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Abstract 

Cascading failures in electricity networks cause blackouts and blackouts often come with severe 
economic and social consequences. Cascading failures are typically initiated by a set of equipment 
outages that cause operating constraint violations. These initiating events can be triggered by naturally 
occurring events, such as a wind storm, or human intervention, such as a terrorist attack. When violations 
persist in a network they can trigger additional outages which in turn may cause further violations. This 
paper proposes a method for limiting the social costs of cascading failures by eliminating violations 
before a dependent outage occurs. This global problem is solved using a new application of distributed 
model predictive control. Specifically, our method is to create a network of autonomous agents, one at 
each bus of a power network. The task assigned to each agent is to solve the global control problem with 
limited communication abilities. Each agent builds a simplified model of the network based on locally 
available data and solves its local problem using model predictive control and cooperation. Through 
extensive simulations with IEEE test networks, we find that the autonomous agent design meets its goals 
with limited communication. Experiments also demonstrate that cooperation among software agents can 
vastly improve system performance. Finally, we discuss the relevance of this work to some current policy 
issues. 
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1 Introduction 

In 1895 the Niagara Falls Power Company energized the first high capacity 3-phase transmission 
line, connecting hydroelectric generators at Niagara Falls and consumers 22 miles away in Buffalo, NY. 
The line operated at 11kV and carried power to customers including the Pittsburgh Reduction Company 
(now Alcoa) and the Buffalo street-car system. While the new system succeeded in carrying power from 
Niagara to Buffalo, it proved to be unreliable. Lightning frequently caused faults that damaged equipment 
and interrupted service (Neil, 1942). Numerous approaches were tried to combat this problem. High 
powered fuses and eventually circuit breaker/relay systems were installed to interrupt excessive line 
currents. Parallel transmission lines were added creating redundancy. Eventually, distant portions of the 
network were interconnected, synchronizing hundreds of large generators. 

The emergent system has several important properties. It is able to transmit power over relatively 
long distances. It can suffer minor disturbances (such as lightning strikes) without sustaining large 
amounts of equipment damage. If operated correctly, it can endure small outages without significantly 
disrupting service. And finally, it is susceptible to cascading failures1 that can result in large blackouts.2 

1.1 Cascading failures 

On November 9, 1965 the Northeastern United States suffered a cascading failure that interrupted 
service to 30 million customers. A faulty relay setting on a line between Niagara and Toronto tripped. The 
power was shifted to three parallel lines, which quickly became overloaded, triggering subsequent relay 
actions. Excess Niagara generation was instantaneously sent south into New York state, overloading 
additional lines, and eventually resulting in a cascading failure that affected customers in seven states and 
much of Ontario (Vassell, 1991). If the initial overload on the three remaining Toronto-Niagara lines had 
been quickly eliminated, the consequences would have been greatly reduced. 

It is often difficult to understand the root causes of a cascading failure, but some general properties 
are known. Talukdar (2003) shows that the probability of large blackouts has a power-law tail (see figure 
1.1). Systems that have power-law probability distributions can have very high or even infinite expected 
consequences. 

Others have noted that the probability of a cascading failure increases as transmission system loading 
increases, and that this probability goes through a sharp phase transition (Dobson, 2004; Liao, 2004). It is 
also appears that cascading failures are propagated by relays acting in response to operating constraint 
violations, which often persist for some time before triggering a relay response. While the 1996 western 
US blackout progressed fairly quickly,3 the system endured overloads on the western transmission 
corridor for 22 seconds after the initial disturbance, before a rapid sequence of relay actions commenced 
(WSCC, 1996). 

The consequences of blackouts can be quite severe (see Table 1.1). Because many services, such as 
stairwell lighting and traffic lights, frequently do not have a source of backup energy, blackouts can have 
both economic and human health consequences. 

                                                 
1 A cascading failure is a series of equipment outages, such that an initial disturbance causes one or more dependent 

equipment outages. Cascading failures can be thought of as state transitions in a hybrid system (Hines, 2004, 
Antsaklis, 2000). 

2 A blackout is the interruption of electricity service to customers in the network. 
3 Within 1 minute the western grid had separated into 5 islands (WSCC, 1996). 
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Figure 1.1—The risk distribution of blackouts in the United States has a fat tail. The dots indicate individual 
blackouts from NERC data. The dashed line is an exponential distribution (Weibull) fit to the set of blackouts  
800MW or less. The solid line fits the same data with a power-law distribution. (source: Talukdar, 2003). 

Table 1.1—Several large cascading failures (NERC, 2005) 
Date Location Notable consequences 

9 Nov. 1965 Northeastern US, 
Ontario 

30,000,000 customers (20,000 MW) interrupted.  

13 July 1977 New York City 9,000,000 customers (6,000 MW) interrupted. Widespread looting and 
chaos. Police made about 4000 arrests. (Wikipedia, 2005) 

2 July 1996 Western US 2,000,000 customers (11,850 MW) interrupted.  

3 July 1996 Western US The disturbance from July 2 reoccurred. Operators interrupted load to most 
of Boise Idaho, vastly reducing the extent of the cascading failure. (WSCC, 
1996) 

10 Aug. 1996 Western US 7,500,000 customers (28,000 MW) interrupted. Economic damage estimates 
range from $1-$3 billion. 

