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Abstract— Harmonic state estimation (HSE) is used to locate of harmonic voltages and currents in power networks with
harmonic sources and estimate harmonic distributions in power synchronized measurements. But due to the high expense of
transmission networks. When only a limited number of har- harmonic instruments and installation of communicatioarch

monic meters are available, existing HSE methods have limited | | limited b f . t labl
effectiveness due to observability problems. This paper describe neis, only a fimiteéd number of harmonic meters are available

a new system-wide harmonic state estimator that can reliably N power networks [23] . In other words, the number of
identify harmonic sources using fewer meters than unknown state measurements are only slightly greater or even fewer thatn th
variables. Note there are only a small number of simultaneous of yunknown state variables. It often results in ill-conafited

harmonic sources among the suspicious buses. We propose the, singular measurement matrix in harmonic state estimatio

concept of S-Observability by extending observability analysis hich liabl timate wh . tandast |
to general underdetermined estimation when considering the which may cause unrefiable estimate when using standast lea

sparsity of state variables. We show the underdetermined HSE Square (LS) estimator(3].
can become observable with proper measurement arrangements  To overcome the difficulty, a singular value decomposition
by applying the sparsity of state variables. We formulate the (SVD) based method[5] is proposed to estimate state vasabl
harmonic state estimation as a constrained sparsity maximization . . : .
problem based on L1-norm minimization. It can be solved I opservable islands while the' r.es't of the state .varlables
efﬁcienﬂy by an equiva|ent linear programming. Numerical remain unknown. In order to minimize meter reqUIrementS
experiments are conducted in the IEEE 14-bus power system to as well as to avoid ill-conditioned measurement matrix, op-
test the proposed method. The underdetermined system contan timal meter placement is addressed in [7],[8],[9],[10].eTh
nine meters and thirteen suspicious buses. The results Showapplication of HSE to an actual power system is described
that the proposed sparsity maximization approach can reliably . . -
identify harmonic sources when presence of measurement noises, N [11], where elght' synchronized phasor measurements ar.e
model parameter deviations and small non-zero injections. used while state variables are seven unknown nodal harmonic
Index Terms— Power system harmonics, state estimation, wide- current injections. Other approaches, such as artificiataie
area measurements, sparsity, sparsity representation, undee- networks [12], Kalman filters [13],[14],[15], are proposéd
termined system, observability, waveform distortion, harmonic [16],[17], independent component analysis is used to es&m

pollution, meter placement N L
general load injections and harmonic injections.

Despite these efforts, it is still a challenge to estimate
. INTRODUCTION reliably all network state variables in even moderate seqy

. . . . networks when provided fewer measurements than suspicious
In recent years, the proliferation of power electronic desi P P

and nonlinear loads in power systems has led to increasi'ﬁ%desj o . . .
concern about the distortion of the sinusoidal waveform of AN important bit of information about harmonic sources is
voltage and current in transmission networks due to harenoti€ir spatial sparsity, that is large harmonic injectioppesar
pollution. Harmonic pollution is recognized as an impottarsParsely in the power networks. Alternatively, spatialrsipa
factor in the degradation of power quality, which may shortegN€ans that the simultaneous number of large harmonic sburce
equipment life and interfere with communication and contrdS much smaller than the number of suspicious buses in
devices [1]. In consequence, the IEEE Harmonic Standard Rctical power systems while their size and location are
recommends practices for utilities and customers to limit t Unknown before state estimation.
harmonic contents in power networks. To effectively allevi By utilizing the sparsity, we show that the underdeter-
ate harmonic pollution, it is important to identify harmoni mined estimation problem can be solved uniquely via sparsit
sources and estimate the distribution of harmonic voltagels maximization. This paper is a continuation of our efforts in
currents by real-time measurements. [18]. The precision of estimates are enhanced by uding
The task of harmonic state estimation (HSE)[3],[4] is t@orm constraint instead df., norm in [18]. Some important
locate major harmonic sources and to estimate the distilbut practical considerations are further investigated.

of harmonic voltages and currents by partial system-wide This paper is organized as follows: Section Il gives a
measurements. Currently it is feasible to measure the phasgescription of the problem. In Section IlI, we describe a new
theory for observability analysis in underdetermined eyst.
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Il. PROBLEM DESCRIPTION In practical power systems, it is observed that the distribu

