dashed lines.  Under RTP the wholesale and retail prices are the same solid red 
line.  Wholesale price peaks are moderated much more under RTP than under TOU 
pricing.  A TOU rate actually exacerbates wholesale price peaks on weekends because 
end users see the off-peak price all day.  
 

  
Figure 4. Load and price profiles with elasticity -0.2 for a July week with flat-rate, TOU, and RTP. 
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6.2 Economic Impacts 
 
Market outcomes depend on the assumed demand elasticity10.  On-peak, off-peak, and 
average wholesale prices are shown in the left-hand side of Figure 5 for TOU pricing and 
in the right-hand side for RTP.  Prices drop more with RTP; they are about 4% lower.  
Both schemes moderate on-peak and off-peak prices on average, but these results say 
nothing about the most extreme prices.  Table 3 shows the same prices as in Figure 5 at 
sample customer elasticities.  A regulator looking only at prices might be deceived by the 
apparently small difference between RTP and TOU. 
 

  
Figure 5. On-peak, off-peak, and average prices under the TOU scenario (left) and RTP scenario (right).  
 
Table 3. Yearly prices with a change to TOU or RTP. 

Average Price, $/MWh On-Peak Price, 
$/MWh 

Off-Peak Price, 
$/MWh 

Elasticity 
of 

Demand TOU RTP TOU RTP TOU RTP 
0 $51.96 $51.96 $60.92 $60.92 $40.01 $40.01 

-0.05 $51.72 $50.82 $59.87 $58.86 $41.03 $40.28 
-0.1 $51.54 $50.02 $58.86 $57.23 $42.08 $40.72 

-0.15 $51.44 $49.59 $58.08 $56.17 $42.96 $41.20 
-0.2 $51.38 $49.35 $57.46 $55.43 $43.70 $41.69 

-0.25 $51.35 $49.23 $56.95 $54.89 $44.33 $42.16 
-0.3 $51.34 $49.18 $56.53 $54.49 $44.87 $42.61 

-0.35 $51.34 $49.18 $56.18 $54.17 $45.34 $43.04 
-0.4 $51.34 $49.20 $55.87 $53.92 $45.75 $43.43 

                                                 
10 Customers are more responsive when elasticity is more negative; responsiveness increases as one moves 
to the left in these plots. 
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Table 4 and Table 5 summarize impacts on consumption, expense, and peak load with 
TOU and RTP rates respectively.  The impacts from TOU pricing are a fraction of those 
from RTP.  Impacts from TOU in peak load shaved, consumption increase, and consumer 
expense saved are never more than 14.4%, 22.3%, and 21.9% respectively of the impacts 
from changing to RTP at any elasticity.   
 
Impacts on consumer expense and consumption increase are small under either rate 
structure change.  The most striking result in these tables is that with RTP, peak load 
reductions are large even with highly (but not completely) inelastic demand.  We estimate 
a 10.4% reduction in peak demand at elasticity E = -0.1, a huge reduction at a modest 
assumed responsiveness.  Holland and Mansur’s prediction is less than half ours at 
3.91%, while Borenstein’s estimate is more than twice the size at 24.5% 11 [7, 10].   
 
Table 4. Load increase, peak shaving, and price savings with TOU pricing. 

Elasticity 
of Demand 

Peak 
Load, 
GW 

Peak 
Load 
Saved 

Total 
Energy, 

TWh 

Consumption 
Increase 

Total 
Expense, 
$Billion 

Consumer 
Expense 
Saved 

Average 
Price, 

$/MWh 

0 145 0.0% 696 0.0% $36.17  0.0% $51.96  
-0.05 144 0.6% 697 0.1% $36.04  0.4% $51.72  
-0.1 143 1.1% 697 0.2% $35.95  0.6% $51.54  

-0.15 143 1.5% 698 0.3% $35.91  0.7% $51.44  
-0.2 142 1.9% 699 0.4% $35.90  0.8% $51.38  

-0.25 142 2.2% 699 0.4% $35.90  0.7% $51.35  
-0.3 141 2.4% 700 0.5% $35.91  0.7% $51.34  

-0.35 141 2.6% 700 0.5% $35.93  0.7% $51.34  
-0.4 141 2.8% 700 0.6% $35.95  0.6% $51.34  

 
Table 5. Load increase, peak shaving, and price savings with RTP. 

