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Abstract—Policy surrounding the North American 

transmission grid, particularly in the wake of electric-industry 
restructuring and following the blackout of August, 2003, has 
treated network congestion and network reliability as if they 
were separable and independent system attributes.  Except for a 
few special cases, congestion and reliability are not independent, 
and may not even be separable in any meaningful way.  Using the 
DC power flow model with linear ATC, we provide a method for 
decomposing a change in network topology into a congestion 
effect and a reliability effect.  We provide analytical expressions 
describing the topological conditions under which a given 
network addition or outage will affect congestion and reliability, 
and prove some sufficiency conditions and some necessary 
conditions for congestion and reliability to be independent. These 
include (i) the network is series-parallel; (ii) demand is 
completely price-inelastic; (iii) all customers value reliability 
identically; and (iv) the grid operator does not discriminate 
among customers when forced to physically ration consumption. 
 

Index Terms—Reliability, congestion, merchant transmission, 
transmission investment, available transfer capacity, Braess 
Paradox, Wheatstone network. 

 

I.  NOMENCLATURE 
NL = Number of lines in the network 
NB = Number of buses in the network 
Sij = Transmission line connecting buses i and j 
Bij = Susceptance of the link connecting buses i and j 
Xij = Reactance of the link connecting buses i and j 
θi = Phase angle at the ith bus 
Pi = Net real power injection at the ith bus; positive for net 
generation and negative for net withdrawal 
PLi = Real power demand at the ith bus 
PGi = Real power demand at the ith bus 
ρli = Power transfer distribution factor along line l with 
respect to a network resource at bus i. 
δij = Phase angle difference between buses i and j 
Fij = Real power flow between buses i and j 
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πi = Nodal price at bus i 
μij = Shadow price of transmission between buses i and j 
Ci = Total cost function at the ith bus. 
ATCi = Available transfer capacity into bus i. 
B = (NB × NB) system susceptance matrix 
Bdiag = (NL × NL) diagonal matrix of line susceptances 
N = (NB × NB) node-node adjacency matrix 
A = (NB × NL) system node-line adjacency matrix 
P = (NB × 1) vector of bus injections 
F = (NL × 1) vector of line flows 
θ = (NB × 1) vector of bus angles 
δ = (NL × 1) vector of bus angle differences 
ρ = (NL × NB) matrix of power transfer distribution factors 

II.  INTRODUCTION  
estructuring in the U.S. electric power sector has 

encouraged investment by the non-utility, or “merchant” 
sector.  Initially, investment activity in the merchant 
generation sector was high, with a great deal of mostly gas-
fired capacity added between 1995 and 2002 [1].  Market-
based merchant transmission has been far less successful, 
existing for the most part only in theory.  Language 
supporting merchant transmission exists both in regulatory 
documents (such as section 1221 of the 2005 Energy Policy 
Act) and in the tariffs of the regional transmission operators 
such as PJM, New York ISO, and ISO New England.   

Merchant transmission and market-based transmission 
investment were originally synonymous.  Persistent 
differences in locational marginal prices (LMP) would serve 
as signals for investors.  Compensation for system upgrades 
would come in the form of contracts entitling the investor to 
some share of the congestion rent, related to the incremental 
capacity created by the upgrade.  Proposed transmission 
congestion contracts initially took the form of point-to-point 
financial transmission rights (FTR, [2]) or line-by-line 
“flowgate” rights [3], [4].  More recent market-based 
compensation mechanisms include the admittance-rights 
formulation in [5], and the LMP/megawatt-mile formulation in 
[6]. 

The use of FTRs to encourage transmission investment has 
been supported by the analysis of Bushnell and Stoft [7], [8].  
They demonstrate that if incremental FTRs are allocated 
according to Hogan’s “feasibility allocation rule,” [2], [9], and 
if other economic assumptions hold, then merchant 
transmission can be economically efficient – all socially 
beneficial network investments will also be privately 
profitable.  Significant criticism has come from [4] and [10], 
who argue that congestion contracts based on LMPs will 
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inadvertently enhance the market power of certain generators.  
More recently, [11] demonstrate that the economic efficiency 
of the market-based merchant transmission model falls apart 
when the underlying assumptions are relaxed.  Blumsack [12, 
Ch. 4] discusses a network topology in which merchant 
investors can profit from modifying the network in ways that 
cause congestion, even without relaxing the assumptions of 
[7] and [8].   

Globally, Argentina has claimed success in getting a small 
number of merchant lines built [13], [14].  The U.S. 
experience has involved a “weak” version of merchant 
transmission.  Non-utility lines have been built, but 
compensation has come through long-term contracts and not 
through market prices.   

Underlying the market-based merchant transmission model 
is an implicit assumption that transmission projects can be 
cleanly separated into those that relieve congestion and those 
that enhance reliability.  Since merchant transmission 
investments would be compensated with contracts based on 
congestion rents, this model would presumably only apply to 
those investments justifiable on “economic” grounds; 
investments for reliability would need to be socialized since 
the benefits are more widespread.  This distinction has been 
made even more explicit in the recent “participant funding” 
models of [15] and [16] 

Paul Joskow [1] argues that the distinction between 
investments for economics and those for reliability amounts to 
a meaningless dichotomy, since most transmission 
investments in the U.S. have been made by regulated utilities 
on the basis of reliability criteria.  This paper as well as [17] 
demonstrate that this distinction is not simply meaningless; in 
many cases, it is wrong.  Lines that cause congestion in the 
network may be justified on reliability grounds, and vice 
versa. 

III.  A STYLIZED EXAMPLE 
The interaction between congestion and reliability can be 

illustrated using the simple four-bus test network shown in 
Figure 1.  This test system is known as the Wheatstone 
network, and the link connecting buses 2 and 3 is known as 
the Wheatstone bridge.  Bus 1 is assumed to have an 
inexpensive generator with max

1GP = 100 MW, while bus 4 has 
an expensive generator and a load with a constant per-period 
real power demand of 1LP = 100 MW.  Buses 2 and 3 are tie-
points containing neither generation nor load.  The 
susceptances of lines S12 and S34 are assumed to be equal, and 
the susceptances of lines S13 and S24 are assumed to be equal.  
The two “upstream” lines (S12 and S13) have a rated limit of 55 
MW each, and the two “downstream” lines  (S24 and S34) have 
a rated limit of 100 MW each. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: The addition of the Wheatstone bridge connecting buses 2 and 3 
causes congestion along links S12 and S34.  The total system cost rises from 
$1,620 per hour without the Wheatstone bridge to $1,945 per hour with the 
bridge. 