For harmonic analysis in electric transmission systems, J}j@n of harmonic sources hapatial sparsitythat is significant
follow the modeling in [19], that is harmonic sources modelgh@rmonic sources appear at only a small fraction of buses
as current sources; transmission equipments as equivalenfiMmultaneously. Denoting the nodal harmonic current igec
circuits; rotation machines as constant impedance; hammoMector byx, sparsity means
filters as shunt impgdance; aggregate linear loads as impeda Ixll < s 3)
determined by their power in fundamental frequency. The
phase shift effect of transformers on harmonic current vghere||-||, is the Ly norm, which equals to the number of non-
also considered. All buses are partitioned into non-sourzero entries in the state vectargives the maximum number
buses, which have neither load injections nor power elaittso of simultaneous harmonic sources. In this paper, we assume
devices, and suspicious buses, which may have harmotiie number of measuremenis> s in our analysis.
sources. However, the location of actual harmonic sourcesConsidering the spatial sparsity of harmonic sources, we fo
is unknown before state estimation. Non-source buses amglate the harmonic state estimation problem as consttaine
reduced during the pre-processing stage. approximated sparsity maximization as follows:

Given harmonic current injectiori§/) and harmonic nodal
admittance matrixY (h), nodal harmonic voltage¥ (h) can ;
be obtained by solving the harmonic power flow equations as subject to |z — Hx||, <e
follows:

min 11y

(4)

. . where L; norm ||x||, £ >°7_, |zx| is used to approximate
Y (h)V(h) = 1(n) @) Lo norm, scalare > 0 controls the tolerance to residuals.
whereh stands for the harmonic order. The branch harmonig the following sections we will show that (4) can give an
currentsi, (k) can be obtained subsequently. accurate estimate to the underdetermined system (2) under
Harmonic state estimation is an inverse problem of hagertain conditions.
monic power flow. It estimates network state variables with A standard least-square (LS) estimator is unable to give a
available measurements. Since harmonic source injectiams reliable estimate for the underdetermined system. As cstate
determine all other network variables un|queiYh) can be in section |, the harmonic state estimator has Only a limited
used as state variables. number of measurements. It means (2) either has low redun-
We choose a subset of nodal voltagé$h) and branch dancy (n = n + k, k is a small non-negative integer) or is
currentsi, (h) as measurements, with all nodal current injedinderdeterminedng < n). The estimate obtained by the LS
tionsi(h) as state variables. We assume that network topologgtimator, _
and parameters in all considered harmonic orders are known. min Iz — Hx|, ®)
After splitting complex variables into real and imaginary Tos—LesT ]
components, the relationship between measurements aed X = (H H) "H7z. For the underdetermined case, the

variables can be formulated as follows: matrix HTH _is singular. It leads to unbounded estimation
errors. Even in the low-redundancy ca¥#’ H may become
z(h) = H(h)x(h) + e(h) (2) close to singular or ill-conditioned. It can cause the failof
where LS estimator.
7z = z,R = ’.fR H= }~IR in [11. OBSERVABILITY ANALYSIS WITH SPARSITY PRIOR
zr Xr HI HR

Observability analysis determines the necessary conditio

h harmonic order, for the uniqueness of estimates. An observable linear asim
m number of measurements, generally requires full column rank of its measurement imatr
n number of state variables at suspicious buses,In this section, we will show the underdetermined linear
z(h) m X 1 measurement vector, system (2) can become observable when state variables are
H(h) m X n_measurement matrix, sparse. A closely related topic in signal processing isedall
x(h) n x 1 state variable vector with excluding optimally sparse representation.

nonsource buses,
e(h) m x 1 measurement error vector.

subscript r ; denote real and imaginary part respectiverA' Motivation

The linear systeny = Ax (y is output) is non-observable

We consider underdeterimed systems in this paperph.e, if A does not have full column rank. But if some prior
n. Branch current measurements are relatesl by the node- knowledge aboutk is available, we may make the system
branch distribution factor matrix. Nodal voltage measwugata observable. For instance, if we know in advance that only one
are related tax by the nodal impedance matrix. Nonsourcentry of x is nonzero,i.e.||x||, = 1, we can do am-step
buses (floating buses) are reduced during pre-processipg.sttest to find the exact solution if none of two columnsAfis
The measurement errors are assumed as independently lavghr dependent. Note that we don’t know which entryxof
identically distributed (i.i.d.) normal distribution vitsmall is non-zero in advance. We illustrate this with the follogin
variance. example.



Suppose outpuy = [y1,32]T is generated by the linear Definition 4 (S-Observability)A system iss-observabléf

equation it is observable when its internal stateis at mosts-sparse,
0 ie. [|x|l, < s.
N N . J Theorem 1 (Conditions on S-Observabilityjhe underde-
yy | = A2xsXia = [o1, @, 5] 0 termined linear system (8) is observablexifis at mosts-

sparse and < 3spark(A), where matrixA is known and
where the internal state variabk& is 1-sparse. To obtaix* m <n.