25 June 1998 Midwestern US, 
central Canada 

152,000 customers (950 MW) interrupted. 

Nov. 1988 to 
June 2003 

Western India 29 large cascading failures over 15 years—1.9 per year. Millions of 
customers interrupted in most cases. (Roy, 2004) 

14 Aug. 2003 Midwestern and 
Northeastern US, 
Southeastern 
Canada 

50,000,000 customers interrupted. Estimates of the social costs range from 
$6 billion (Graves, 2003) to $10 billion (ICF, 2003). Massive traffic jams in 
New York City. 

27 Sept. 2003 Italy 57,000,000 customers interrupted. At least 5 deaths resulted. 30,000 
passengers stranded in trains for hours. (BBC, 2003, CNN, 2003) 

 
Historically, cascading failures have opened windows for significant changes in power system  

technology and regulation. The 1965 blackout led to the creation of the North American Electric 
Reliability Council (NERC), the industry’s means of self regulating for reliability. As a result of the 1977 
event, engineers developed, and NERC adopted, a set of operating states and objectives that remain the 
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primary standard for power system operation.4 This led to widespread adoption of the “N-1” reliability 
criteria5 that most North American system operators (SOs) use to manage the cascading failure risk under 
normal operating conditions. In the wake of the 2003 blackouts many in industry, government, and 
academia are advocating that the current practice of self-regulation be replaced with a set of binding, 
enforceable reliability rules.6 

1.2 Operating power networks 

Power systems are operated with many objectives, including: 
• Economics–maximize the net economic benefit of service. 
• Reliability–minimize the risk of service interruption. 
• Protection–minimize the risk of infrastructure damage. 

Sometimes these objectives are commensurate, but often they conflict. For example, in a lightning 
initiated fault on a transmission line, a relay that trips to clear the fault and quickly restores the line to 
service effectively manages both its reliability and protection objectives. Because the objectives are 
commensurate it is trivial to manage both simultaneously. During a cascading failure reliability and 
protection are brought into conflict. Violations such as a transmission line overload cause relays designed 
for protection to trip, thereby propagating the cascade through the network. During a cascading failure, 
power systems generally do a poor job of balancing conflicting objectives. This paper proposes to 
mitigate this problem by improving the network’s ability to react to violations.7  

System protection measures or special protection schemes (SPS) are control methods designed to 
preserve the integrity of the network as a whole during an emergency operating condition.  According to 
(Anderson, 1996) an SPS is a method “that is designed to detect a particular system condition that is 
known to cause unusual stress to the power system, and to take some type of predetermined action to 
counteract the observed condition in a controlled manner.” SPS come in many varieties, but as almost all 
are preprogrammed to react to very specific circumstances with predetermined control actions. Typically 
SPS are designed by performing off-line network studies and pre-determining control rules that tend to 
alleviate a set of potential problems. Newer designs are able to adapt control actions to changing network 
conditions, but still rely on pre-determined rules (Rehtanz, 2001; Novosel, 2004; Madani, 2004). While 
almost all SPS designs currently in operation are operated out of a centrally located control center 
(Anderson, 1996), a few SPS design concepts use a more distributed architecture, though agents are 
generally organized hierarchically and are dependent on central facilities for planning activities (Jung, 
2001, 2002; Kamwa, 2001).  No existing SPS designs operate solely using distributed autonomous agents. 

                                                 
4 This method classifies any state as normal, alert, emergency, in extremis, or restorative and recommends actions 

that are appropriate to take in each condition (Fink, 1978). In the normal state a system is to be considered 
“secure” if no single contingency can cause a cascading failure. A single contingency is the outage of a single 
element of the network such as a generator or transmission line. A double contingency is the removal of two 
elements.  

5 The “N-1” reliability criteria, in short, requires that a system be operated such that no single contingency will 
affect a cascading failure. 

6 Several bills currently in congress (H.R. 6, H.R. 3004, and S. 2236) would facilitate the creation of mandatory 
reliability rules (see http://www.nerc.com/about/faq.html). 

7 This coincides with recommendation 21 from the August 14, 2003 blackout report, in which the authors 
recommend that US system operators, “Make more effective and wider use of system protection measures.” (US-
CA, 2004). 
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1.3 Distributed control and multi-agent systems 

Power networks are operated by thousands of agents. In the US eastern interconnect there are 
approximately 100 control areas and about 50,000 buses controlled by hundreds of human, and thousands 
of mechanical agents. Due to the complexity of power networks, real time control of the entire network 
from a central location is impossible. Even if doing so were computationally feasible, the system would 
be highly vulnerable to random failures, organized attacks, and communication problems. For this reason, 
the control of power networks, as with many complex systems, has been distributed to many autonomous 
controllers. The vast majority of existing mechanical controllers operate with only local information and 
follow very simple rules. As communication and computation technologies advance, it is increasingly 
possible to design distributed agent networks capable of solving complex network problems.  