 
The cost curves of the two generators are given the 

following quadratic parameterization: 
 

C(PG1) = 200 + 10.3PG1 + 0.009PG1
2                   (1) 

 

C(PG4) = 300 + 50PG4 + 0.1PG4
2.                      (2) 

 
Consider a parallel version of the network in Figure 1, 

without the Wheatstone bridge.  Abstracting from losses and 
reactive power demand, the inexpensive generator at bus 1 
will produce 100 MW and serve the entire load.  Due to the 
symmetry in the network, 50 MW will flow along each of the 
two paths from bus 1 to bus 4.  A DC optimal power flow run 
on the parallel network yields identical LMPs of $12.11/MW-
period at each of the four buses; the total system cost of 
serving the load is $1,620 per period. 

Once the Wheatstone bridge is added to the network, the 
pattern of flows shifts, causing congestion on lines S12 and S34 
in the network.1  The congestion reduces the total transfer 
capacity from bus 1 to bus 4.  The generator at bus 1 produces 
only 91.67 MW of real power, while the remainder must be 
made up by the expensive generator at bus 4 (or load-
shedding must occur at bus 4).  The presence of congestion 
alters the LMPs at all four buses in the system; in particular, 
the LMP at the load bus increases to $51.67/MW-period.  The 
total system cost of serving the load rises to $1,945 per period.  
For a system with market-based nodal pricing for generators 
and loads, the price paid by the load would increase by more 
than a factor of four, resulting in both wealth transfers from 
consumers to generators (or the holders of congestion 
contracts) and a deadweight social loss ([11], [18], [12 Ch. 2 
and 3]). 

The phenomenon that congestion is caused or worsened by 
adding links to a network is known as the Braess Paradox, and 
was first observed in automotive highway networks [19], [20].  
A detailed discussion of the conditions under which the 
Braess Paradox will arise for more general electric power 
networks can be found in [12 Ch. 3] and [18]. 

Thus, adding a Wheatstone bridge to a parallel system 
causes congestion and harms the network.  However, the line 

                                                           
1 These lines correspond to the high-susceptance lines in the network. 

  

Bus 3 
π3 = $33.72 

Bus 4 
PL4 = 100 MW 
PG4 = 8.33 MW 
π4 = $51.67 

Bus 2 
π2 = $46.96 

Bus 1 
PG1 = 91.67 MW 
π1 = $11.96 

FS24 = 36.7 MW 
μS24 = $0 

FS34 = 55 MW 
μS34 = $20.30 

FS12 = 55 MW 
μS12 = $45.87 

FS13 = 36.7 MW 
μS13 = $0 

FS23 = 18.3 MW 
μS23 = $0 
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might be justified on reliability grounds.  Without the 
Wheatstone bridge, the network would violate the N – 1 
criterion for transmission.  Suppose an outage were to occur 
on either of the two “downstream” lines S24 or S34.  Without 
the Wheatstone bridge in the system, the loss of one of these 
downstream lines would effectively remove one of the 
electrical paths between buses 1 and 4.  Thus, only 55 MW 
could be generated at bus 1.  If the generator at bus 4 has 

45max
4 <GP  MW, then blackouts will result at bus 4. 

IV.  DECOMPOSITION OF SINGLE AND MULTIPLE ELEMENT 
CHANGES IN NETWORK TOPOLOGY 

In the four-bus Wheatstone test network discussed in 
Section 3, addition of the Wheatstone bridge causes 
congestion, but adds to the reliability of the system in the 
event of an outage in one of the network boundary links.  
Through the example in Section 3, we have implicitly defined 
the congestion effect of a given line as being related to a 
single-element change in the network topology (namely, the 
addition of the Wheatstone bridge to the network).  Similarly, 
we have defined the reliability effect as being associated with 
a multiple-element change in the network topology (the 
addition of the Wheatstone bridge and the loss of one of the 
transmission lines on the boundary).  We will explicitly define 
congestion and reliability metrics in Section 5, but the simple 
example of the Wheatstone network makes clear that any 
thorough mathematical exploration of congestion and 
reliability requires us to decompose the effects of multiple 
changes to the network topology. To arrive at this 
decomposition, we adopt the DC power flow approximation 
and generalize the method of [21], which models network 
outages as changes to the system admittance matrix.   

The decomposition method proposed by [21] and expanded 
upon in [22], was developed for the purpose of analyzing and 
ranking single-element contingencies.  Thus, their 
modifications to the system admittance matrix (or just the 
susceptance matrix in the case of the DC power flow) 
amounted to network outages, modeled as kk BB −=Δ  for an 
outage on the kth line.  We generalize their calculations to 
include network additions, modeled as kk BB +=Δ , and 
multiple-element topology changes. 

A.  Decomposition of Single-Element Topology Changes 
We first review the case of a single-element topology 

change; an equivalent calculation was performed in [12, Ch. 
3] for the case of the Wheatstone network presented in 
Section 3.  The goal is to decompose the effect of a change in 
network topology so as to be able to write: 

 
Fnew = Fold + ΔF 

 
where ΔF represents the adjustment factor due to a single 
change in the network topology.  The decomposition will 
show that ΔF depends only on the system node-line adjacency 
matrix, the system susceptance matrix prior to the topology 

change, and the bus voltage angles prior to the topology 
change. 

We start with the DC model for net injections: 
 

P = Bθ.                                       (4) 
 

We model a change in the network topology as an 
adjustment to the susceptance matrix B.  The adjustment takes 
the form 'ABAB diag

kk Δ=Δ , where diag
kBΔ  is a diagonal 

matrix whose entries are all equal to zero except the k,kth 
entry, which is equal to ΔBk (thus, ΔBk represents a single-
element change in the network topology affecting line k).  In 
the case of a line outage, we will have kk BB −=Δ , and the 

dimensionality of diag
kBΔ  will be (NL × NL).  In the case of a 

network addition, we will have kk BB +=Δ .  The 

dimensionality of diag
kBΔ  will be (NL+1 × NL+1), and the 

dimensionality of A will be (NB × NL+1), to account for the 
new line in the system.2  Whether diag

kBΔ  represents a line 

outage or a line addition in the network, we note that diag
kBΔ  

has rank one, and thus kBΔ also has rank one. 
Following the change to the network topology, the DC 

equations can be written as: 
 

θBBP )( kΔ+= .                                (5) 
 

Since kBΔ  has rank one, we can write kkkk B 'AAB Δ=Δ , 
where Ak is the kth column of the node-line incidence matrix 
A. 