from y, we design &-step test. At thé:-th step, let Proof. (Proof by Contradiction.) According to the de-
* _ finition of observability, (8) is observable if it has unique
T, =z 1=k solution. Assume we have non-uniggssparse solutions and
{ s =0 itk d, ¢ # d, such that
we check the corresponding mismatch vector { y =Ac = 22:1 Chk; Uk, )
y=Ad= 2:7:1 dpj Op;

rF) = y — o1, ag, a3]x(k)

whereay,is the k;-th column of A. Easily to see
=Y — QpTg (6)

Zf:l Ch; Ok, + ijl(_dpj)apj =0 (10)

The left side of (10) is a linear combination of at mast
different column vectors. Becauspark(A) > 2s, any2s or
Y—o1T1 £y — Qoo £y — Q33 (7) less thar2s column vectors oA must be linearly independent.
i _ Therefore (10) can never be true. The solution of (8) is ugaiqu
Here only z, = d can achieve zero mismatch. Thus, the ap exhaustive search algorithm can find the unique solution.

. - 9 T _ ritnn _
unique solution is given byx(® = [0,d,0]". Therefore, the |t tests all of possible combinations efnon-zero entries of
underdetermined system is observable if at least two colur;g_nAmong all combinations

vectors are linearly independent whetas only one non-zero

Obviously, if any two of the column vectors,, a,, oy are
linearly independent, for any;, zo, x3, we must have

entry. x®) = [z, 2]
only the combination corresponding to the unique soluttn
B. Sparsity Prior and Matrix Spark can satisfy the equation
Definition 1 (Sparsity):Vectorx is s-sparseif only s of its > Tk, =Y (12)
entries are nonzero. . T
Remark L1:x is s-sparse< |x||, = s. Note that this The existence of the correct combination is guaranteed &y th

o . . : uniqueness of the solution. Since the combination nun(lb)er
definition does not provide any information about the exact ... . . P
. ) IS finite, we always can find the real solution within finitepste
location of these non-zero entries. .
This completes the proof. [ ]

o o s, e oo 1 et it e tte vecras ot o
9 s hon-zero entries, then it is possible to use not less than
unknown vector.

Definition 2 (Spark): [20]The sparkof matrix A is defined independent measurements to estimatéf the corresponding

: _ A satisfiesspark(A) > 2s. In other words, it is possible
as the smallest possible number of its column:sthatarerlmeato estimaten sparse variables withn (2s < m < n)
dependent.

. . measurements with proper measurement arrangements.
Remark 2: Another interpretation ofpark(A) for an m- prop J

by-n matrix A is: spark(A) = s, if all of its m x (s — 1)
submatrices have full column rank and at least one ohitss
submatrices is singular. Clearly, for any matAxwithout zero
columns,2 < spark(A) < Rank(A) + 1.

IV. STATE ESTIMATION BY SPARSITY MAXIMIZATION

Note that among all solutions to underdetermined system (8)
there is only one satisfyinfx||, < spark(A). Alternatively,
the sparsest solution is the unique solution when sparsity p
is applied. This leads to the following corollary:

C. Observability of Underdetermined Systems Corollary 1 (The sparsest solution is uniquelvith  the

Motivated by the example, we can generalize the obsengsarsity prior

tion to general underdetermined linear systems 1
Ixllo < 5 spark(A)

Ymx1= AmxnXnx1 (8) the sparsest solution for (8) is also the unique solution.

We apply Corollary 1 to harmonic state estimation with the
sparsity prior of source distribution. Thus, the HSE prabis
to find the sparsest solutiah while minimizing the residual
|z — Hx||. It is formulated as follows:

wherey € C™ denotes measurable output,ce C" denotes
state variablesA € C™*" is a known matrix, andn < n.
The conditions for its observability are given by the follog
theorem:

Definition 3 (Observability):A system isobservableif its mxin 1%l (12)
internal statex can be uniquely determined by its output subject to ||z — Hx|, <¢



When measurement noises are negligible, (12) become: The unique solution Wrong solution

sparse representation problem[20], 2 / %2 Q
min ||x||, subjectto z = Hx (13) /\
The observability of the underdetermined state estimagtor X; 0 X, 0 X,
guaranteed by choosing a proper measurement mtigxch
that
0<p<l p=1 p=2
spark(H) > 2s 14
park(H) (1) Il Il Il

where s is the maximum possible number of simultaneous
major harmonic sources in the network. Moreover, we Cadiy. 1. lllustration thatl; norm minimization can produce the unique solu-
check the correctness of a solution by testing the sparsiin given byLy (0 < p < 1) norm minimization problemming , ,«, |z1|”+
condition: ||x||o < spark(H) /2. (w2l 5.t 9121 + daw2 = c.