But, agent-based systems are not without disadvantages. Heterogeneous, distributed agents can be 
uncoordinated and parochial. To the extent that an agent is autonomous, it can act on its own volition and 
conflict with other agents. Because a distributed agent generally works with incomplete information, it 
can, at best, make locally correct decisions, which can be globally wrong. This is the general challenge of 
designing autonomous agent networks: to design the agents such that locally correct decisions are 
simultaneously globally correct.  

Methods for solving complex problems using distributed software agents are increasingly prevalent 
in the literature. Fisher (1999) gives general strategies for developing distributed problem decompositions 
that achieve a set of desirable properties such as scalability. Camponogara (2000) provides a method of 
decomposing optimization problems for collaborative agent networks, provides conditions under which 
optimal performance can be guaranteed, and demonstrates that these conditions can be relaxed for some 
applications. Others have shown that distributed optimization methods (Cohen, 1984) can be applied to 
the optimal power flow (OPF) problem and solved by distributed autonomous agents (Kim, 2000). 
Attempts to reproduce this method for our application indicate that the method is unreliable and 
approaches an optimum very slowly if at all (Hines, 2004). Another distributed optimization technique 
(Modi, 2004) organizes agents hierarchically to solve discrete optimization problems. Agent-based 
technologies have also been applied to the relay protection problem (Yanxia, 2002; Coury, 2002) and 
proposed as a means of improving distribution systems (Kueck, 2003). 

1.4 Cooperation 

We define cooperation as the sharing of useful information and the utilization of commensurate 
goals. In many applications, as long as communication and calculation costs are negligible, skillful 
cooperative agents will perform at least as well as agents acting independently or competitively. For 
example in the prisoner’s dilemma game, prisoners who decide ex ante to cooperate in concert will likely 
fare better, and certainly no worse, than prisoners acting independently. Recently engineers and computer 
scientists have found that cooperation can be a useful technology for software-based systems. Jennings 
(1999, 2003) discusses cooperative designs for an Energy Management System (EMS)8, a particle 
accelerator, and cement factory control. These papers advocate that agents having clearly defined and 
known intentions and responsibilities. Camponogara (2002) demonstrates that cooperative agents working 
to control the frequency of a power system can outperform agents acting independently. Cooperation can 
cause problems as agents must process additional information. This can lead to unbounded problem 
growth when not properly designed (Durfee, 1999). 

1.5 Distributed model predictive control (DMPC) 

The autonomous agent network that we use in this paper combines distributed control (spatial 
problem decomposition) with a method for temporal decomposition called model predictive control 
(MPC). MPC is a repetitive procedure that combines the advantages of long-term planning (feed-forward 
                                                 
8 EMS is the term used for the system control and data communication system that operators use in a control room. 
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control based on performance predictions over an extended horizon) with the advantages of reactive 
control (feedback using measurements of actual performance). At the beginning of each repetition, the 
state of the system to be controlled is measured. A time-horizon, stretching into the future, is divided into 
intervals. Models are adopted to predict the effects of control actions on system-states in these intervals. 
The predictions are used to plan optimal actions for each interval, but only the actions for the first interval 
are implemented. When this interval ends, the procedure is repeated.  

MPC, because it uses optimization for making decisions, readily accommodates large numbers of 
complex constraints. Many other control techniques do not allow inequality constraints. Instead, they 
require the designer to approximate the effects of constraints with conservative assumptions. (Rawlings, 
2000) provides an overview of MPC theory and practice for centralized applications. (Camponogara, 
2002) describes the adaptation of MPC to distributed agent networks. 

1.6 Project goals 

The high-level goal of this work is to provide means for operating power networks with better 
tradeoffs between conflicting objectives, specifically focusing on tradeoffs between reliability and 
protection. The specific goal addressed in this paper is to develop a network of distributed autonomous, 
cooperative agents capable of eliminating power system violations before the protection system acts to 
disconnect equipment. If this method can mitigate the effects of at least one future cascading failure 
without triggering or increasing the severity of others, holding everything else constant, the method will 
be capable of increasing reliability without negatively affecting other operating objectives. If reliability 
can be increased without affecting other objectives, effectively improving the Pareto frontier for the 
operating objectives, it may also be possible to move along the new Pareto surface to obtain better 
tradeoffs between conflicting objectives. 

This paper is structured as follows. Section 1 is this introduction. Section 2 provides a general 
description of our problem and solution approach. Section 3 presents the global problem formulation in 
more detail, and section 4 describes our solution method in some detail. Section 5 describes our 
verification method and results on the IEEE 118 bus network. Finally, section 6 provides a discussion of 
the benefits and costs of distributed transmission network control and gives some conclusions. 

2 General approach 

This section describes the method that we use to develop the multi-agent system presented in this 
paper. The method takes the general formulation/decomposition procedure from Camponogara (2000) and 
adapts it to our problem, but in general terms. Sections 3 and 4 present the specific details of the 
application.  