Solving for θ, and using the matrix inversion lemma [23, 
24], we get: 
 

( )
,

'1
'

')'1(

)(

1

1

11111

1

kkk

old
kkkoldnew

kkkkkk

k
new

B
B

BB

ABA
θAABθθ

PBAABAABB

PBBθ

−

−

−−−−−

−

Δ+
Δ

−=⇒

Δ+−=

Δ+=

     (6) 

 
where we note that kkkB ABA 1'1 −+  is a scalar.  We can 
rewrite this as: 
 

rθθ γ−= oldnew ,                                 (7) 
 

where kABr 1−=  and 
rA

θA

kk

old
kk

B
B

'1
'

Δ+
Δ

=γ .  In the discussion 

below, it will be easier to define new oldΔ = −θ θ θ .  Note that γ 
is a scalar and r is a vector of dimension (NB × 1).  Plugging 
(7) into the DC flow equations yields: 
                                                           

2 We could also model upgrades to the existing topology in a similar 
fashion.  A line upgrade (not a line addition) would be represented by ΔBk = 
+Bk, with +Bk being the magnitude of the upgrade.  The dimensionality of 
ΔBdiag would continue to be (NL × NL). 
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'( )

' .

new diag old

old diag

γ

γ

= −

= −

F B A θ r

F B A r
                             (8) 

 
The equivalent of (8) for flow on a single line Fl, is: 

 

( )

1

1

' ,

(1 ' ), ,

old old
l k l k l k

new
l

old old
l l l l l l

F b B l k
F

F B b l k

δ

δ

− −

− −

⎧ + ≠⎪⎪= ⎨
⎪

− Δ − =⎪⎩

1

1

A B A

A B A

   

(9) 
 
where 1( )k k k kb B − −= Δ + 1A 'B A , )( 1

llll Bb AB'A 1−− +Δ= . 
 

B.  Decomposition of Multiple-Element Topology Changes 
We now consider the case of a change in the network 

topology affecting n distinct network elements.  The network 
adjustment is again modeled as an adjustment of the form 

'diagΔ = ΔB A B A , except we allow ΔBdiag to have multiple 
non-zero entries ΔBkk, k = {1,…,n} on the main diagonal (the 
off-diagonal entries are still assumed to be zero).  If we 
assume that n1 of these network changes represent line 
outages, and n2 of these network changes represent new lines 
(so we have n1 + n2 = n), then the dimensionality of ΔBdiag 
will be (NL + n2 × NL + n2).  For example, we would model 
the addition of line k and an outage on line m k≠  with the 
(NL+1 × NL+1) matrix: 

 
 

0 0

0 0

0 0 0 0

.

0 0 0 0

k
diagdiag diag

mk

m

k m

B

B

B B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥

Δ = Δ + Δ = ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ++ −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

B B B

…
 

 
More generally, we can write an n-element network 

topology change as: 
 

1 2
diag diagdiag diag

nΔ = Δ + Δ + + ΔB B B B .           (10) 
 

We note that the rank of ΔBdiag is equal to n, the number of 

distinct adjustments to the network topology.  Thus, the rank 
of 'diagΔ = ΔB A B A  is also equal to n. 

The modified DC model for a multi-element topology 
change can be written as: 
 

( ')diag= + ΔP B A B A θ .                       (11) 
 
Solving for the vector of bus voltage angles, we get: 
 

1( ')diag −= + Δθ B A B A P .                     (12) 
 
Invoking the matrix inversion lemma, this can be written as: 
 

( )1 1 1 1 1( ' ) 'diag diag− − − − −= − + Δ Δθ B B A I B A B A B A B P ,  (13) 

 
where I is the (NL × NL) identity matrix.  The adjustment 
factor for the vector of bus angles becomes: 
 

1 1 1( ' ) ' .diag diag old− − −Δ = − + Δ Δθ B A I B A B A B A θ     (14) 
 
If we let R=B-1A, and 1( ' )diag −= + ΔC I B A B A , we get: 
 

1 ' .old−Δ = −θ RC A θ                          (15) 
 
Based on [25] and [26], we note that C is invertible if and 
only if 'diag+ ΔB B AA is invertible.  If we let 1 ' old−=Γ C A θ , 
then we can write: 
 

1 1 2 2 NL NLγ γ γΔ = − = − − − −θ RΓ r r r ,                (16) 
 
where γi is the ith element of Γ, and ri is the ith column of R. 
 

Thus, the voltage-angle adjustment factor for an n-element 
topology change is a linear combination of n single-element 
topology changes.  As with the single-element analysis in (8), 
we can use the voltage-angle adjustment factor Δθ in the DC 
flow equations to calculate the effect of a multi-element 
topology change on the network flows, as follows: 
 

( )

( )
1

'( )

' .

new diag diag old

NL
old diag old diag diag

i i
i

γ
=

= + Δ −

⎛ ⎞
= − Δ − + Δ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

F B B A θ RΓ

F B δ B B A r
  (17) 

 
Similarly, the effect on the net nodal injections can be 
calculated as: 
 

( )

( )
1

'( )

' .

new diag diag old

NL
old diag old diag diag

i i
i

γ
=

= + Δ −

⎛ ⎞
= − Δ − + Δ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

P A B B A θ RΓ

P A B δ A B B A r
  (18) 
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Equations (17) and (18) give us a way to decompose the 
effects of multiple changes to the network topology.  In 
particular, we see that the adjustment to the vector of network 
flows or injections due to a multi-element change in the 
network topology is a linear combination of the effects of a 
series of single-element changes to the network topology. 