However, it is difficult to obtain the global optima of (12)
by standard convex programming because the problem (12)
has a combinatorial nature. The naive strategy used in #t@ble under small model and measurement disturbances if th
proof of Theorem 1 for locating the harmonic sources is tonderdetermined estimator §sobservable.
test all possible combinations @f source locationg < s)  The optimization problem (4) can be cast into a standard
and choose the sparsest one with lower-than-thresholdu@si linear programming problem ( see Appendix for details),
The drawback of the naive strategy is that even wheis which can be solved reliably by simplex methods or interior
a moderate number, it has to test an exponential numberpaiint methods[22].
potential combinations, which i5;_, (7). For instance, when
s =5, n = 100, the number is around.9 x 107.

To avoid the difficulties involved in the sparsity maximiza-
tion problem (12), there is a series of efforts( generalized From Theorem 1, the spark of measurement makix
[21] and [20]) for finding an approximation of (12) by replacdetermines the observability of the underdetermined syste
ing ||x||, with other functiongj(x). In particular,g(x) = |x||, Proper meter placement is needed to make the system observ-
is favored due to its simplicity. The corresponding coriggd able. Fixing the number of simultaneous harmonic sources
Ly, norm minimization problem is L, the meter placement problem is to find the subset of
(k > 2L) candidate measurements that make the spark of the

V. METERPLACEMENT

mxin Ilx[l,  subject to z = Hx (15) corresponding measurement matrix greater thAnThus:

The conditions on the equivalence of (13) and (15) are ; lll

’ . m'lny Yy 0 (18)
established by the following theorem[20]. . subject to spark(Hy) > 2L

Definition 5 (Coherence): Coherencef a matrix A = _ o
(a1, ..., ay] is defined as the maximum absolute inner produtherey is m. x 1 meter selectory; = 1 indicates that the
between unitary column vectors ith candidate meter is choses, = 0 means metei is not
R chosen;H, is anm, x n complex matrix, which represents
n(A) = | Jnax (i, ;)] (16)  the pool ofm,. candidate measurements.

Since optimal meter placement is not the primary focus of
_ this paper, we employ a simple greedy search method for
Theorem 2 (Equivalence of (13) and (15)): (13) has meter placement[18]. When the number of meters is fixed,

unigue solutionx* and the algorithm is:

Ix*ly < L (1 + 1) a7) 1) Determine the maxi mum nunber of

2 H(A) si mul t aneous harnoni ¢ sources in the
thenx* is also the unique solution of (15). network. Denote it as s;
Remark 3:A proof of this theorem is provided in [20]. 2) Establish the harnonic adnmittance

This theorem indicates that we can usenorm minimization matrix Y(h). Set nodal harnonic
(15) to replaceL, norm minimization (13) if the solution is injection as state variables x;
sparse enough. Note that the sparsity bound condition (17) i 3) Est abl i sh candi dat e neasur enent
Theorem 2 is conservative. matri x H and Conpute u(H);

The equivalence ofLy,-norm and L; norm minimization  4) Renove the neters whose renoval
is illustrated by the 2-variable example shown in Fig. 1. causes the least increase of u(H);
Intuitively, Fig. 1 illustrates that whet < p < 1, the family of 5) Repeat Step 3 and Step 4 until the
L, norm minimization share the same solution. Furthermore, pl aced neters are reduced to the
Ly norm is approximated by.,, norm whenp — 0. pre-set nunber;

When measurement noise exists, we use (4) to replace (15)6) Checki ng the extended observability
Our numerical experiments show that the estimate from (4)is of H according to Theorem 1;



7) Repeat Step 1 through Step 6 for each T 13 TL_ 14
har noni ¢ order;

8) Choose the nmeter group such that
the systemis s-observable for each 12
har moni ¢ or ders.

11 10

We test the proposed meter placement algorithm in thg,
IEEE 14-bus test system shown in Fig. 2. As a result of the
placement, a 9-meter group is chosen as shown in Fig 2. The
group measures the harmonic currents through line 5,
2—-33—-4,6-12,7—-8,9—14, 10— 11, 13— 12 and
13 — 14. The calculated spark of the corresponding complex
measurement matrix i$0. As a result of Theorem 1, the
underdetermined estimator can handle upster 10/2 = 5
simultaneous complex-valued harmonic sources without the
presence of noises.