2.1 Global network control problem  

In order to design the agent network, the global control problem must be written as an optimization 
problem. We are particularly interested in those problems where a disturbance causes one or more 
network excesses, which are detected at time t0 and must be eliminated before time tK. If we let Xk be a 
vector of continuous state variables at time tk, Uk be a vector of continuous control variables at time tk, and 
Ωk be a vector defining the network configuration the following is the global control problem we get (OP) 
a formulation of the overall control problem, and therefore the problem that must be solved at each stage 
of an MPC algorithm.  
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(OP): Find and implement U1 such that: 

1
0 1,...,

minimize  ( , ,..., )
K

KU U
C U U U  (2.1a) 

1subject to:   ( , , ); 1...k k k kX U X k Kµ+ = Ω =  (2.1b) 

( , , ) 0K K KG U X Ω ≤  (2.1c) 

where: 
µ is a function that calculates the next state from the current state and control actions; 
G is a function that defines the violations that must be eliminated before the last period of the 

control horizon. 

2.2 Problem decomposition 

The second step is to divide the global problem among agents. Suppose there are N autonomous 
agents distributed over the network. The goals of this section are to decompose the overall problem, (OP), 
into sub-problems, (SPOi), such that: a) each sub-problem can be assigned to an autonomous agent, b) 
each sub-problem is easier to solve than the overall problem, and c) the optimal solutions of the sub-
problems constitute an optimal or at least near optimal solution of the overall problem. We seek to 
achieve these goals by:  

i) breaking the control vector into disjoint parts,  
ii) making agent-i responsible for calculating only the i-th portion of the control vector,  
iii) allowing agent-i to assume that the other agents will calculate their parts optimally, and  
iv) using predictive models that are simplified so as to de-emphasize those distant parts of the 

network which are relatively insensitive to agent-i’s decisions. 
Therefore, if we consider agent-i and let: 
Zik be the subset of Uk, such that Uk = [Z1k, Z2k,.., ZNk], and Znk is assigned to agent-i, and 
Yik be the part of Uk that is not assigned to agent-i.  In other words: Uk = [Zik, Yik], 
 
the following (2.2) is the subproblem that the agent must solve if it acts independently, without 
communicating with other agents: 
(SPi): Predict what the other agents will do and how the network will respond; that is, predict Yi1,…,YiK 

and X1, X2,..,XK. Simultaneously, solve the optimization problem: 

1
0 1,...,

minimize     ( , ,..., )
i iK

KZ Z
C U U U  (2.2a) 

( , , ) 0K K KG U X Ω ≤  (2.2b) 

This problem can be rewritten exclusively in optimization terms as follows: 
(SPOik): 

1
0 1{ , }

minimize     ( , ,..., )
ik ik k K

KZ Y
C U U U

≤ ≤

 (2.3a) 

    1subject to:   ( , , ); 1... , 0... 1ijk ijk k k kx M U X j J k K+ = Ω = = −  (2.3b) 

    ( , , ) 0K K KG U X Ω ≤  (2.3c) 
where: 
xijk is the state of the network at time, tk, in region, Rij. In other words, the state of the entire 

network at time, tk, is given by:  Xk = {xijk}0≤ j ≤ J 

Ri0, Ri1,…,RiJ  are concentric and disjoint regions of the network, such that Ri0 is centered on agent-i, 
and Rij is closer to agent-i than Rij+1 
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Mijk is a network-model such that  xijk+1 = Mijk(Uk, Xk, Ωk) 
 

In words, agent-i predicts the actions of the other agents by assuming their actions will be optimal, and 
agent-i predicts future states of the network with the aid of models, Mijk, that are centered at its location. 
The models are specific to the agent. They decrease in fidelity with both distance and time. In other 
words, each agent has its own suite of models; distant parts of the network are less accurately represented, 
as are time intervals towards the end of the time-horizon. 

Much of agent-i’s efforts are spent in making predictions of the actions of other agents and the 
response of the network to these actions. There is, of course, a tradeoff between the amount of effort and 
the quality of the decisions made by agent-i. The more accurate the predictions, the closer the optimal 
solution of (SPOi) will be to the optimal solution of (OP). The cruder the predictions, the less the effort 
needed to make them. 

Thus, agent-i must solve the overall problem, but conditioned on its unique and simplified view of 
the network, reflected through its use of the suite of models, {Mijk}. Of course, even though agent-i 
predicts the entire control vector, it implements only the fraction assigned to it, and only for the first time-
interval. The sub-problem is simpler than the overall problem because of the predictive models used–
{Mijk} is simpler than µ especially for parts of the network that are far from agent-i. 

2.3 Cooperation 

We will say that two agents cooperate if they share goals (objectives or constraints) and exchange 
information to better meet these goals.  

Two obvious forms of cooperation are: a) for agents to tell their neighbors what they intend to do, 
and b) to pass along state-measurements that other agents may not be able to otherwise obtain. (Each 
agent can sense only a small part of the network; without help from its neighbors, it cannot be expected to 
obtain an accurate picture of what is happening in the network.) 