Elasticity 
of Demand 

Peak 
Load, 
GW 

Peak 
Load 
Saved 

Total 
Energy, 

TWh 

Consumption 
Increase 

Total 
Expense, 
$Billion 

Consumer 
Expense 
Saved 

Average 
Price, 

$/MWh 

0 145 0.0% 696 0.0% $36.17  0.0% $51.96  
-0.05 137 5.7% 699 0.4% $35.52  1.8% $50.82  
-0.1 130 10.4% 702 0.8% $35.11  2.9% $50.02  

-0.15 126 13.3% 705 1.2% $34.94  3.4% $49.59  
-0.2 123 15.1% 707 1.6% $34.90  3.5% $49.35  

-0.25 121 16.6% 709 1.9% $34.93  3.4% $49.23  
-0.3 119 17.7% 711 2.2% $34.99  3.3% $49.18  

-0.35 118 18.7% 713 2.4% $35.07  3.0% $49.18  
-0.4 117 19.5% 715 2.7% $35.16  2.8% $49.20  

                                                 
11  Holland and Mansur also predict a 5.88% peak load reduction at E = -0.2, where we predict a 15.1% 
savings.  Borenstein also predicts 35.2% peak load reduction at E = -0.3 where we predict a 17.7% savings.  
The modest impacts predicted by Holland and Mansur are largely dictated by their method of using a 
stacked bid curve, see  Appendix B.  Borenstein’s large projected peak reduction has to be understood 
knowing that his supply curve comprised of three generator types results in a load duration curve that is 
completely chopped off on the high end; he does not argue that this is a realistic resulting load duration 
curve. 
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Costumers buy more energy under RTP or TOU conditions as shown in Figure 6; 
marginal impacts diminish with more responsive load.  Customer expenditure on 
electricity decreases steeply if elasticity is low in magnitude as shown in Figure 7.  With 
inelastic demand most of the changes in consumption patterns are small reductions at 
peak prices.  With greater elasticity, savings drop as the effect of greater consumption 
dominates the overall expense.   
 
These RTP results are explained by the large positive skew in electricity prices and the 
increasing steepness of supply curves at high load.  Large price reductions from small 
amounts of curtailment at high prices dominate results at elasticities near zero.  With 
increasing responsiveness, the load profile becomes flatter and flatter but overall 
consumption increases.  Under these conditions, the effect of the consumption increase 
dominates other results.  Results with TOU pricing have similar characteristics but only a 
fraction of the magnitude. 
 

 
Figure 6. Consumption increase, TOU and RTP. 
 

 
Figure 7. Customer bill savings, TOU and RTP. 

Because consumers are buying more energy with less total expenditure, the overall 
impact on consumers is more easily understood by looking at a customer who refuses to 
change behavior as others do under TOU or RTP.  In Figure 8, savings are shown for a 
single customer who has elasticity zero, while the aggregate system has an elasticity 
shown on the x-axis.  We show savings for three types of customers:  
 

Flat – Customer uses a constant level of power during all hours of the year. 
Typical – Customer load profile is proportional to the original system load profile. 
50% More Extreme – During each hour, the customer demands the typical customer’s 

load plus an additional 50% of the difference between the typical customer’s load 
for that hour and the minimum load for the day.  
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An unchanging typical customer saves less per unit than a responsive customer, but 
slightly more overall because she does not increase consumption12.  More interesting is 
that a flat customer would save 7.0% of her annual electric bill even if no one responded 
to price.  She would save the amount that currently goes to subsidize the excesses of 
more peaky customers.  The more extreme customer loses money under RTP if no one 
responds, but will have net savings if the aggregate elasticity is even slightly responsive, 
E ≤ -0.04.   
 

 
Figure 8. Expense savings to an unresponsive customer when others respond, TOU (left) and RTP (right). 
 
Peak load reductions are extreme with a small amount of responsiveness but marginal 
savings taper with greater responsiveness as shown in Figure 9.  Discontinuities in Figure 
9 are caused by a change in the day upon which peak load is observed.   
 
The large peak load savings under RTP have huge implications for the total system cost.  
Peak load determines the total capacity investment necessary for the system to operate 
reliably.   Although no savings will be made on peak capacity that has already been built, 
there will be savings via unneeded capacity investment as generators have to be replaced 
or load increases over time.  At elasticity -0.2, peak load drops by 15.1% with RTP.  At 
that level, an overnight capacity value of $600/kW or $1800/kW, corresponding roughly 
with the capital costs of gas and coal generation, translates into a dollar savings of $13- 
$39 billion from a change to RTP.  A change to TOU pricing would reduce $1.7 to $5.0 
billion in capacity investments under the same conditions.    
 