1

VI. NUMERICAL EXPERIMENTS AND DISCUSSION
© GENERATORS

We choos_e IEEE 14-bus test system[19] to test the propos_ed CONDENSORS IEEE 14-BUS
method. It is the benchmark.sy.stem for harmonic study in ¢  HARMONIC METERS SYSTEM
three-phase balanced transmission networks. We assume all
nodes e.xF:ep.t node 7 (itis a non-source bus) can have harm%’i}}?z. IEEE 14-bus test system with nine meters
source injections. Thus there are 13 suspicious nodes.debr e
harmonic order, two harmonic sources are randomly placed in TABLE |
the network. Only 9 meters, shown in Fig. 2, are used lB§xPERIMENT 1: ROOT MEAN SQUARE ERRORS BETWEEN ESTIMATED AND
the proposed algorithm. They all take the measurements forsiMuLATED VALUES. Vs (%), Va, In; (%) AND 14, ARE THE RMS
branch harmonic currents. The meter placement scheme is the ERROR OF VOLTAGE MAGNITUDE VOLTAGE ANGLE, INJECTION

result of the placement algorithm described in Section V. MAGNITUDE AND INJECTION ANGLE, RESPECTIVELY

We use the artificial harmonic injections as “actual” har-
monic sources, labelef{<t). “Actual” nodal harmonic volt- [[5th [ 7th [ 1%th | 13th [ 17th | 19th [ 23rd [ 25th
agesV(“Ct) are calculated by the harmonic power flow using7,,%) [ 0.18 | 0.13 | 032 | 0.19 | 0.45 | 1.50 | 0.11 | 0.69
the “actual” harmonic injections. Ta(®) 0.05] 0.06 | 0.05] 0.05] 0.06 | 0.21 | 0.01 | 0.19

The measurement data are generated by solving the haf2:(%) || 0.03 [ 001 ] 0.15] 0.02 | 0.04 | 0.08 | 0.02 | 0.19
. : o . . VA(°) |[0.02] 0.01] 0.03| 0.02 | 0.02 | 0.11 | 0.01 | 0.08

monic power flow equation (1) with given harmonic admit
tance matrices and current injections. Measurement narges
added if necessary. Measurement errors are modeled as i. i. d
(independently and identically distributed) normal disition For each harmonic order, harmonic sources can appear at any
with zero mean. two buses except the non-source bus 7. The proposed state

The harmonic state estimation is repeated for each harmo@gimation algorithm (4) is conducted for each harmonieord
order to obtain the injection estimalt&s!). Then the estimated The estimated and simulated injection magnitude and veltag
harmonic nodal voltage¥ (¢s*) are calculated using harmonicmagnitude are compared in Fig. 3. The root mean square
power flow (1) and estimated current injections. errors (RMS) of voltage magnitud®)y, (%), voltage angle

The state estimator only uses the measurements and méat°), injection magnitudd (%), and injection anglé 1 (°)
surement matrices. Other information such as the locatidn,each harmonic order are listed in TABLE I. We can see the
magnitude and number of harmonic sources are unkno@stimation errors are almost zero for voltages and injastio
before state estimation is finished. The program is coddtpreover both the location and the magnitude of unknown
using Matlab 7.0 . Simplex method is used to solve line&armonic sources are identified correctly and precisely.
programming (25), see Appendix.

The root mean square errors (RMS) of voltage magnitu@: Experiment 2 (noisy measurements)

Vi (%), voltage angleVs, injection magnitudels (%), and  \ye conduct this experiment to see if the proposed algorithm
injection anglel4 in each harmonic order are used to COMPALE giaple with presence of measurement noises. We assume
estimated and simulated values, where the RMS injectigh, measurement noises obey zero-mean normal distribution
errors are averaged by the number of major sources and R\, 5% standard deviation and set the tolerance parameter
voltage errors by the total node number. e as 0.001. All the other settings are the same as that

_ . in experiment 1. Two harmonic sources are placed in two
A. Experiment 1 (noiseless measurements) randomly selected buses in each harmonic order. The prdpose

In the experiment, we assume the measurement noiseestimation algorithm is performed to obtain injection istie

zero. We set the tolerance parameter for equation (4) tdl0.0fbr each harmonic order. Nodal voltages are calculatedgusin
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Fig. 3. Results of experiment 1: comparison of estimated andlatetithe magnitude of nodal harmonic current injections asithges in each harmonic
order with noiseless measurements and accurate model parsrfuetdEEE 14-bus test system.

EXPERIMENT 2: ROOT MEAN SQUARE ERRORS BETWEEN ESTIMATED AND

TABLE Il

SIMULATED VALUES. Vs (%), Va(°), Ins (%) AND I4(°), ARE THERMS
ERROR OF VOLTAGE MAGNITUDE VOLTAGE ANGLE, INJECTION
MAGNITUDE AND INJECTION ANGLE, RESPECTIVELY.

[ 5th | 7th | 1ith | 13th | 17th | 19th | 23rd | 25th
Tar(%) || 3.93 | 1.97 | 2.27 | 7.37 | 482 | 3.29 | 2.04 | 5.38
T4(°) || 032 0.05| 057 | 2.74 | 1.50 | 1.08 | 1.15 | 0.31
Va(%) || 117 | 2.07 | 044 | 1.86 | 1.31 | 0.32 | 0.89 | 2.33
Va(°) || 043 ] 051 | 0.23 | 0.46 | 0.67 | 0.16 | 0.39 | 1.42

all other buses are zero except those having major sources.
Strictly speaking, it is only partially true because somieeot
buses may have small but non-zero harmonic injections.