These two forms of cooperation simplify agent-i’s task as follows: 

(SPCik):  
1

0 1{ }
ˆ ˆ ˆminimize     ( , ,..., )

ik k K
KZ x

C U U U
≤ ≤

 (2.4a) 

    1 0 0 0
ˆ ˆsubject to:   ( , , ); 1...ij ijkx M U X j J= Ω =  (2.4b) 

    1
ˆ ˆ( , , ); 1... , 1... 1ijk ijk k k kx M U X j J k K+ = Ω = = −  (2.4c) 

    ˆ ˆ( , , ) 0K K KG U X Ω ≤  (2.4d) 

where ˆ
kU  and ˆ

kX  are synthesized from agent-i’s own predictions and measurements as well as those 
supplied to it by its neighbors.  

3 Global control problem definition 

This section adapts the general global problem formulation (OP) to the specific problem of 
controlling cascading failures. This problem formulation lays the foundation for the problem 
decomposition that we define in section 4. 

Most of the state transitions that make up a cascading failure are caused by transmission line relays 
reacting to high currents and low voltages. These variables are highly sensitive to changes in load levels 
and generator outputs. In many cases, the network can tolerate violations for a time without negative 
consequences. A transmission line overcurrent condition can persist for seconds or minutes before the 
conductors sag enough to allow a phase to ground fault and trigger a relay action. Even a severe overload 
that could trigger a backup (zone 3) relay will operate with a 1-2 second time delay (Blackburn, 1998, ch. 
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12). If voltage and current violations can be eliminated through fast load and generator control, 
transmission line relays will not act to propagate a cascade.  

3.1 Problem formulation 

With this in mind we use the following control problem as a means of preventing cascading failures: 
eliminate voltage and current violations with a minimum cost set of load and generation shedding 
violations before subsequent failures occur. For the sake of this paper, we consider this to be globally 
correct behavior. This problem can be formulated as a non-linear programming problem, using the steady 
state power network equations that would ordinarily be used in an optimal power flow formulation 
(Wood, 1996, ch. 13). This global problem (OP) is given in (3.1a-3.1h) below.  

( )1 1, 1
minimize ,

K

n nk nk nk nkG L k n N
Cost G G L L− −

= ∈

− −∑∑  (3.1a) 

subject to: 
min max

KV V V≤ ≤  (3.1b) 
max

, ( ) , , ,nm K nm nK mK nmI y V V I n m N n m= − ≤ ∈ ≠  (3.1c) 

and for all {1... }k K∈ : 

k NN kI Y V=  (3.1d) 

( ),nk nk nk nkG L V conj I n N− = ∈  (3.1e) 

( ) ( )0 0Re Im ,nk n nk nL L L L n N= ∈  (3.1f) 
min max ,n nk nG G G n N≤ ≤ ∈  (3.1g) 

00 ,nk nL L n N≤ ≤ ∈  (3.1h) 
where: 
N is the index set of all the nodes or buses in the network. 
n is the index for an individual member of N. 
K  is the final time step in a given sequence of actions. 
k is an index variable for time. 
V is a complex vector of node voltages.  Vn is the voltage at bus n. 
I is a complex vector of currents. In is the injection at bus n. Inm is the current along branches 

between nodes n and m. 
G is a complex vector of generation power injections.  For the sake of notational simplicity, we 

assume no more than one generator is located at each bus. It is fairly easy to incorporate multiple 
generators, but doing so complicates the notation somewhat. Gn0 is the measured pre-control 
generator output at bus n. 

L is a complex vector of load powers. As above, we assume one load at each bus. Ln0 is the 
measured pre-control demand at bus n. 

YNN is the complex node admittance matrix for all the nodes in the network. See (Wood, 1996) for 
definition. 

ynm is the single element of the node admittance matrix that is the admittance between buses n and m. 
 
The costs associated with shedding load (from 3.1a) are the social costs that would be incurred from 

the interruption of electrical supply or demand. If SOs deem some customers as more valuable than 

Carnegie Mellon Electricity Industry Center Working Paper CEIC-05-07      www.cmu.edu/electricity



- 9 - 

others, the objective function (3.1a) can be adjusted accordingly. The costs associated with reducing 
generation come from either the expected equipment damage resulting from rapid deceleration (using 
techniques such as fast valving or breaking resistors), or the amount that would have to be paid to an 
independent power producer for such emergency control. The first two inequality constraints (3.1b) and 
(3.1c) define the measures used to identify violations, which together make up the inequality constraints 
in our general formulation (2.1x). This formulation could be extended to include constraints on the 
dynamic system, such as system frequency or generator “out-of-phase” limits, but such extensions are 
beyond the scope of this paper. Equality constraint (3.1d) defines the voltage-current relationships in the 
network. Equality constraint (3.1e) expresses conservation of energy at each node. Equality constraint 
(3.1f) forces the system to shed real and reactive load in equal proportions. Inequality constraints (3.1g) 
and (3.1h) describe the extent to which loads and generation can be adjusted.  

Simulations on several test networks indicate that power system violations can be eliminated by 
solving this problem and implementing the resulting control actions. We do not presume to be able to 
eliminate all cascading failures using this method. This method will not likely do much to control high 
speed (<1 second) cascading failures that result primarily from machine dynamics. Most cascading 
failures, however, are not of this type and progress over periods of seconds to minutes. We have found 
that standard non-linear solvers9 quickly find optimum solutions to this problem for small networks (<200 
buses). Figure 3.1 shows the result of one such calculation using the IEEE 39 bus test case. 