At $13 billion, capacity savings would be $257 for each of the 51 million people in PJM 
territory [18].  Compared to the hardware and installation costs of $123-$215 per unit for 
the advanced metering infrastructure required to implement RTP, these capacity savings 
justify RTP rates starting with the largest and most responsive customers [5].  We 
conjecture that only large customers, those responsible for perhaps 50% of total load, 
need to face RTP to achieve these savings.  If only 10% of customers need smart meters, 
                                                 
12 At E = -0.2, the typical responsive customer saves 5.0% per unit and 3.5% overall; the typical 
unresponsive customer saves 3.6% although her quantity consumed is constant. 
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RTP, and automatic energy managers to respond to price, the cost of implementing RTP 
would be much smaller than the social benefit, with large benefits to all customers.   
 
In previous work using data covering the summer of 2005, we found smaller, but still 
sizeable, peak load reductions.  Because 2005 had a mild summer and lower peak load, 
RTP would not have had as big an impact on peak reductions.   Since the highest load 
over many years determines the capacity investment necessary for system stability, the 
peakier 2006 data are more useful for estimating RTP impacts on necessary peak 
generation.  Other results do not change appreciably using the updated 2006 data. 
 

 
Figure 9. Peak load reductions, TOU and RTP. 

 
Figure 10 and Table 6 show surplus increases with a time-varying rate.  Neither 
consumer nor producer surplus changes monotonically with elasticity.  Producer surplus 
drops slightly with peak price reductions but then increases with overall consumption.  
Producer surplus is equal to revenue minus operating costs and so indicates profitability 
if capital costs are not considered.  Because we see almost no change in producer surplus, 
these results indicate that producers will not see the large reduction in profits that they 
might have feared from RTP.  There is no change in consumer surplus for an elasticity of 
zero, but for an elasticity of -0.2, consumer surplus increases 0.7% for TOU pricing and 
3.2% for RTP.  We find that TOU pricing has only 20.3%-21.8% the impact in increasing 
total surplus that RTP would have13.  No matter what the assumed elasticity, consumer 
surplus increases with RTP or TOU14.   

                                                 
13 Although the magnitude of our surplus estimates are much smaller than Borenstein’s and much larger 
than Holland and Mansur’s, the ratio of surplus increases between TOU and RTP are remarkably close 
given the different definitions of TOU used in each case.  Borenstein predicted that TOU would have 8-
25% the effect of RTP on surplus; Holland and Mansur predicted 15% [7, 10].    
14 The reason for the lack of monotonicity in consumer surplus can be understood by seeing what happens 
to the area representing ΔCS in Figure 1 with extremely steep, moderate, and extremely flat demand curves.  
A similar figure should be drawn and examined for the case in which load and price increase with RTP. 
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Figure 10. Surplus increases with TOU (left) and RTP (right) as a percent of baseline expense. 
 
Table 6. Economic outcomes with RTP as a percentage of baseline expenditure. 

Surplus Increase with TOU Surplus Increase with RTP Elasticity 
of 

Demand 

Flat-Rate 
Deadweight 

Loss 

TOU Rate 
Deadweight 

Loss Consumer Producer Total Consumer Producer Total 

0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
-0.05 1.6% 1.3% 0.4% -0.1% 0.3% 1.9% -0.3% 1.6% 
-0.1 2.8% 2.2% 0.7% -0.1% 0.6% 3.2% -0.4% 2.8% 
-0.15 3.5% 2.8% 0.8% -0.1% 0.8% 3.9% -0.4% 3.5% 
-0.2 4.0% 3.1% 0.9% -0.1% 0.9% 4.3% -0.3% 4.0% 
-0.25 4.3% 3.3% 1.0% -0.1% 0.9% 4.5% -0.3% 4.3% 
-0.3 4.4% 3.5% 1.0% 0.0% 1.0% 4.6% -0.2% 4.4% 
-0.35 4.5% 3.6% 1.0% 0.0% 1.0% 4.6% -0.1% 4.5% 
-0.4 4.6% 3.6% 1.0% 0.0% 1.0% 4.6% 0.0% 4.6% 

 
Before looking at these results, a regulator might be concerned about charging RTP for 
customers who have no ability to respond.  It would seem unfair to charge customers high 
RTPs if they could not react.  These results indicate that even if customers had no means 
of knowing or responding to the RTP, the adverse effect of extremely high prices would 
not cause any problems on average over the year.  Flat and countercyclical customers 
would benefit by not having to subsidize the excesses of others.  Even customers with 
problematic load profiles would not have a large change in overall cost and would 
actually save money from other customers’ responses.  These results indicate that 
regulators do not need to exercise great caution in implementing RTP at the retail level.   
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7 Conclusions and Recommendations 
Pretending that consumers demand the same amount of electricity no matter what the 
price or that consumers cannot vary their demand as prices change has cost consumers 
dearly and led to large, unnecessary investments in peaking plants.  In 2006, 15% of the 
generation capacity in PJM territory ran only 1.1% or fewer hours, and 20% of capacity 
ran only 2.3% or fewer hours [1] 15.  These under-utilized peak generation investments 
are a luxury that neither providers nor customers should have to pay for.   
 