This experiment is to test the robustness of the proposed
method under less ideal conditions, including the existenc
of small modeling deviations, noisy measurements and small
non-zero sources.

We constructEll by disturbing each element dH by
adding i.i.d Gaussian noises with zero mean and 5% standard
deviation. H is used in (4) to obtain estimates. The tiHe
is used to generate “actual” harmonic voltages and currents
“Actual” harmonic injections consisting of 2 major injeatis

the estimated injection afterwards. Estimated and siredlatand 11 small injections are randomly placed at 13 buses with
the magnitude of nodal harmonic injections and voltages asfie injection at one bus. Note that the locations of major
compared in Fig. 4.
The reSUItS ShOW tha.t a." harmonic sources in a" harmor}iﬁagnitudes of the 11 small injections are generated by Zero-
orders are identified correctly with small differences frorgean normal distribution with 5% standard deviation retati
the simulated values. Listed in TABLE I, the RMS €errorgo the |argest injection. Their ang|es are random|y choesam f
of voltage magnitudeVy,(%), voltage angleVy, injection (e tg360° . Other settings are the same as those in experiment
magnitudel,; (%), and injection angld4 in each harmonic 2. The measurement noises in Experiment 3 are generated in

order are also small.

harmonic injections are different for each harmonic ordiee

the same way as those in Experiment 2.
Fig. 5 shows the comparison of estimated and simulated

C. Experiment 3 ( Inaccurate model + noisy measurementsisrmonic injection and voltage magnitudes. The RMS errbrs o
small nonzero harmonic sources )
In experiment 1 and 2, we assume the model parametésted in TABLE Ill. The results show that all major harmonic

are accurate. However, in real power systems, the netwadurces in all harmonic order are located correctly thohghet
harmonic parameters can only be obtained in limited preare 12.58% and 16.23% injection magnitude errors in 13rd and
sions. Additionally, we assume that harmonic injections 28rd harmonics.

Var(%),Va(®), Ini(%), andI4(°) in each harmonic order are
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TABLE Il
EXPERIMENT 3: ROOT MEAN SQUARE ERRORS BETWEEN ESTIMATED AND
SIMULATED VALUES. Vs (%), Va, Ip(%) AND 14, ARE THERMS
ERROR OF VOLTAGE MAGNITUDE VOLTAGE ANGLE, INJECTION
MAGNITUDE AND INJECTION ANGLE, RESPECTIVELY

both the measurements and the state variables become three-
phase quantities. And the measurement matrix can be made
according to the three-phase parameters and topology of the
unbalanced network.

Further work will focus on the following issues:

[ 5th [ 7th [ 11th [ 13th [ 17th [ 19th [ 23rd | 25(h 1) Fast analysis of S-observability and optimal meter place
Tps(%) || 340 | 482 ] 0.61 | 126 ] 0.65 | 441 | 16.2 | 4.25 men'g _ _ .
T4(%) 171|233 086 | 0.71 | 1.39 | 0.28 | 2.34 | 2.22 2) Efficient implementation of the proposed method in real
V]\{(%) 3.06| 1.85| 206 | 6.24 | 589 | 1.98 | 4.08 2.71 |arge_sca|e power networksy
Va(®) 1.89 | 054 | 130 | 552 | 154 | 0.53 | 2.14 | 567

3) Harmonic state estimation considering three-phase un-
balanced power network models;

4) Reduction of the effect of gross errors and modeling

D. Discussion errors on estimate.

The numerical experiments show that the proposed under-
determined estimator is capable of identifying the harmoni VIl. CONCLUSION
sources reliably when considering noisy measurements and
small model parameter errors. Moreover the calculated InodaThis paper proposes a systematic approach to identify
voltage phasors using estimated injections are very ctotfeet and estimate harmonic sources in power networks when the
simulated values. Thus all state variables of the netwoek gfumber of harmonic meters is less than the number of un-
obtained with satisfactory precisions. Since Theorem 1sis aknown state variables. In such an underdetermined systgim, f
valid for overdetermined systems, our numerical resultst (nobservability cannot be ensured via traditional obsefirgbi
listed here) show that the proposed algorithm is able toimbt&PProaches. It leads to the failure of existing least square
accurate estimate for ill-conditioned overdeterminedesys based methods. To resolve the observability problem, we
while least square estimator fails and SVD estimator obtaifonstruct the proposed state estimator by consideringlnoda

a reliable estimate only for partial networks. harrr_10nic injgctions as state variables. Then, by expk_lpithp.
If replacing theL; norm in the constraint in (4) by, norm, SPatial sparsity of harmonic sources, we extend the toawiti
we have a new estimator: observability analysis by showing that the underdeterdhine