V.  VARIATION OF DISTRIBUTION FACTORS WITH 
TOPOLOGICAL CHANGES 

We can use the same method developed in Section 4 to 
derive an expression showing how the matrix of power 
transfer distribution factors (PTDF) changes following 
alterations to the network topology.  We begin with the 
definition of the PTDF matrix: 

 
1−=ρ HB  ,                                (19) 

 
Where H is a (NL × NB) matrix defined by 'diag=H B A .  
Thus, we can rewrite (19) as: 
 

1'( ')diag diag −=ρ B A AB A .                    (19’) 
 

Following a change to the network topology represented by 
ΔBdiag, we have: 
 

1
( ) ' ( ) 'new diag diag diag diag −

⎡ ⎤= + Δ + Δ⎣ ⎦ρ B B A A B B A .     (20) 

 
Distributing terms in the inverse matrix in (20), we get: 
 

1
( ) ' 'new diag diag diag −

⎡ ⎤= + Δ + Δ⎣ ⎦ρ B B A B A B A .        (20’) 

 
If we define 1 1 1 1( ' ) 'diag diag− − − −Δ = − + Δ ΔB B A I B A B A B A B , 
as in (13), then we can rewrite (20) as: 
 

( )

1 1

1 1 1

1

( ) '

' ' '

'

,

new diag diag

diag diag diag

diag

old

− −

− − −

−

⎡ ⎤= + Δ + Δ⎣ ⎦

= + Δ + Δ

+ Δ Δ

= + Δ

ρ B B A B B

B A B B A B B A B

B A B

ρ ρ

   (20’’) 

 
where 1 1 1' ' 'diag diag diag− − −Δ = Δ + Δ + Δ Δρ B A B B A B B A B . 

Equation (20’’) describes the change in the distribution 
factors for a general (multi-element) topological network 
change.  The equivalent of (20’’) for the effect of a single-
element topological change ΔBk on the lth line is given by: 
 

1 1 1' ( ' ' )new old
l l l l k l lB B A− − −= + Δ + Δ Δ +ρ ρ A B A B B ,  (21) 

 
where ρl is the lth row of the distribution matrix, and Al is the 

lth row of the node-line adjacency matrix. 
We can use the DC flow model F=ρP to link the 

distribution-matrix decomposition in (21) with the flow-vector 
decomposition (17).  We note that: 

 
( )

.

new old

old

old

= + Δ

= + Δ

= + Δ

F ρ ρ P

ρ P ρP

F ρP

                              (22) 

 
Since new old= + ΔF F F , it must be true that Δ = ΔF ρP , or 
equivalently: 
 

( ) 'diag old diag diag⎡ ⎤Δ = − Δ − + Δ
⎣ ⎦

ρP B δ B B A RΓ .      (23) 

 
Thus, the effects of a n-element topology change on the PTDF 
matrix can be broken down into a linear combination of n 
single-element topology changes.  Equations (23) and (17) can 
essentially be used interchangeably. 
 

VI.  CONGESTION AND RELIABILITY METRICS 
The example of the Wheatstone network in Section 3 

suggests two conceptual distinctions between reliability and 
congestion.  The first is that reliability refers to the state or 
robustness of the network under contingencies, while 
congestion is a system attribute associated with normal 
operations.  In developed countries with robust power grids, 
contingencies should not occur very often, but particular paths 
may become congested on a regular basis, particularly during 
times of peak demand.  Thus, congestion events may be 
common and perhaps even predictable.  Reliability problems 
(which lead to demand not being fully served), on the other 
hand, are the result of contingencies that should be random 
and rare. 

The second distinction is that the presence of congestion 
may increase the cost of filling customer demands, while a 
lack of reliability in the system results in the physical inability 
of the system to meet these demands.  Here, we are explicitly 
defining both reliability and congestion from the point of view 
of the customer.  If a particular piece of equipment in the 
network is prone to outages, but these outages do not restrict 
the amount of customer demand that the network can meet, 
then the network is sufficiently reliable for the customer. 

Before discussing the extent to which these two system 
attributes can be decomposed, we define some explicit 
congestion and reliability metrics.  Our focus in this paper is 
the effects of topological changes on both reliability and 
congestion in the network.  For concreteness, we will define a 
network topology Ω as a triple max{ , , }Ω = B A F , where B is 
the susceptance matrix, A is the node-line adjacency matrix, 
and Fmax is the vector of capacity limits for the transmission 
lines.  Thus, there is a distinction between our definition of a 
topology and the usual definition of a graph or network as a 
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collection of nodes and edges. 
Unless stated otherwise, we will be comparing different 

network topologies under the following set of assumptions: 
 
Assumption 1:  The profile of desired nodal demands 

1( , , )d d dNBP P=P … does not change with a change in network 
topology.3   
Assumption 2: Demand is completely price-inelastic. 
Assumption 3: The grid operator treats all customers as if they 
valued reliability equally.  One important implication of this 
assumption is that unserved energy at a given node is 
inconsistent with excess generation capacity at that node.4 

A.  Congestion Metrics 
Congestion in an electric network occurs whenever a 

transmission line is loaded up to its predetermined capacity 
limit.  Actual transmission lines have a variety of constraints 
representing different operating states of the system.  These 
include voltage stability loading limits, thermal limits, and 
short-term contingency limits.  These are normally measured 
in MVA to accommodate both real and reactive power 
constraints, but to simplify the discussion we will treat 
transmission lines as if they had a single steady-state capacity 
limit, stated in MW for real power. 

A single line l becomes congested when max
l lF F= .  From 

(9), we can see that a single-element topology change 
affecting line k l≠  will cause congestion if maxnew

l lF F≥ , or: 
 

1 1 max

1
1 1

max

'

'
.

old old
l k l k l k l

old
l k l k

k k kold
l l

F b B F

B
B

F F

δ

δ

− −

−
− −

+ ≥

⇒ Δ ≥ −
−

A B A

A B A
A 'B A

       (24) 

 
We can also express (24) using the network distribution 
matrix, as in Section 5.   An equivalent condition to (24) is: 
 

max 1

1
( ' )

'

old
l l l l

k old
l l

F F B
B

δ

−

−

− − Δ
Δ >

+ Δ

A B Bθ
A B Bθ

.            (24’) 

 
For a given demand profile in the network, (24) can serve as 
the definition of congestion caused by a specific network link.  
That is, for a given vector of nodal demands, we define line k 
as causing congestion on line l (relative to the network 
topology without line k) if (24) is satisfied. 

Congestion may impose a cost on the system if it results in 
generating units being dispatched out of merit order.  We 

                                                           
3 There is some foreshadowing in this assumption.  We will define 

reliability (from the point of view of the customer) as the situation where there 
is no difference between the actual demand profile and the profile of desired 
demand. 

