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Abstract—The power spectral density of the output of wind 

turbines can provide information on the character of fluctuations 
in turbine output. Here both one second and one hour samples 
are used to estimate the power spectrum of several wind farms. 
The measured output power follows a Kolmogorov spectrum over 
more than four orders of magnitude, from 30 seconds to 2.6 days. 
The spectrum constrains the character of fill-in power which 
must be provided to compensate for wind’s fluctuations when 
wind is deployed at large scale. Installing enough linear ramp 
rate generation to fill in fast fluctuations with amplitudes of 1% 
of the maximum fluctuation would oversize the fill-in generation 
capacity by a factor of two for slower fluctuations. A more 
efficient solution is feasible. 
 

Index Terms—wind, wind energy, wind power generation, 
spectral analysis. 

I. INTRODUCTION 
IND power produced by turbines varies with time. Data 
with one second time resolution for one 1.5 MW 

nameplate capacity turbine are shown in Fig. 1. The variability 
is not dramatically reduced when hourly samples of the output 
of several turbines in a wind farm are summed, as in Fig. 2, 
nor when hourly data from four wind farms are summed, as in 
Fig. 3 (the median hourly change is reduced by 25%).  
 

 
Fig. 1.  Real power output (kW) sampled with one second resolution for one 
1.5 MW turbine at one wind farm (farm A) for 10 days. Negative values are 
due to turbine electrical loads. 
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The output of such turbines is not random. The character of 
the variations can be examined in several ways. One method 
[1] is to construct a histogram of the step size in output over 
time. Here I extend an approach which has seen use over only 
a limited frequency range [2]: constructing the power 
spectrum of wind. Data here cover four decades of frequency, 
using both one second and one hour time resolution data. This 
frequency range is 100 times larger than that of previous 
studies. 
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Fig. 2.  Real power output as a percent of nameplate capacity sampled with 
one hour resolution for the sum of the six turbines at wind farm A for the 
period January 1 – June 30, 2004. 
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Fig. 3.  Real power output as a percent of nameplate capacity sampled with 
one hour resolution for the sum of the 104 turbines at wind farms A, B, C, and 
D from January 1 – June 30, 2004. 

II. DATA 
Hourly sampled real power output data with 1 kW power 

resolution for four wind farms were obtained for  the period 
from 2001 through 2004. The operator of the wind farms has 
requested that they not be identified by location. The 
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minimum distance between the generation facilities was 30 
km; the maximum was 400 km (Table I). These data were 
provided for the output of each wind farm, not for individual 
turbines. For certain periods, the data were supplied with 1 
MW power resolution. All four locations had 1 kW resolution 
hourly data available for the period January 1 through June 30, 
2004. Wind farms A and B had 1 kW hourly data for July 1, 
2003 through June 30, 2004. 
 

TABLE I 
DISTANCE (KM) BETWEEN WIND FARMS 

 
 A B C 
D 320 350 400 
A  30 100 
B   90 
 
One second sampled real power output data with 0.1 watt 

power resolution for each of the six turbines at wind farm A 
and each of the ten turbines at wind farm B were obtained for 
a ten-day period in 2005. Wind farm A data for the final day 
ceased after approximately the first 21 hours, leaving a total of 
841,600 continuous samples (Fig. 1). Wind Farm B data were 
good throughout, giving a total of 864,000 continuous 
samples. The individual turbine outputs were then summed to 
give the output of each wind farm (Fig. 4 and Fig. 5). 

 

Fig. 4.  Real power output (kW) at one second resolution as the sum of the six 
turbines at wind farm A over a ten-day period.  

III. GEOGRAPHIC CORRELATION 
The 4368 hourly data points from January – June 2004 were 

used to examine the correlation of the power output between 
each pair of wind farms. Pearson’s correlation coefficient,  

was used to determine the linear correlation between the real 
power outputs of the facility pairs. More detailed techniques 
are available for other correlation analysis [3].  
 The output power of wind farms which are in relatively 
close proximity are strongly positively correlated (Table II). 

 
 

Fig. 5.  Real power output (kW) at one second resolution as the sum of the ten 
turbines at wind farm B over a ten-day period.  
 

The highest observed correlation was between wind farms B 
and C. Each point in Fig. 6 is the real power output from one 
hour in the data set for these two facilities. 

 
TABLE II 

OUTPUT POWER CORRELATION BETWEEN WIND FARMS,  
JANUARY 1 – JUNE 30, 2004 

 
 A B C 
D 0.46 0.35 0.36 
A  0.69 0.71 
B   0.77 
 
Even at a distance of 400 km, there is a fair degree of 

positive correlation between wind farm D and the other three 
facilities.  

 

 
 
Fig. 6.  Real power output as a fraction of nameplate capacity of wind farms B 
and C for the first 4368 hours of 2004. Each point represents one hourly 
datum. 