The good news is that the peak load problem can be mitigated by moving flat rate 
customers onto RTP tariffs.  Even with little price responsiveness, surprisingly large peak 
load reductions can be achieved; at elasticities -0.1 and -0.2, 10.4% and 15.1% 
respectively can be shaved off of coincident peak consumption.  Most other quantities of 
interest such as generator profitability, overall consumption, and average end user 
expense will not be affected greatly by a change toward RTP.  However, policy makers 
will be disappointed with the short-term reduction in overall bills.  A move toward RTP 
should be driven by concerns about peak load and fairness among end users, with larger 
savings from the lower investment in peak generators and transmission lines.  
 
Under current conditions counter-cyclical end users subsidize the problematic load 
profiles of others.  Even if some customers do not want to alter consumption habits, the 
rest of the system should not have to pay for their excesses.  When problematic customers 
are confronted with higher bills, they will want to make small but important changes.  
Just as consumers have learned to respond to the volatile prices of gasoline, fruits and 
vegetables, and other commodities, so they can learn to respond to electricity prices.  The 
largest difference is that customers purchase electricity every hour of the year and 
therefore need automated devices to react to changing prices. 
 
Because only modest aggregate price elasticities are necessary for large peak capacity 
savings, most of the benefits can be achieved by shifting only large, responsive customers 
to RTP.  These are the customers who would benefit the most by installing the relatively 
inexpensive equipment necessary for automated response to RTP.  With RTP, each 
customer is free to react in the ways that best serve her interest.   
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15 This is based on the entire PJM hourly load profile in 2006 [1].  Even at peak load, the system had 17.5% 
excess available generation capacity.  I do not include generation excess at coincident peak load in this 
calculation because some generation excess is necessary for reliability purposes.   
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Appendix A Detail on Building a General Supply-Side Model 

A.1 Possible Model Structures 
We have examined several possible models for predicting price from load using 
variations on the third-degree polynomial in Equation (11).   
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Each term in (11) is multiplied by a dummy variable δi that has possible values one and 
zero.  These dummy variables act as on-off switches for the term parameter based on the 
time period t.  For example, if we want to assume that each day has a unique third degree 
supply curve, then the number of time periods is n = 365 and each term will have n = 365 
different parameters at, bt, ct, and dt, one for each day.  The dummy variables δ0, δ1, δ2, 
and δ3 ensure that only the parameters appropriate for the time period in question are 
considered; all others are zeroed out.  The resulting values of PS(L) are then the same as 
they would have been had we fit 365 different third degree polynomials to the data; 
overall goodness of fit statistics for that model would have 4·n = 1460 parameters. 
 
Another advantage of the dummy variable approach is that I am able to selectively drop 
dummy variables from the model to simplify it.  For example, my conclusion from these 
regressions is that the daily fits are the same shape in the second and third degree terms 
as long as a linear offset is applied to each day as in (7).  The simplified model includes 
only the zero and first degree dummy variables δ0 and δ1, and has 2·n+2 = 732 p. 
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We have examined models with eight different definitions of time period t and 
consequent values for n.  Table 7 is a summary description of each of the eight time 
period definitions and the number of model parameters resulting from including a given 
number of dummy variables from 1 to 4.  In each case except for the yearly model there 
are 15 ways to combine dummy variables.   
 
Table 7. Descriptions of the eight time period definitions examined. 

Number of Parameters by  
Included Dummy Variables Time Period n 

1 
δ0 

2 
δ0, δ1 

3 
δ0, δ1,δ2

4 
δ0, δ1,δ2,δ3

Description 

Year 1 NA 2 3 4 One curve.  Dropping a dummy means 
dropping the entire term. 

Month of Year 12 15 26 37 48 One curve for each month. 

Week of Year 53 56 108 160 212 Week is Mon-Sun.  Data begin and end 
with Wed. 

Day of Year 365 368 732 1096 1460 One curve for each day. 
Week or Weekend of 
Year 105 108 212 316 420 One curve for each week Mon-Fri; one 

curve for each weekend Sat-Sun. 
Week or Weekend, 
Holidays as Weekend 105 108 212 316 420 Append 6 NERC holidays16 to closest 

weekend, all happen to fall on Mon or Fri. 
Day of Week 7 10 16 22 28 One curve for each day of week. 
Hour of Day 24 27 50 73 96 One curve for each hour of day. 