4 Another implication is that without some cost-based or value-based 
decision criteria, it may not always be clear which customer or customers 
should be blacked out in the event of a physical shortage of network 
transmission resources.  We abstract from this decision problem and focus on 
the end state of the network; i.e., the sufficient system conditions for a 
customer to be blacked out. 

measure the congestion cost CC of a single-element or multi-
element change to the network topology by taking the 
difference in the total cost of serving the load before and after 
the topological change: 

 

( ) ( ), ,
a b

i iGi opt Gi opt
i i

CC C P C PΩ Ω= −∑ ∑ ,          (25) 

 
where Ωa and Ωb represent two distinct network topologies, 
and , ,,a b

Gi opt Gi optP PΩ Ω  represent the optimal output of the ith 

generating unit with respect to network topologies Ωa and Ωb.5 
Equation (24) provides an explicit condition under which a 

topological change will result in network congestion (for a 
given network demand profile).  Measuring the congestion 
cost requires optimization of the entire system under different 
network topologies.  Thus, the magnitude of the network 
congestion cost is largely an empirical matter, rather than a 
theoretical one. 

 

B.  Reliability Metrics 
Current industry practice assesses network reliability using 

a number of different metrics, such as: 
 

1. The N – k criterion; whether the system can continue 
to provide uninterrupted service to customers in the 
face of a contingency in which k out of N pieces of 
equipment are lost, damaged, or otherwise 
disconnected from the network; 

2. the Loss of Load Probability (LOLP), defined as the 
probability over some period of time that the network 
will fail to provide uninterrupted service to 
customers; 

3. the Loss of Energy Expectation (LOEE) and Loss of 
Energy Probability (LOEP), defined as the expected 
amount and proportion of customer demand not 
served over some time frame.  These are also known 
as the Unserved Energy Expectation or Probability. 

 
Note that in the discussion of the Wheatstone network in 

Section 3, we measured reliability using the unserved energy 
metric.  Factoring in the probability of a contingency on one 
of the boundary links transforms this metric into the unserved 
energy expectation.  Parameterizing customer demands using 
either a value of lost load (VOLL) or an explicit demand 
curve further transforms this metric into the expected cost of 
unserved energy [27], [17]. 

In this paper, we consider reliability from the point of view 
of the customer.  That is, a reliable system (with respect to a 
particular topological configuration) minimizes the need of the 
grid operator to physically ration the consumption of electric 
power.  We will define the system as reliable (with respect to 
a given topology Ω) if Li diP PΩ Ω=  for all i, i = {1,…,NB}, 

                                                           
5 By “optimal output,” we mean the level of output resulting from an 

optimization problem which minimizes the total cost of generation. 
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where Pdi is the amount of power the customer at bus i desires 
to consume, and PLi is the amount of power actually 
consumed. We measure the effect of a single- or multi-
element topological change on reliability by measuring the 
amount by which unserved energy increases following the 
topological change. 

Mathematically, we define a b
Li Li LiP P PΩ ΩΔ = − to be the 

difference between consumption at the ith bus with two 
different network topologies represented by Ωa and Ωb.  Thus, 
ΔPLi represents the (relative) reliability benefit of topology Ωa 
over topology Ωb.  If ΔPLi = 0, then topology Ωa does not 
provide a reliability benefit over topology Ωb.  If ΔPLi > 0, 
then topology Ωa provides a reliability benefit over topology 
Ωb (and vice versa if ΔPLi < 0).  We will also define a variable 
ΔPGi in a similar fashion to ΔPLi. 

Our focus in this paper is on situations where the initial 
network topology Ωa represents a reliable system.  For these 
systems, the assumption of a constant demand profile excludes 
the case ΔPLi > 0. 

As an example, consider the Wheatstone network discussed 
in Section 3.  Assume that there are no line outages in the 
network.  Without the Wheatstone bridge, total consumption 
at bus 4 is 100 MW.  When the Wheatstone bridge is added to 
the network, total consumption is still 100 MW.  Thus, for 
these two topological configurations, ΔPLi = 0.  Next, consider 
the same two topologies, but assume an outage on link S24.  
Assume further that the generator at bus 4 has a capacity limit 
for real power of 10 MW.  With the Wheatstone bridge, total 
consumption at bus 4 is 100 MW.  Without the Wheatstone 
bridge, consumption at bus 4 is 65 MW.  Thus, for these two 
topological configurations, ΔPLi = 35 MW (that is, the 
Wheatstone bridge provides a reliability benefit of magnitude 
35 MW for a load of PL4 = 100 MW). 

VII.  SEPARABILITY AND DECOMPOSITION OF RELIABILITY AND 
CONGESTION 

In Sections 4 and 5, we developed a method to decompose 
the effects of multiple topology changes on network flows and 
net injections, in the context of the DC power flow 
approximation.  In Section 6, we used this decomposition 
method to derive metrics for determining whether a given 
topological change will affect congestion and reliability in the 
network.  In this section, we use the results of Sections 4 
through 6 to derive some explicit topological conditions under 
which congestion and reliability will be independent. 

The first two results demonstrate that (in the steady state) 
under the assumption of price-inelastic demand, a decrease in 
net injections following a change in the network topology, as 
in (18), is equivalent to saying that the topological change has 
decreased system reliability. 

 
Result 1:  Let a b

Li Li LiP P PΩ ΩΔ = − denote the change in 
steady-state demand at the ith bus following a change in 
topology from Ωa to Ωb, and let a b

i i iP P PΩ ΩΔ = − be the 

change in steady-state net injection at the ith bus, as defined in 
(18), where i Li GiP P P= − .  Assume that Ωa represents a 
reliable system.  Suppose that bus i represents a net demander 
of real power.  A necessary and sufficient condition that the 
change in the network topology does not harm reliability at 
bus i is that 0iPΔ ≥ . 

 
Proof of Result 1:  Proving the result involves 

demonstrating that 0 0i LiP PΔ ≥ ⇔ Δ = .  The first step of the 
proof is to show that 0 0i LiP PΔ ≥ ⇒ Δ = .  We first consider 
the case where 0iPΔ > .  It must also be true that 0GiPΔ > and 

0LiPΔ = ; thus the change in network topology from Ωa to Ωb 
does not result in any unserved energy. 