system can become observable under proper measurement
arrangements. Then the estimation problem is formulatesd as
(19) sparsity maximization problem which can be solved effidient
by linear programming.
) The proposed algorithm is tested in a three-phase balanced
where scalar > 0 controls the tolerance to residuals. Anothefeee 14-pus harmonic test system. Our results show that we
variant[18] of (4) can be obtained if we use the Infinity normgan gptain reliable harmonic estimate for the underdetegchi
Lo 1o replacel; . system with 13 unknown sources and only 9 meters when
small measurement noises and model parameter deviations
(20) appear. In comparison, least-square based methods arle unab
to produce reliable estimates because they require the etumb

where scalam > 0 controls the tolerance to residuals. OuPf meters greater or equal to the total number of suspicious
simulation results show that (19§4)>(20) in terms of the buses, which is 13 in this case.
accuracy of estimate while all of the three locate harmonic By combining the new observability analysis and the spar-
sources correctly. sity maximization algorithm, the paper provides a strict ap
We prefer (4) to (19) because the main task for HSE is foach for establishing a system-wide harmonic state astim
identify harmonic sources reliably and both (4) and (19)ehain large power systems at low cost. Such a harmonic state
the same capability for achieving that task. But (4) can mstimator can provide critical real-time information torrewt
solved efficiently and reliably by linear programming whildarmonic related problems. The proposed method can also
to solve (19) needs general convex programming. Moreov@ﬁ’ applled to enhance the robustness of Iow-redundancy/ill
we choose (4) instead (20) because (4) gives more accurg@aditioned harmonic state estimation.
estimate while both of them can be solved effectively indine
programming.
To enhance the estimate accuracy, an additional leastesquar
estimator can be conducted after identifying the locatibn o The optimization problem (4) can be converted into a linear

min 1]y

subject to ||z — Hx||, < 72

min Il

subject to ||z — Hx| <7

APPENDIX

harmonic sources. programming. Giving (4) as the following
Although we use three-phase balanced power network mod-
els in proposed algorithm and numerical experiments, there miny 1%,
is no fundamental difficulty to extend the proposed method : rll, <e (21)
to three-phase unbalanced systems. In unbalanced systems, subject to { z—Hx=r



By representing andr by their positive and negative entriegs] N.R. Watson, J. Arrillaga, and Z. P. Du, “Modified symbatibservability

respectively
X = X, —Xy

r—= ru—rv (22)
Xy Xy Ty, T, > 0
(21) takes the form
min Sor (%, +x%0)
Do (v 1) <€ (23)
subject to z—-H(x,—x,)=r,—T,
Xoys Xy Ty, T, 2> 0
Define a(2n + 2m) x 1 vector
y = by, xi oy (24)
We obtain the equivalent linear programming
miny, y
Ty <
. dy=<e (25)
subject to Fy=12z
y=>0
where
T
C é [11><n’ 11><n7 01><ma lem,]
A dé [01><n701><n’11><m711><m] (26)
F :[ Hiyxn —Hmxn Amxm  —Amxm ]

wherel is an all-one vector) is an all-zero vectorA is an
identity matrix.

ACKNOWLEDGMENT

for harmonic state estimationlEE Proc. Gener., Transm., & Distrivol.
147, no. 2, pp. 105-111, 2000.

[9] A. Kumar, B. Das, and J. Sharma, “Genetic algorithm-basedemet
placement for static estimation of harmonic sourc#sEE Trans. Power
Delivery, vol. 20, no. 2, pp. 1088-1096, 2005.

[10] C. Madtharad, S. Premrudeepreechacharn, N. R. WatsdniRaSaeng-
Udom, “An optimal measurement placement method for power system
harmonic state estimationlEEE Trans. Power Deliveryol. 20, no. 2,
pp. 1514-1521, 2005.

[11] N. Kanao, M. Yamashita, H. Yanagida, M. Mizukami, Y. Halyasnd J.
Matsuki, “Power system harmonic analysis using state-etitmanethod
for japanese field datalEEE Trans. Power Deliveryol. 20, no. 2, pp.
970-977, 2005.

[12] R. K. Hartana and G. G. Richards, “Harmonic source momgpand
identification using neural networkdFEE Trans Power Systvol. 5, no.
4, pp. 1098-1104, 1990.

[13] H. M. Beides and G. T. Heydt, “Dynamic state estimation ofvpr
system harmonics using Kalman filter methodolodlEE Trans. Power
Delivery, vol. 6, no.4, pp. 1663-1670, 1991.

[14] H.Maand A. A. Girgis, “Identification and tracking of hmonic sources
in a power system using a Kalman filtetEEE Trans. Power Delivery,
vol. 11, no. 3, pp. 1659-1665, 1996.