 
Figure 3.1—Optimal load and generation shedding actions resulting from the solution of the global problem P on 
the IEEE 39 bus test case. These are the minimum cost actions that eliminate the violations shown. Branch current 
violations are marked with circles. These violations occurred after a line outage was applied at the location marked 
with an X. The arrows indicate power flow magnitude and direction. 

4 Problem decomposition method: distributed MPC and cooperation 

Because cascading failures can spread rapidly through an entire synchronous network, obtaining 
good solutions to the global problem (3.1) requires that it be solved over an entire synchronous network. 
For large networks this is technically impossible, and in many locations would require a degree of 
centralization that is institutionally impractical. For these, among other, reasons a decentralized solution is 
necessary. With this in mind, we use the method described generally in section 2 to decompose the global 
problem into agent sub-problems. We take the following steps to decompose the problem: 

                                                 
9 For all simulations in this paper we use the SNOPT solver via the Tomlab interface: www.tomlab.biz. 
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• place a software agent at each load and generation bus; 
• task each agent with controlling only its local load and generation; 
• allow each agent to gather measurements from a limited portion of the system through 

communication networks and use that data to populate simplified network models; 
• allow each agent to solve its local problem iteratively using MPC; 
• allow each agent to improve its local solutions using cooperation. 

The result is essentially a two-dimensional decomposition of the global control problem. The problem is 
decomposed in space by assigning the problem to distributed agents and in time by allowing agents to act 
iteratively using MPC. Figure 4.1 provides a high level view of this method. 
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Figure 4.1—Feedback diagram of the system showing how operators and the agent network interact. Under normal 
conditions operators control load and generator set points (U). When an agent detects a violation, it calculates a plan 
and implements the local portion of that plan effectively making adjustments (δ1) to the operator set points. 

4.1 Spatial decomposition and data collection 

In our decomposition we place one agent at each bus in the network, each of which has responsibility 
to make emergency adjustments to control variables (load and generation) at its location. Each agent 
obtains local state (current and voltage) measurements through local measurement hardware, and obtains 
more remote measurements through a communication network.  

For the sake of network modeling, an agent (agent-i) divides the network into four regions, R0 
through R3. R0 contains the local node (bus i) where agent-i has direct control and measurement abilities 
and the state variables accessible from this location. R1 extends to every bus that can be reached by 
traveling over no more than r1 branches (the sub-network of radius r1 around bus i). We refer to this 
region as the agent’s local neighborhood. Agent-i obtains constant measurements from buses within R1 
and therefore maintains good models of this region. The next region, R2, extends to every bus within a 
radius of r2 from bus i. In this extended neighborhood the agent obtains infrequent (daily or weekly) 
measurements such that it can estimate the quantity of load and generation at these locations. This 
provides agent-i with crude approximations of the control abilities of agents at these remote locations but 
not state variables since these can change quickly during stressed conditions. The remainder of the 
network falls into R3. The agent does not take any measurements or estimates of the state or control 
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variables in R3. It does estimate the configuration of the R3  network (
3RΩ ) by assuming that the remote 

branches are in some default state., perhaps given to the agent by a system operator.  
Thus agent-i populates four network models with decreasing fidelity as the models become more 

remote. Table 4.1 describes the agent regions and models in more detail, and figure 4.2 illustrates the four 
regions on a graph of the IEEE 118 bus network model. 

Table 4.1—Summary of agent measurement and prediction for the four agent regions  
 Measurement Prediction 

Region uijk xijk Ωijk uijk+1 xijk+1 Ωijk+1 

R0 local local local controlled 
directly 

predicted with 
Mijk 

Ωijk+1 = Ωijk 

R1 
constant 

measurements 
constant 

measurements 
constant 

measurements 
assumed optimal 

given Mijk 
predicted with 

Mijk 
Ωijk+1 = Ωijk 

R2 estimated 
obtained 
through 

cooperation 

obtained 
through 

cooperation 

assumed optimal 
given Mijk 

predicted for 
non-empty 

elements of xijk 

Ωijk+1 = Ωijk 

R3 none none all branches 
connected uijk+1 = uijk no prediction Ωijk+1 = Ωijk 
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Figure 4.2—Illustration of the spatial decomposition of the overall problem on the IEEE 118 bus network. An agent 
gathers measurements and watches for violations frequently within its local neighborhood and occasionally within 
its extended neighborhood. The radius of an agent’s local neighborhood is r1 and the radius of an agent’s extended 
neighborhood is r2. 

4.2 Agent network models (Mijk) 

As described earlier, in order to employ model predictive control each agent must use the data that it 
collects in combination with network models that preserve the essential functionality of the network and 
require minimal computation. This section describes the network models specifically used for the current 
DMPC application, extending the general description in section 2 and table 4.1. 