IV. SPECTRAL ANALYSIS PROCESSING 
 To estimate the power spectrum (sometimes termed the 

power spectral density or PSD) of the real power output of a 
wind farm, we first compute the discrete Fourier transform of 
the time series of output measurements. We use an N-point-
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long equal interval time sample of the output c(t) to construct 
the value at frequency domain point k, Ck [4]  

The periodogram estimate of the power spectrum at 
frequency domain point k is then [5] 

 
where the relationship between the frequency and frequency 
domain point k is given by 

 
and fmax is (in concert with the Nyquist sampling theorem) 0.5 
Hz for the one second data, and 1.4 x 10-4 Hz for the one hour 
data. 
 The periodogram is normalized so that the sum of all points 
P is the mean squared amplitude of the time series c(t). To 
enable better comparison with other attributes of the electric 
power system, the graphs which follow display the square root 
of the periodogram, so that the units are in kW/√Hz. 
 One of the attributes of power spectrum estimation through 
periodograms is that increasing the number of time samples 
(N) does not decrease the standard deviation of the 
periodogram at any given frequency fk. In order to take 
advantage of a large number of data points in a data set to 
reduce the variance at fk, the data set may be partitioned into 
several time segments. The Fourier transform of each segment 
is then taken and a periodogram estimate constructed. The 
periodograms are then averaged at each frequency, reducing 
the variance of the final estimate by the number of segments 
(and reducing the standard deviation by the reciprocal of the 
square root of the number of segments).  
 In this work, eight segments are used. This has no effect on 
fmax, but increases the lowest non-zero frequency (f1) by a 
factor equal to the number of segments. Thus, the 366 days of 
hourly data treated in this manner have a minimum frequency 
component of 2.5 x 10-7 Hz and a maximum frequency 
corresponding to two hours (1.4 x 10-4 Hz). When this 
technique is used, the ten-day time series acquired at one 
second resolution has frequency components from a minimum 
of 9.2 x 10-6 Hz to a maximum of 0.5 Hz 
 Data windowing with both a Bartlett and Welch window 
followed by segment overlapping by one-half the segment 
length [6] was tried on the one-second resolution data, with no 
noticeable improvement in the variance. The power spectra 
presented below were estimated without windowing (i.e. using 
a square window) and without overlapping the segments. In 
order to ensure that the processing introduced no artifacts in 
the power spectra, the wind farm A 1 second data were 
replaced by pseudorandom data (generated using a Marsaglia-
Zaman subtract-with-borrow algorithm [7]) with the same 

maximum and minimum as the wind farm A data. The 
resulting PSD was flat on a log-log plot, as expected for 
random data. 

V. POWER SPECTRA 
Using the method discussed in the previous section, the 

power spectra for the wind farms A and B were estimated, 
using hourly sampled data from July 1, 2003 – June 30, 2004 
and using 1-second sample data from a 10-day period.  

The spectrum of the output of the sum of the six turbines at 
wind farm A using the hourly sampled data (Fig. 7) and the 
one-second interval data (Fig. 8) were combined to yield a 
spectrum from 2 seconds to 6 weeks (Fig. 9). 

 

 
 
Fig. 7.  Power spectrum of data sampled at one hour resolution of the sum of 
the six at wind farm A from July 1, 2003 – June 30, 2004 using 8-segment 
averaging.  

 
 
Fig. 8.  Power spectrum of data sampled at one second resolution of the sum 
of the six 1.5 MW turbines at wind farm A using 8-segment averaging.  
  

The spectrum of the output of the sum of the ten wind farm 
B turbines using the hourly sampled data and the one-second 
interval data are combined in Fig. 10. 

The combined spectra of Figs. 9 and 10 are characterized by 
four different regions. At frequencies between 2 x 10-6 and 4 x 
10-2 Hz, the double logarithm plot of the spectrum is linear 
(i.e. exponential  in  frequency). At  frequencies above ~5 x 
10-2 Hz, the physical and electrical inertia of the turbines 
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Fig. 9.  Combined wind farm A power spectra from Fig. 7 and Fig. 8. 
 

 
 
Fig. 10.  Combined power spectrum of data sampled at one hour and one 
second resolution of the sum of the ten turbines at wind farm B using 8-
segment averaging.  
 
appear to act as low-pass filters. Frequencies between 10-1 and 
5 x 10-1 Hz show the noise floor of the output power sensors. 
Peaks in the spectrum in this region are generally due to the 
turbine blade passing frequencies [8]. At frequencies below 
roughly 2 x 10-6 Hz the maximum output of the turbines 
provides an upper limit to the spectrum. 
 The linear region of the power spectrum plot is well fit by 
an exponential function in frequency  of the form  f –5/3 (Fig. 
11). 

The combined output of all four wind farms also follows the 
same form, over the frequency range sampled by the hourly 
data (Fig. 12). 

VI. KOLMOGOROV SPECTRUM 
The Reynolds number (ratio of inertial to viscous force) of 

the Earth’s atmosphere can be ~ 106. For sufficiently large 
Reynolds number, viscous effects can be neglected, and the 
energy dissipation in wind is dependent on only inertial forces. 
In this regime, for an incompressible fluid, Kolmogorov’s 
second hypothesis of similarity [9] predicts that the power 
spectrum should vary as f –5/3.  