Next, we consider the case 0iPΔ = .  We note that 
0iPΔ = could arise in one of two cases.  The first is where 

both 0GiPΔ = and 0LiPΔ = .  In this case there is clearly no 
unserved energy arising from the topology change Ωa to Ωb.  
The second case is where both 0GiPΔ >  and 0LiPΔ > , with 

Gi LiP PΔ = Δ .  But 0LiPΔ >  violates either Assumption 1 or 
the assumption that Ωa represents a reliable system.  Thus, we 
see that 0iPΔ ≥ can only occur if 0GiPΔ ≥  and 0LiPΔ = . 

The next step of the proof is to show that 
0 0i LiP PΔ ≥ ⇒ Δ = .  Assume that 0iPΔ ≥ .  By Assumption 

1, and since bus i represents a net demander, it must be the 
case that 0GiPΔ ≤ . 

 
Result 2:  Let iPΔ  and LiPΔ be the same as defined in 

Result 1, and suppose that PGi = 0.  Assume also that Ωa 
represents a reliable system.  Then 0 0i LiP PΔ < ⇔ Δ < . 

 
Proof of Result 2:  Since 0Gi Li iP P P= ⇒ = , and because 

of Assumption 1, the proof is trivial. 
 
A more interesting situation arises when bus i is a net 

demander, but it may be true that 0GiP ≠ .  In this case, 
reliability at the ith bus decreases following a topological 
network change if the available transfer capacity (ATC) into 
bus i declines.  In the DC model, we can measure the (linear) 
ATC from bus s to bus i using the formula derived in [28] and 
[29]; 

 

, min{ }s
s i mm

ATC T= ,                                 (26) 

 
where max

,( ) /s
m m m m iT F F ρ= − , and ρm,i denotes the 

distribution factor of line m with respect to a unit 
injection/withdrawal at bus i.  From the system Load Bus 
Transfer Capability derived in [30], we can write the system-
wide ATC into bus i as: 
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max min{ }s
i mms

ATC T=                            (26’) 

 
As with the congestion and reliability metrics discussed in 
Section 6, we will define ATC with respect to a given network 
topology Ω. 

Following a change in the network topology from Ωa to Ωb, 
the new ATC is expressed as: 

 
max

, ,

( )
max min

a
b m m m

i ms m i m i

F F F
ATC

ρ ρ

Ω
Ω ⎧ ⎫− + Δ⎪ ⎪= ⎨ ⎬+ Δ⎪ ⎪⎩ ⎭

.         (27) 

 
Suppose that both (26’) and (27) are satisfied by line l.  Then 
the change in ATC is given by: 
 

max max

, , ,

( )
.

b a

a a

i i

l l ll l

l i l i l i

ATC ATC ATC

F F F F F
ρ ρ ρ

Ω Ω

Ω Ω

Δ = −

− + Δ −
= −

+ Δ

       (28) 

 
Note that 0ATCΔ < if a bATC ATCΩ Ω> , or equivalently if 

,
max

,a

l il

l il l

F
F F

ρ
ρΩ

ΔΔ
<

−
.  This condition says that 

a bATC ATCΩ Ω>  if a network topology change causes a 
proportionally larger change in the distribution factor of the 
limiting line connected to bus i than in the flow across the 
limiting line connected to bus i.  This leads to the following 
results: 

 
Result 3: Let b a

i iATC ATC ATCΩ ΩΔ = − denote the change 
in steady-state demand at the ith bus following a change in 
topology from Ωa to Ωb, and suppose that bus i represents a 
net demander.  Assume that Ωa represents a reliable system, 
and that the change in topology from Ωa to Ωb represents a 
single-element topology change.  Then reliability at bus i 
decreases following the network topology change if 

,1
max

,

'
( )

a

a

l il k l k
k k k

l il l

B
B

F F

ρδ
ρ

Ω−
− −

Ω
Δ > −

Δ−

1
1A B A

A 'B A . 

 
Proof of Result 3: If bus i represents a net demander, then a 

decrease in reliability is equivalent to the condition that 
a bATC ATCΩ Ω> .  Assuming that (28) is satisfied, this occurs 

when: 
 

,
max

,a

l il

l il l

F
F F

ρ
ρΩ

ΔΔ
<

−
                       (29) 

 
Multiplying through and inserting (9) yields the result: 
 

max
, ,1

1
,max

,

,1
max

,

'
( )

'
( )

'
.

( )

a
a

a

a

a

a

l k l k
l i l i l l

k k k

l k l k
l i k k k

l i l l

l il k l k
k k k

l il l

B
F F

B

B
B

F F

B
B

F F

δ
ρ ρ

δ
ρ

ρ

ρδ
ρ

Ω−
Ω

− −

Ω−
− −

Ω

Ω−
− −

Ω

< Δ −
Δ +

⇔ − < Δ +
Δ −

⇔ Δ > −
Δ−

1

1

1
1

1
1

A B A
A 'B A

A B A
A 'B A

A B A
A 'B A

    (30) 

 
Note that a reversal of the inequality in (30) implies that the 
topological change from Ωa to Ωb increases the available 
transfer capacity into bus i and thus provides a reliability 
benefit. 

 
From (17), we see that a condition analogous to (30) for a 

multi-element topological change can be written as: 
 

,max

,0

0

' ( )

' .

a

a

l i
k l k l l

l ik

k l k l l
k

B F F

B B

ρ
ρ

δ

Ω

≠
Ω

≠

Δ
Δ < −

+ − Δ

∑
∑

A r

A r
          (31) 

 
Equations (30) and (31) can also be used to prove an 
exception to Result 3 for the case where bus i is a net 
generator, rather than a net demander.   
 

Result 4: Let ATCΔ  and iPΔ  be as defined in Results 1 
through 3, and assume that Ωa represents a reliable system.  
Assume also that bus i represents a net generator.  Then, a 
change in topology from Ωa to Ωb cannot harm reliability at 
bus i. 

 
Proof of Result 4: Results 1 through 3 demonstrate that a 

necessary condition for reliability at the ith bus being 
degraded by a change in network topology is that 0iATCΔ < .  
The proof of Result 4 demonstrates that this is not a sufficient 
condition.  If bus i is a net generator, then it must be the case 
that max

Gi diP P>  since max
Gi Gi Li diP P P P≥ > =  (we have 

Li diP P=  by Assumption 2).  Under Assumption 1, Pdi does 
not change following a change in topology from Ωa to Ωb.  
Assumption 3 states that excess generation capacity at bus i is 
inconsistent with unserved energy at bus i.  Thus, even if 
available transfer capacity into bus i declines following the 
change in network topology, the fact that there is excess 
generation at bus i prevents reliability at bus i from being 
degraded. 