 

                                                 
16 North American Electric Reliability Council (NERC) holidays are considered off-peak hours in PJM [17] 
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A.2 Statistical Significance and Goodness of Fit 
For each of the 109 models we have evaluated the goodness of fit statistics.  By 
examining adjusted R2 values indicating explanatory power, we have concluded that the 
best way to drop dummy variables is starting with the highest order term and working 
downward.  That is to drop δ3, then δ3 and δ2, then δ3, δ2, and δ1.  This ordering is 
consistent for almost all model types17.  Table 8 displays these adjusted R2 values for the 
31 models consistent with this drop ordering.  Models are listed in order of decreasing 
explanatory power; the ordering of models by explanatory power is identical no matter 
how many dummy variables are included.  Even after dropping two dummy variables, the 
daily model has more explanatory power than any other model with all four dummy 
variables.  

 
Table 8. Model adjusted R2 values. 

Dummy Variables Included Model Sorted in Order of 
Descending Adjusted R2 1 

δ0 
2 

δ0, δ1 
3 

δ0, δ1,δ2 
4 

δ0, δ1,δ2,δ3 
Day of Year 0.9096 0.9488 0.9630 0.9661 
Week/WeekendorHoliday 0.8866 0.9124 0.9223 0.9241 
Week/Weekend 0.8859 0.9118 0.9221 0.9240 
Week of Year 0.8725 0.8961 0.9061 0.9079 
Month of Year 0.8521 0.8774 0.8853 0.8887 
Hour of Day 0.7990 0.8151 0.8208 0.8225 
Day of Week 0.7942 0.8001 0.8085 0.8088 
Year -- 0.6925 0.7453 0.7805 

 
The same ordering for dropping dummy variables is dictated by the F-statistic for overall 
model significance.  Because of the large DOF, the p-values associated with these F-
statistics are vanishingly small and therefore uninformative.    

 
Table 9. Overall model F-statistics. 

Number of Dummy Variables Included Model Sorted in Order of 
Descending Adjusted R2 1 

δ0 
2 

δ0, δ1 
3 

δ0, δ1,δ2 
4 

δ0, δ1,δ2,δ3 
Day of Year 241 223 210 172 
Week/WeekendorHoliday 641 433 331 256 
Week/Weekend 637 430 330 255 
Week of Year 1091 707 533 410 
Month of Year 3607 2509 1879 1490 
Hour of Day 1340 789 558 428 
Day of Week 3758 2338 1762 1374 
Year -- 19732 12815 10387 

 

                                                 
17 In the day of week model, keeping higher order terms is preferred.  Hour of day and month of year 
models also prefer a higher order term when only two dummy variables are included.  These models are 
poor representations based on the adjusted R2 values, and so I do not consider these issues further. 
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Model ordering is largely dictated by the number of parameters, the only exception being 
the month of year and versus hour of day models.  Because the theoretical import of the 
model as decreases as the number of parameters increases, it may be a good idea to 
accept a model with less explanatory power to obtain a more elegant model.  Table 10 
shows the explanatory power as calculated by the adjusted R2 value lost by dropping to 
the next best model.   
 
Temporal resolution always improves the explanatory power of the model, but the 
meaning of this observation is clouded by the fact that the higher temporal resolution 
models use more parameters.  The largest drop in explanatory power occurs when 
moving from sequential time-series to non-sequential bunches of data.  That means that 
Mondays have no interesting common characteristics, but that hours within one day or 
one week do have common characteristics.  We conclude from this observation that 
system conditions change slowly over time and that grouping consecutive hours is a good 
way to capture these effects. 

 
Table 10. Adjusted R2 lost by dropping to next best model. 

Number of Dummy Variables Included Model Sorted in Order of 
Descending Adjusted R2 1 

δ0 
2 

δ0, δ1 
3 

δ0, δ1,δ2 
4 

δ0, δ1,δ2,δ3 
Day of Year 0.0230 0.0364 0.0407 0.0420 
Week/WeekendorHoliday 0.0007 0.0006 0.0002 0.0001 
Week/Weekend 0.0134 0.0157 0.0160 0.0161 
Week of Year 0.0204 0.0187 0.0208 0.0192 
Month of Year 0.0531 0.0623 0.0645 0.0662 
Hour of Day 0.0048 0.0150 0.0123 0.0137 
Day of Week -- 0.1076 0.0632 0.0283 
Year -- -- -- -- 

 
In deciding how many dummy variables to drop, it is useful to examine the explanatory 
power lost in dropping the least important dummy variable as shown in Table 11.  We 
look primarily at the models with time-sequential data groupings.  Dropping the δ3 
variable drops explanatory power a miniscule amount.  Dropping δ2 is only slightly 
worse.  Based on this assessment, we conclude that including only linear offsets is a 
powerful way to represent price and load data.  By dropping the number of dummy 
variables to two, the number of parameters in the model is roughly halved. 
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Table 11.  Adjusted R2 lost in dropping one dummy variable. 