4.2.1 Network model for region R0 (Mi0k) 
The R0 region for agent-i includes only bus i and the branches that are incident to this bus. Since the 

agent has good data for this region, and because the region is situated in the center of its other network 
models, it is generally able to make good predictions. The model includes two components. Firstly, a 
means of predicting future state variables and secondly a means of predicting future control variables. The 
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state variable prediction is a simple linear model that is used for all three of the local regions (R0 through 
R2): 

0 0 1 1 2 21 1 1 , , , , , ,
ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , , )

i i iijk ijk k k k ijk R R R k R R R k R R R kx M U U X x A A Aδ δ δ+ + += = + + +  (4.1) 

where: 
x̂  is a predicted or estimated value of x; 

,i jR RA  is a sensitivity matrix that gives the approximate sensitivity of the state variables in set Ri to 

changes in the control variables in the set Rj. See below for more details 

,
ˆ

iR kδ  is a vector of predicted control variable changes such that: 

( )
( )

1 1

, , 1 ,

1 1

Re

Re
i i

i i i

i i

R k R k

R k R k R k

R k R k

G G
u u

L L
δ

+ +

+

+ +

 −
 = − =
 − 

 (4.2) 

 
In our simulations we focus specifically on eliminating branch current magnitude excesses. Thus, the 

state variable prediction equation (4.1) is written in terms of branch current magnitudes. We can 
implement (4.1) using a Taylor’s series expansion from the global problem, though for our problem this 
requires state, control, and configuration variable estimates for the entire network. Alternatively ,i jR RA  

can be estimated using a simplified model that is independent of the state and control variables. The DC 
power flow approximations commonly employed for power systems analysis provide us with such a 
model. Thus (4.1) becomes: 

1j j jR k R k R M MI I D δ+ = +  (4.3) 

where M represents the set of all control variables for which the agent has current measurements and 

jR MD  represents a subset of the branch current (or power) distribution factor matrix (D) for the branch 

currents in region Rj and control variables in M. The full distribution factor matrix D is calculated from 
the bus admittance matrix ( :NN N NN NY I Y V= ) and the branch incidence matrix ( :B B B NY I Y V= ) as 
follows: 

Im( ) Im( )B NND Y Y= Λ  (4.4) 

where Λ  is a matrix that translates the vector of control variables into a vector of bus power injection 
changes. Any unknown branch statuses are assumed to be connected. 

Secondly the model includes a set of boundaries on the state and control variables. These include the 
boundaries that define the state variable violations that must be eliminated by the end of the control 
period: 

min max
j j jR R K Rx x x≤ ≤ , (4.5) 

absolute boundaries on the control variables: 
min max

j j jR R k Ru u u≤ ≤ , (4.6) 

and limits on the amount by which the control variables can change in a given period: 
min max

j j jR R k Rδ δ δ≤ ≤ . (4.7) 

Agent i uses this network model in combination with its local optimization problem (problem SPOi, given 
in 4.8) to predict remote control actions and decide on local actions.  
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4.2.2 Network model for region R1 (Mi1k) 
Model Mi1k differs from Mi0k only in that the measurements used to populate the model come through 

the communication network rather than being available locally.  

4.2.3 Network model for region R2 (Mi2k) 
Model Mi2k differs from Mi0k and Mi1k in that the state variable measurements and subsequently 

constraints are only included in the model if they are obtained through the cooperation process. The agent 
solicits occasional control variable measurements in order to estimate the control abilities at remote 
locations. We assume that the agent knows the control costs at these locations as well. 

4.2.4 Network model for region R3 (Mi3k) 
Model Mi3k is the most remote and least accurate of the four network models. In this area agent i does 

not take measurements or make predictions, except regarding the configuration of the network. It assumes 
that all of the branches in this region are in some default state (connected typically) unless it obtains other 
data during the cooperation process.  

4.3 Full DMPC agent sub-problem 

In order to build the agent sub-problems we integrate the above models with the general formulation 
(SPPi). The result is an optimization problem with which the agent determines the actions to take locally 
during the current time period (the control variables that fall within R0 and at time t1) and obtains 
predictions for the remaining control variables that fall within R0, R1 , and R2, and over a time horizon 

{ }1,..,k K= . This integration results in the sub-problem for agent-i at time t0 given in (4.8) below. 

1
minimize

M

K
k T

M Mk
k

e cρ δ−

∆ =
∑  (4.8a) 

subject to (for k=1…K): 
max

1 ,0... 1( )Bk Bk BM Mk B k BI I D f I Iδ− −≅ + ≤  (4.8b) 

M M

gk lk
g G l L

δ δ
∈ ∈

=∑ ∑  (4.8c) 

0,g gk MRR g Gδ≤ ≤ ∈  (4.8d) 