 
Equations (30) and (31) are particularly revealing.  The 

topological condition under which reliability will be improved 
or degraded looks similar to the topological condition under 
which congestion will occur in the network.  The topological 
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condition for congestion takes the form 1
kB α β−Δ > + , where 

max

'
( )

a

a

l k l k

l l

B
F F

δ
α

Ω−

Ω
=

−

1A B A
and k kβ −= − 1A 'B A , as in (24).  

Meanwhile, the topological condition for reliability, as in (30), 

takes the form ,1

,

l i
k

l i
B

ρ
α β

ρ
−Δ > +

Δ
 (the condition for 

reliability under a multi-element topological change, as in 
(31), is similar).  Thus, decomposing reliability from 
congestion and assessing the degree to which the two are 
independent, complementary, or represent tradeoffs, is largely 
a function of how the distribution matrix changes following a 
shift in the network topology. 

 
Result 5: Under the DC power flow assumptions with 

linear ATC, for a single-element topology change affecting 
line k, we have the following: 

1 1
1

, , 1
,

1 1
1

, , 1
,

1 1
1

, , 1
,

'( )
( )

'

'( )
( )

'

'( )
( ) .

'

l i i
l i l i k

l i l l i

l i i
l i l i k

l i l l i

l i i
l i l i k

l i l l i

i B
B

ii B
B

iii B
B

ρ ρ
ρ

ρ ρ
ρ

ρ ρ
ρ

− −
−

−

− −
−

−

− −
−

−

Δ +
Δ = ⇔ Δ =

− Δ

Δ +
Δ > ⇔ Δ <

− Δ

Δ +
Δ < ⇔ Δ >

− Δ

A B B
A B

A B B
A B

A B B
A B

 

 
Proof of Result 5: We will prove the result for case (i); the 

proofs for cases (ii) and (iii) are identical.  From (21), we see 
that 1 1 1

, ' '( )l i l l i k l i iB Bρ − − −Δ = Δ + Δ Δ +A B A B B , where 1
i
−ΔB  

and 1
i
−B represent the ith column of 1−ΔB and 1−B .  Thus, for 

case (i) to hold, we must have: 
 

1 1 1
,

1 1 1
,

1 1
1

1
,

' '( )

' '( )

'( )
.

'

l i l l i k l i i

l i l l i k l i i

l i i
k

l i l l i

B B

B B

B
B

ρ

ρ

ρ

− − −

− − −

− −
−

−

= Δ + Δ Δ +

⇔ − Δ = Δ Δ +

Δ +
⇔ Δ =

− Δ

A B A B B

A B A B B

A B B
A B

         (32) 

 
Cases (ii) and (iii) can be verified using the same procedure as 
in (32). 
 

By now, it should be clear that congestion and reliability 
are rarely independent.  Case (i) in Result 5 demonstrates a 
necessary and sufficient topological condition under which 
congestion and reliability cannot be independent.  Cases (ii) 
and (iii) demonstrate topological conditions under which 
congestion and reliability may be independent.  Case (ii) 
shows a situation in which congestion is a sufficient condition 
for a degradation in reliability, but not a necessary condition.  
Case (iii) shows a situation in which a degradation in 
reliability is a sufficient condition for congestion, but not a 
necessary condition. 

The next result strengthens Case (iii) to show that any 

topological change that weakens reliability also causes 
congestion. 

 
Result 6: Suppose that bus i represents a steady-state net 

demander.  Assume that Ωa represents a reliable system, and 
that the change in topology from Ωa to Ωb represents a single-
element topology change.  If 0iATCΔ < (that is, reliability at 
bus i is degraded by the change in network topology), and if 
(28) is satisfied, then the change in network topology results 
in congestion on at least one line connected to bus i. 

 
Proof of Result 6: We will actually prove a slightly 

stronger statement than Result 6; we will show that the 
limiting line in the formula for ATCi is the one that becomes 
congested.  Under the assumption that reliability at bus i is 
degraded by the change in the network topology, Result 3 tells 

us that ,1
max

,

'
( )

a

a

l il k l k
k k k

l il l

B
B

F F

ρδ
ρ

Ω−
− −

Ω
Δ > −

Δ−

1
1A B A

A 'B A .  

Since 0iATCΔ < , we also know that , 0l iρΔ > and thus 

, ,/ 0l i l iρ ρΔ > .6  We must also have: 
 

1
max

,
max

,

'
( )

'
.

( )

a

a

a

a

l k l k
k k k

l l

l il k l k
k k

l il l

B
B

F F

B
F F

δ

ρδ
ρ

Ω−
− −

Ω

Ω−
−

Ω

Δ > −
−

> −
Δ−

1
1

1
1

A B A
A 'B A

A B A
A 'B A

      (33) 

 
The first inequality represents the condition for a network 
topology change to cause congestion, thus establishing the 
result.  Thus, a change in network topology that degrades 
reliability into bus i also causes congestion on the set of 
transmission lines connected to bus i. 
 

Result 6 states that if a topological change decreases 
reliability at bus i, then it causes congestion on the set of 
transmission lines connected to bus i.  The topological change 
may also cause (or relieve) congestion in other portions of the 
system. 

The discussion of the Wheatstone network in Section 3 
demonstrated that a congestion-causing topological change 
could also improve reliability.  As a generalization of this 
phenomenon, suppose that bus i represents a steady-state net 
demander.  Consider four topologies Ωa, Ωb, Ωc, and Ωd.  
Assume that Ωa represents a reliable system and that Ωc 
represents a system with degraded reliability relative to Ωa.   
Consider two single-element topology changes; the first is 
from Ωa to Ωb and the second is from Ωc to Ωd.  Assume that 
the first change in network topology causes congestion (with 
respect to topology shift Ωa to Ωb).  Both sets of single-
element topology changes involve the same line k.  Through 
repeated application of (24) and (30), the change in network 

                                                           
6 Since bus i is a net demander, the limiting line in the ATC calculation 

should have ρl,i > 0. 
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topology improves reliability (with respect to topology shift 
Ωc to Ωd) if: 

 

,
max max

,

' '
.