Adjusted R2 Loss from Dropping One Dummy Model Sorted in Order of 
Descending Adjusted R2 δ0 to 

Year 
δ0,δ1 to 

δ0 
δ0,δ1,δ2 to 

δ0,δ1 
δ0,δ1,δ2,δ3 to 

δ0,δ1,δ2 
Day of Year 0.1291 0.0392 0.0142 0.0031 
Week/WeekendorHoliday 0.1061 0.0258 0.0099 0.0018 
Week/Weekend 0.1054 0.0259 0.0103 0.0019 
Week of Year 0.0920 0.0236 0.0100 0.0018 
Month of Year 0.0716 0.0253 0.0079 0.0034 
Hour of Day 0.0185 0.0161 0.0057 0.0017 
Day of Week 0.0137 0.0059 0.0084 0.0003 
Year -- -- 0.0528 0.0352 

 
For further insight in determining how many dummy variables to drop, we have 
calculated an F-statistic for model improvement with and without each dummy variable 
according to (12) from [19].  The variable k represents the number of parameters at 
through dt; the variable SSE represents the sum of squared error between the real data and 
model prediction; N is the number of data.  Subscripts full and reduced refer to the 
models with and without the dummy variable respectively.   
 

 (12) 
( ) ( )

( )fullfull

reducedfullfullreduced

kNSSE
kkSSESSE

−

−−
 

 
Calculated F-statistics are in Table 12; associated p-values are again vanishingly small.  
This indicates that keeping additional dummy variables would be justified, although the 
higher order dummy variables are less important. 
 

Table 12. F-Statistic for testing the hypothesis that a model is no better than the next best model. 
F-Statistic for Dropping to the Next Best Model Model Sorted in Order of 

Descending Adjusted R2 δ0 to 
Year 

δ0,δ1 to 
δ0 

δ0,δ1,δ2 to 
δ0,δ1 

δ0,δ1,δ2,δ3 to 
δ0,δ1,δ2 

Day of Year 35 19 10 3 
Week/WeekendorHoliday18 80 25 11 3 
Week/Weekend 79 25 12 3 
Week of Year 123 39 19 4 
Month of Year19 386 120 97 26 
Hour of Day 36 23 24 4 
Day of Week 13 20 65 113 
Year -- -- 1814 1409 

 

                                                 
18 The next best model for the F-statistic is “Week of Year”.  The “Week/WeekendorHoliday” model has 
the same number of parameters and a smaller SSE than the “Week/Weekend” model, rendering the F-
statistic meaningless for that pair.   
19 The next best model for the F-statistic is “Year”.  The “Month of Year” model has fewer parameters and 
a smaller SSE than the “Hour of Day” model, rendering the F-statistic meaningless for that pair.   



Spees and Lave 
Appendices 

 A-29

Each parameter in each model has a t-statistic and an associated p-value measuring its 
significance in improving the model.  Some of the models we examined have upwards of 
one thousand parameters, so we have grouped the parameters dt through at corresponding 
to term order zero through three respectively.  Table 13 and Table 14 show mean and 
median t-test p-values in the daily and week or weekend-holiday model respectively.   
 
When the dummy variable associated with each parameter is included, the number of 
parameters is large and the mean and median p-values are displayed without shading.  
Shaded p-values indicate that the associated dummy variable has been dropped and there 
is just one parameter of that order that applies to the entire model.  In those cases mean 
and median are the same by definition and so only one is displayed.  Bolded results 
indicate significance at the p<0.05 level.  

 
Table 13. Daily model t-test p-values by parameter order and dummy variables included. 