[15] K. K. C. Yu, N. R. Watson, and J. Arrillaga, “An adaptiveakhan filter
for dynamic harmonic state estimation and harmonic injectiaoking,”
IEEE Trans. Power Deliverwol. 20, no. 2, pp. 1577-1584, 2005.

[16] H. Liao and D. Niebur, “Load profile estimation in electtransmission
networks using independent component analydiEEE Trans. Power
Syst, vol. 18, no. 2, pp. 707-715, 2003.

[17] D. Niebur, E. Gursoy, and H. Liao, “Independent compdremalysis
techniques for power System load estimation - A signal-msiog
approach,” inApplied Mathematics For Restructured Electric Power-
Optimization, Control, and Computational Intelligenc& C. Chow, F.
F. Wu and J. A. Momoh, Ed. Springer Verlag, New York, NY 2004.

[18] H. Liao, “Power system harmonic state estimation via spamax-
imization,” accepted byProc of IEEE/PES General Meeting 2006,
Montréal, CanadaJune, 2006.

[19] R. Abu-Hashim, R. Burch, G. Chang, M. Grady, E. Gunther,Hdlpin,
C. Hatziadoniu, Y. Liu, M. Marz, T. Ortmeyer, V. Rajagopal& Ranade,
P. Ribeiro, T. Sims, and W. Xu, “Test systems for harmonics modeli
and simulation,1EEE Trans. Power Deliveryol. 14, no. 2, pp. 579-587,

. .. .. 1999.
The authors would like to thank Professor Marija Ilic i) . L. Donoho and M. Elad, “Optimally sparse representain general

the Department of Electrical and Computer Engineering
Carnegie Mellon University for the initial discussion rediag
this idea and the suggestions on revising the paper. | alslo

at (nonorthogonal) dictionaries via; minimization,” Proc. of Natl. Acad.
Society vol. 100, pp. 2197-2202, 2003.
A. Hyvarinen, J. Karhunen, and E. Ojadependent Component Analy-

21]
M sis John Wiley & Sons, 2001.

to acknowledge the help received from Paul Hines, curremtlyi22] J. Nocedal and S. J. Wrighyumerical OptimizationSpringer, 1999.

PhD Candidate in the Department of Engineering and Publifé!
Policy and Carnegie Mellon Electricity Industry Center at

Carnegie Mellon University, during revising the paper.

REFERENCES

[1] V. E. Wagner, J. C. Balda, D. C. Griffith, A. McEachern, T. Barnes, D.
P. Hartmann, D. J. Phileggi, A. E. Emannuel, W. F. Horton, W. EidR
R. J. Ferraro, and W. T. Jewell, “Effects of harmonics on ecpeipt,”
IEEE Trans. Power Deliveryol. 8, no. 2, pp. 672-680, 1993.

[2] IEEE Recommended Practice and Requirements for Harmonitr&@an
Electrical Power SystemEEE Standard 519-1992.

[3] G. T. Heydt, “Identification of harmonic sources by a statgimation
technique,"IEEE Trans. Power Deliveryol. 4, no. 1, pp. 569-576, 1989.

[4] A. P. S. Meliopoulos, F. Zhang, and S. Zelingher, “Powsstem
harmonic state estimation|EEE Trans. Power Deliveryvol. 9, no. 3,
pp. 1701-1709, 1994.

[5] Z. P. Du, J. Arrillaga, and N. Watson, “Continuous harnworstate
estimation of power systemsdEE Proc. Gener., Transm., & Distrivol.
143, no. 4, pp. 329-336, 1996.

[6] Z. P. Du, J. Arrillaga, N. R. Watson, and S. Chen, “Idengfion of
harmonic sources of power systems using state estimatiBi,’Proc.
Gener., Transm., & Distrj.vol. 146, no. 1,pp. 7-12, 1999.

[7] J. E. Farach, W. M. Grady, and A. Arapostathis, “An optirpabcedure
for placing sensors and estimating the locations of harmamicces in
power systems,IEEE Trans. Power Deliveryvol. 8, no. 3, pp. 1303-
1310, 1993.

J. Arrillaga, M. H. J. Bollen and N. R. Watson,“Power tjtyafollowing
deregulation,Proceedings of the IEEE/0I. 88, no. 2, pp. 246-261. 2000.

Huaiwei Liao (M '2000) received his BS and MS from the Department of
Electrical Engineering at Chongqing University in Chinaur@ntly, He is a
Ph.D. candidate in the Department of Electrical and Computeirteering at
Carnegie Mellon University, Pittsburgh, PA. His interestslude monitoring

the risk of cascading failure, wide-area sensing and chranal power quality
assessment in electric power systems.