( ) ( )

a c

a c

l il k l l k lk k

l il ll l

B B
F F F F

ρδ δ
ρ

Ω Ω− −

Ω Ω
≥

Δ− −

1 1A B A A B A
       (34) 

 
In the specific case of the Wheatstone network in Section 

3, we have a c
k kδ δΩ Ω=  and a c

l lF FΩ Ω= , so (34) reduces to: 
 

,

,
1l i

l i

ρ
ρ

≤
Δ

,                                (34’) 

 
or, equivalently, using Result 5, 
 

 
1 1

1
1

,

'( )
'

l i i
k

l i l l i
B

Bρ

− −
−

−

Δ +
Δ ≤

− Δ

A B B
A B

.                   (34’’) 

 
Since Braess’ Paradox in power systems is not uniquely 

associated with the Wheatstone network, not every 
Wheatstone network will present a tradeoff between 
congestion and reliability (Blumsack and Ilić 2006).  
However, as the last result demonstrates, the presence of an 
embedded Wheatstone network is a necessary condition for a 
tradeoff between congestion and reliability to exist in the DC 
model with linear ATC. 

 
Result 7: Suppose that bus i represents a steady-state net 

demander.  Assume that Ωa represents a reliable system.  
Suppose that a single-element topology change from Ωa to Ωb 
causes congestion.  A single-element topology change 
representing a network addition (so that 0kBΔ > ), can also 
provide a reliability benefit only if the network (under 
topologies Ωa and Ωb) contains an embedded Wheatstone 
bridge.  A single-element topology change representing a 
network outage (so that 0kBΔ < ) can provide a reliability 
benefit in a network without an embedded Wheatstone bridge 

if 1
2

a

k j
j

B B
∈Ω

−Δ ≥ ∑ . 

 
Proof of Result 7: An equivalent statement to Result 7 is 

that (24) and (30) cannot simultaneously hold in a network 
that does not contain an embedded Wheatstone bridge.  [31] 
and [32] show that any undirected graph is either series-
parallel (or radial) or contains an embedded Wheatstone 
network.  Thus, proving Result 7 amounts to showing the 
conditions under which (24) and (30) cannot simultaneously 
hold in a series-parallel network.   

 
 
 
 
 

 
 
 
 
 
 
 

Figure 2: Parallel network with N lines and two buses. 
 
We will first sketch out the proof for the lossless N-line 

parallel network shown in Figure 2.  For systems without loop 
flows (but allowing for parallel flows), [33] show that there is 
at least one node in the system that is a pure “source,” and at 
least one that is a pure “sink.”  In such a network, the 
distribution factors are given by: 

 

 ,

a

l
l i

j
j

B
B

ρ

∈Ω

=
∑

.                                   (35) 

 
Thus, a single-element topology change kBΔ  will cause 

congestion if 
max

k k

Lij
j

B F
PB

Δ
>

∑
.  Note that the series-parallel 

network admits the special form of (30) shown in (34’’); thus 
a change in network topology will cause congestion but 
improve reliability if , ,/ 1l i l iρ ρΔ ≤ .  The remainder of the 
proof will demonstrate that this results in a contradiction if the 
topology change represents a network addition, and results in 
a contradiction under certain conditions if the topology change 
represents a network outage. 
 

If , ,/ 1l i l iρ ρΔ ≤ , then we must have: 
 

1
2

1 .
2

a a a

a a

a

l l l

j j k j
j j j

j j k
j j

k j
j

B B B
B B B B

B B B

B B

∈Ω ∈Ω ∈Ω

∈Ω ∈Ω

∈Ω

≤ −
+ Δ

⇔ ≥ + Δ

⇔ −Δ ≥

∑ ∑ ∑

∑ ∑

∑

                (36) 

 
Since 0jB ≥ for all j in a series-parallel network, (36) can 

only hold if 0kBΔ < ; that is, if the topology change 
represents an outage on line k in the transmission system. 

VIII.  DISCUSSION AND CONCLUSIONS 
In this paper, we have decomposed the congestion and 

reliability attributes of modifications to the transmission 

l1

l2

lN
Bus 1

Bus 2

l1

l2

lN
Bus 1

Bus 2
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network.  In particular, we focus on the question of whether a 
given change in the network topology causes or relieves 
congestion; and whether the topological change improves or 
degrades reliability.  We find that the effects on congestion 
and reliability are rarely independent.  Necessary assumptions 
and conditions for independence include (i) price-inelastic 
demand; (ii) all customers valuing reliability equally; (iii) a 
system operator that does not discriminate among consumers; 
and (iv) a network that does not contain any embedded 
Wheatstone bridges.  Additions to series-parallel networks 
represent one set of circumstances where reliability and 
congestion may be truly independent; the effect of topology 
changes on net generator buses represents another. 

Reliability and congestion are rarely independent system 
attributes.  Network investments made with reliability in mind 
can have effects on congestion (positive or negative), and vice 
versa.  Further, these externalities are highly variable with the 
network topology and the level of demand, and may not be 
captured in locational prices [13], [14].  One planning solution 
is thus to construct enough network capacity so that demand, 
even peak demand, looks small by comparison.  Such a 
solution would be costly and also ignores the effects of future 
planned investments [34].  Transmission investment is a 
systems problem and should be treated as such. 

The cost of congestion is easy to define.  The 
interdependence of congestion and reliability, particularly 
when the two represent tradeoffs, suggests that reliability 
should be defined in terms of these costs and benefits.  
Particularly with the transition to markets in the new electric 
power industry, and with the increasing difficulty of siting and 
building new transmission lines, the value of reliability (either 
to the entire network or to individual customers) becomes a 
more important concept than physical reliability itself. 

The four-bus test network in Section 3 provides a good 
framework for illustrating concepts, but there are important 
differences between the test network and actual highly 
interconnected networks.  In real systems, to the degree that 
the matrix of distribution factors is nonsparse, resources 
throughout the network can affect the behavior of any 
particular sub-structure.  An equally important issue is that 
while the distribution matrix may be approximately constant 
for a fixed network topology [35], network additions or 
outages change the distribution factors, and thus the total 
system cost and LMPs.  Predicting the direction and 
magnitude of these changes can be difficult for complex 
networks.   

The analysis in this paper provides a framework for 
assessing whether a new line will have congestion or 
reliability impacts (or both).  Which effect dominates, and 
whether the impact is large or small, is ultimately an empirical 
matter. 
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