 

 
Table 14. Week or weekend-holiday t-test p-values by parameter and dummy variables included. 
 Number of Dummy Variables Included 

Median p-Values 1 
δ0 

2 
δ0, δ1 

3 
δ0, δ1,δ2 

4 
δ0, δ1,δ2,δ3

at 0.000 0.000 0.000 0.277 
bt 0.000 0.000 0.001 0.144 
ct 0.000 0.000 0.001 0.033 
dt 0.000 0.000 0.001 0.003 

Mean p-Values 1 2 3 4 
at       0.311 
bt     0.067 0.234 
ct   0.000 0.000 0.000 
dt 0.147 0.101 0.087 0.136 

 
From Table 13 and Table 14 it is clear that if a dummy variable is dropped, then 
including a single parameter for that order term is always a statistically significant 
improvement to the overall model.  The y-intercept, first order, and second order dummy 
variable parameters are statistically significant in the median but not always in the mean.  

 Number of Dummy Variables Included 

Median p-Values 1 
δ0 

2 
δ0, δ1 

3 
δ0, δ1,δ2 

4 
δ0, δ1,δ2,δ3

at 0.000 0.000 0.000 0.257 
bt 0.000 0.000 0.000 0.131 
ct 0.000 0.008 0.018 0.058 
dt 0.001 0.000 0.000 0.002 

Mean p-Values 1 2 3 4 
at       0.318 
bt     0.046 0.254 
ct   0.000 0.000 0.000 
dt 0.139 0.111 0.106 0.134 



Spees and Lave 
Appendices 

 A-30

The median number is a more useful measure because these distributions have strong 
positive skews.  The third order dummy variable parameters do not show statistical 
significance.  Examination of these t-test results justifies dropping one dummy variable 
and keeping the remaining three.  

A.3 Visual Examination of Model Characteristics  
Adjusted R2 results suggest moving ahead with the daily model and only two dummy 
variables.  The t-test results indicate that including three dummy variables is justified.  F-
statistics suggest reducing the time resolution.   
 
Figure 11 through Figure 14 display predictions from models including 1 through 4 
dummy variables respectively. Original data are plotted in black in the background; 
curves representing each time-period t are plotted in red in the foreground.  Prices for 
each time period t are plotted over the range of loads observed in that time period.  Left-
hand plots represent the daily models, right-hand plots represent the week/weekend-
holiday models.   
 
From Figure 11 it is clear that more than one dummy variable must be included in order 
to get a decent representation of the overall data characteristics.  The weekly/weekend-
holiday models in Figure 12 through Figure 14 do appear to represent general 
characteristics of the data but do poorly in the extremes. Especially obvious is the 
inability of the weekly/weekend-holiday models to capture the excessively high prices 
that are an important part of a demand-response analysis.  The daily models are able to 
capture these high-price characteristics by including two to four dummy variables.   
 

 
Figure 11. Data plotted with model curves using 1 dummy variable, daily (left) and week/weekend (right). 
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Figure 12. Data plotted with model curves using 2 dummy variables, daily (left) and week/weekend (right). 
 

 
Figure 13. Data plotted with model curves using 3 dummy variables, daily (left) and week/weekend (right). 
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Figure 14. Data plotted with model curves using 4 dummy variables, daily (left) and week/weekend (right). 
 
Each dummy variable adds some small predictive ability to the daily model, especially in 
the high and low price extremes.  Another important issue is whether the model can make 
small extrapolations outside observed daily loads.  In addressing that issue we have 
looked at data and prediction plots for all 365 days for each set of dummy variables.  We 
plotted along with those curves the most extreme daily demand curves20 to determine the 
largest amount of extrapolation required.  When we include all 4 dummy variables the 
price predictions can go off-course with extrapolation, but with fewer dummy variables 
the extrapolative ability improves.  Every single day appears to have acceptable 
extrapolative ability when using only two dummy variables. 
 
Based on these observations, we conclude that the best overall supply-side model for 
analyzing RTP effects is the third-degree polynomial model with linear daily offsets as in 
(7). 
 
 

                                                 
20 From (3) with elasticity -0.4 and minimum or maximum daily load. 
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Appendix B Split between Supply Curve and Stacked Bid Curves 
We have claimed that using generator marginal cost curves to approximate supply curves 
underestimates both price and slope.  In order to support that claim, we have used PJM 
data on generator bids into the market to construct day-ahead hourly bid curves [1].  Most 
generators supply one bid curve into the market that will apply for the entire 24 hours, 
but others self-schedule their generation amounting to an hourly zero-price offset.  A 
small number of hourly increments or decrements are bid at a non-zero price.  We have 
constructed bid curves for every hour of the year from June 1, 2005 to May 31, 2006 by 
accounting for each of these bid types.  
 
In this Appendix we examine an earlier time period than in the rest of this paper because 
the generator bid data are released only after a six-month delay and are unavailable at this 
time21.   
 