The first experimental verification of Kolmogorov’s 
spectrum was in an ocean tidal channel  near Vancouver,  over 

Fig. 11.  The combined wind farm A spectra of Fig. 9 (grey points) and a f –5/3 

spectrum (solid line). 

 
Fig. 12.  The hourly spectra of the combined output of all four wind farms 
shown in  Fig. 3 (grey points) and a f –5/3 spectrum (solid line). Note the scale 
change on the ordinate from previous figures. 

two decades of frequency [10]. Similar spectra have been 
observed in the atmosphere [11].  
 Previous published power spectra of wind generator power 
[2] have linear regions of the power spectrum plot covering 
one or two decades of frequency. These studies have not 
provided a comparison between their data and the 
Kolmogorov spectrum.  
 A power spectrum of wind speed from 1.9 x 10-7 to 0.25 Hz 
published in 1957 [12] has been reprinted in a recent 
handbook [13] and review paper [14]. This spectrum has a 
pronounced “spectral gap” between about 3 x 10-5 and 7 x 10-3 
Hz with very little energy. The data analyzed here show no 
such gap, and an area-preserving plot (frequency times PSD 
against the log of frequency) shows a smooth behavior 
through this region. This disagreement may arise from the way 
in which the older spectra were measured (at several different 
altitudes) or in the way those data from several time periods 
were combined.  
 The measured output power in this study follows a 
Kolmogorov spectrum over more than four orders of 
magnitude in frequency, from 30 seconds to 2.6 days. The 
actual atmospheric behavior may extend further, since these 
data are constrained by the turbine inertia at high frequencies 
and by the maximum output of the turbines at low frequencies. 
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VII.  IMPLICATIONS OF THE KOLMOGOROV SPECTRUM 
Output power of individual turbines or wind farms can 

effectively be modeled by a f –5/3 relation for a broad range of 
frequencies, extending from the turbine inertial limit at high 
frequency to the wind farm power output limit at low 
frequency. 
 Modeling of wind power systems has used the Kolmogorov 
spectrum for flicker analysis at frequencies above 10-2 Hz [8]. 
Caution should be used at frequencies above roughly 5 x 10-2 
Hz for turbines such as those measured here, because their 
inertia has the effect of applying a low pass filter to the wind 
spectrum (Figs. 9 – 12). 
 Wind at small scale is sometimes treated by grid operators 
as negative load. To examine the validity of this empirical 
practice, load data from a control area near the turbines used in 
this study were obtained with 14 second resolution for the first 
180 days of 2004. The PSD (Fig. 13) estimated in the same 
way as for the wind power data above shows the expected 
peaks at 1 day and its harmonics, as well as the weekly peak. 
There is a region, between 1 hour and 2.5 minutes, in which 
the spectrum of this region’s load is fit well by a Kolmogorov 
spectrum. In this interval, the practice of treating wind power 
fluctuations as negative load appears to be justified. Note that 
this is not the same thing as saying that load fluctuations 
cancel wind fluctuations, as is sometimes stated, since the two 
would have to be both of the same magnitude and anti-
correlated for the assertion to be valid. 

Since wind is an intermittent resource, it must be matched 
with fill-in power sources from storage or generation if the 
power output of wind farms on a grid are correlated. 

If wind at very large scale were to be used, what ramp rate 
characteristics would be required by the fill-in energy? The 
ensemble of generators, energy storage, and demand response  
used should have a power spectrum which matches that of the 
wind generators.  

A line connecting the 24 hour load peak and its harmonics 
(Fig. 13) falls off roughly as f –7/2. This rapid decrease in 
power at high frequency allows the use of slow-ramping 
generators to match the fluctuations. However, the f –5/3 curve 
for wind power means that high frequency fluctuations contain 
considerable power. 

A linear ramp rate generator is not the optimum match for 
wind. The power spectral density for such a generator has the 
form f –2. Suppose that such a generator were to be sized to 
compensate for the variations in wind power at 1 percent of 
the maximum variations observed. This point is reached at 
roughly 2.5 x 10-4 Hz for the systems shown in Figs 9 and 10. 
Then (because the slope of the generator’s PSD is steeper than 
the Kolmogorov spectrum) the generator would be sized to 
compensate for fluctuations about twice as large as the 
maximum actually observed at low frequencies. 

A more efficient match between wind’s fluctuations and 
fill-in power can be made by noting that the source is required 
to match fluctuations at high frequency, but at much reduced 
amplitude compared to the match required at low frequency. 
 

 
 

Fig. 13.  The spectrum of load in one control area near the turbines used for 
this study for 180 days at 14-second time resolution using 8-segment 
averaging, and a Kolmogorov spectrum (f –5/3) displaced upwards from the best 
fit amplitude for clarity. 
 

Rather than size a linear ramp rate generator to match 
fluctuations in the output power of wind farms, a more 
efficient solution is to match wind with an ensemble of 
generators, energy storage, and demand response. Fast devices 
or demand response with relatively low power would match 
the short-period fluctuations, while slower ramp rate sources 
would match the longer period, higher amplitude fluctuations. 
Further work will quantify the economically optimum mix, but 
the capital savings from not over-building linear ramp rate 
matching generation by a factor of two can be large for wind 
at large scale. 
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