Aggregate bid curves vary little over the course of one day; the maximum total available 
load offset in the time frame we observed was 5.6% between daily maximum and daily 
minimum.  On the left-hand side of Figure 15 we have plotted the bid curves for noon of 
every day on the left.  The bid curves have the hockey-stick shape typical of system 
marginal cost curves.  As noted earlier it is common in literature to find that the bid curve 
is assumed to be the true supply curve [10, 16, 21].  When this assumption is made the 
conclusion is that small changes in load have almost no effect on price except at high 
loads above the “elbow”.   
 
On the right-hand side of Figure 15 real market clearing results are shown along with the 
same noon bid curves.  In this second plot, we have shown only the section of bid curve 
corresponding with the actual daily load range.  If the bid curve were a good 
approximation of the system supply curve, then real market results would be close to the 
bid curve range.  This graph makes it clear that bid curves are a poor approximation of 
overall supply.  This is because the real-time constraints on generator dispatch including 
unit commitment, transmission constraints, and operating reserves are ignored.  Real 
market prices are much higher than would be predicted by these bid curves.   
 

                                                 
21 Dominion merged with PJM on May 1, 2005 and increased system peak load increased by 18.6% [20].  
The data start date allows us to study one contiguous years’ worth of data without a territory expansion; the 
end date allows access to the generator bid data on a six-month delay.  
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Figure 16 shows the same data along with daily fitted supply curves from (7); this model 
has overall adjusted R2 = 0.942 and an overall model F-statistic of 194.  By comparing 
Figure 16 with Figure 15, it is clear that after accounting for real-time system constraints, 
the supply curves have a much steeper slope than the bid curves even at moderate and 
low load.  This implies that small changes in load can have large impacts on price that 
would not be predicted by examining bid curves.  Supply curve slope is the most 
influential factor in determining the impact of a small change in load on price. 
 
These data covering the summer of 2005 have some qualitative differences from the 2006 
data examined elsewhere.  High price extremes were greater in 2006 because load 
extremes were also higher.  We also see that high prices were observed even on days 
when load was moderate or low.  This is because electric generators faced high natural 
gas prices in the fall of 2005 [22].  Natural gas generators are more versatile in load-
following and are scheduled during a few hours of day even when overall demand is not 
high.   
 

 
Figure 15. Daily bid curves at noon (left); noon bid curves with observed data (right). 
 

 
Figure 16. Data plotted with daily fits from (7). 
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Many analyses of demand response have assumed away the effects of system constraints 
outright and taken the implications of a constraint-free stacked bid curve to their logical 
conclusions [7, 10, 16, 21].  By examining aggregate system results shown here, the 
magnitude of the discrepancy between the bid curves and actual system results becomes 
clear.  
 
With a fitted supply model and the observed load, we can predict what price would have 
been in any hour.  Table 15 compares the average, minimum, and maximum prices 
predicted by a bid-curve model, a supply-curve model, and the actual observed prices.  
Based on this comparison it is clear that the bid-curve model predicts prices that are 
much too low, although not as low as they ought to be in low-load hours.  The 
comparison implies a $15.88/MWh average premium for system constraints. 
 

Table 15. Prices observed versus predicted by bid curve and supply curve models. 

 Bid 
Curve 

Supply 
Curve Observed 

Minimum Price $21.87 $10.66  $3.34  
Maximum Price $138.73  $181.64  $204.46  
Median Price $36.97 $54.17 $53.10 
Average Price $48.57  $69.44  $69.44 

 
The comparison of prediction and observed price duration curves in Figure 17 again 
show that bid curve price predictions are almost always too low.  The duration curve 
predicted by the supply curves is indistinguishable from the curve actually observed. 
 

 
Figure 17. Predicted and observed price duration curves. 

 
By plotting observed prices against predicted prices in Figure 18, a richer comparison of 
model quality can be made.  If either model were perfect, then the scatterplot of predicted 
price and observed price would fall along the identity line.  In order to show how close 
each model comes to the identity line I have plotted that along with the line outputted 
from a linear least-squares regression.  Bid curve predicted prices are systematically 
lower than real prices, and are never observed in the high price region.  The odd-looking 
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heteroscedasticity in the left graph can be understood by comparing it with Figure 18, but 
the general conclusion that the bid curve does not accurately represent the characteristics 
of observed prices and has poor predictability with adjusted R2 = 0.673.  The supply 
curve model best fit line is indistinguishable from the identity line and error appears to be 
evenly distributed up and down except at the most extreme prices. 
 

 
Figure 18. Observed price versus prices predicted by bid curves (left) and supply curves (right). 