0
1

0
K

M Mk
k

u δ
=

− ≤ ≤∑  (4.8e) 

where: 
M is the index set of all control variables that the agent includes in its problem. This will include 

only the control variables in R0 , R1 , and R2; 
δMk is the matrix of predicted control variable changes over the entire control variable set (M) and 

time horizon {1…K}; 
δMk is the vector of predicted control variables changes for time tk; 
c is a vector of costs associated with load and generation reductions; 
ρ is a discount factor such that 0< ρ<1; 
B is the set of all branches for which the agent has current measurements. B includes all of the 

branches in R0 , and R1 , and those branches in R2 for which the agent has data from the 
cooperation process; 

f is a function that evaluates to a scalar and determines the amount by which the given state 
variable must be reduced during a given period; 
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G,g represent the set of all generator locations in the control vector and an index into that set; 
RRg is the ramp rate for generator g: i.e. the amount by which the generator can be reduced between 

time steps. 
In the above formulation, the cost function (4.8a) is a summation of control costs over the time 

horizon. The costs are discounted so that the least expensive actions will be chosen first, and more 
expensive actions later. Simulations indicate that the solution is independent of the discount rate chosen 
for discount rates in the range 0<ρ<1. Equation (4.8b) gives the combined state variable (branch current10) 
prediction and limits for each time period (tk). This constraint includes a scaling function f  that adds some 
slack to the constraints so that the violations need not be entirely eliminated during the first period, but 
can be eliminated gradually over the time horizon. Finally, we add ramp rate constraints on the generators 
(4.xd) since there are natural limits to how fast a generator can decelerate, and constraints (4.8e) to ensure 
that the agent does not enact or predict more load or generation shedding than that which is feasible. 

In order to build the branch current scaling function ( f in 4.8b), system operators will need to 
estimate how quickly a violation must be eliminated to prevent relay operation. This will depend on both 
the magnitude of the violation and the time that the violation has persisted on the system. To prevent a 
zone three or a time over-current relay operation, a violation must be eliminated fairly quickly (1-2 
seconds). In order to minimize the risk of a line sagging and causing a fault, longer time delays (seconds 
to minutes) will likely be acceptable. In this paper we use four period simulations and define f such that 
agents seek to reduce current magnitude violations linearly from 130% of the limit in the first period to 
100% in the final period (figure 5.1 shows this control goal). If a violation persists past the original 
planning horizon the agent continues to act to reduce the violation below the threshold. The result of each 
calculation is an estimate of the global control plan ∆M*. This plan is illustrated in figure 4.3.  
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Figure 4.3—Diagram of the two dimensional decision plan calculated by agent-i. The agent obtains this control plan 
by solving (4.8) given the data that it was able to collect from other agents.  The columns of the matrix represent a 
set of calculated control actions for a single time period and for every control variable in set M. The rows represent a 
set of calculated control actions for a single location over the entire solution horizon.  

4.4 Cooperation 

According to our earlier definition of cooperation as sharing goals and exchanging useful 
information, an agent that merely solves (4.8) and acts is not cooperative. Such an agent uses an 
overlapping objective function (4.8) but does not exchange useful information with its neighbors before 
taking action. There are many ways to design cooperation into an agent network. This paper presents 
results from only one of many possible methods.  

The algorithm presented in this paper is based on our finding that agents with only local information 
can overlook important data located just outside the agent’s local neighborhood (R1). Consider two 
agents: A and B. A is near a violation that B should react to, but B is unaware of the problem because it 
lies just outside of B’s neighborhood (but not A’s). If A solves its problem and calculates that B should 

                                                 
10 The current formulation includes only branch currents in the constraint set. Future editions will include voltage 

constraints as well.  
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act, and then shares the important violation data with B, B will likely be able to make better decisions 
about its local control actions. If B replies and shares its local data with A, A may also be able to improve 
its solution. Table 4.2 provides a more general description of this cooperation algorithm. 

Table 4.2—Agent algorithm with cooperation. Unilateral agents skip steps 6-10.  
Condition Step Action 

1 Collect data from neighbors 

2 Update network models 

3 Check for violations. If violations found go to 5. 

No violations 
detected 

4 Repeat from 1. 

5 Solve (5) to obtain the control vector for the current time period (δM,k) 

6 Determine a set of agents (Q) that appear to require control actions. 

7 Compare solutions with those agents in set Q. 

8 If a large discrepancy is found, exchange data with the agents with whom there exists 
a discrepancy.  

9 Re-solve (5) with the updated data. 

10 Iterate from 6 until consensus is reached, or until a maximum number of iterations has 
occurred. 

One or more 
violations detected 

11 Implement the local portion of the calculated control actions 

 
While better cooperation algorithms certainly exist, this rather simple cooperation algorithm was 

found to be quite effective. Each agent may begin with severely limited information but through the 
cooperation process the relevant agents obtain more detailed information about important aspects of the 
network. In our simulations we found that agents reach consensus within one or two iterations. We limit 
this process to three iterations. 

5 Verification 

In this section we describe the results of simulations designed to evaluate this method. The following 
experiments are specifically designed to determine the relationship between agent performance and 
communication abilities. The below results apply to simulations on the IEEE 118 bus test case, though 
similar results obtain using other networks. The 118 bus case was modified slightly from the original to 
match its properties to those of a typical contemporary power system.  

5.1 Simulation model description 

For the following simulations we use a standard, non-linear, power flow network model with 
constant real/reactive power loads and constant power/voltage generators. The network is assumed to 
perform frequency regulation through a single slack bus. The initial condition of the network is calculated 
with an optimal power flow algorithm (Zimmerman, 1997). One agent is placed at each bus and has the 
capabilities specified in section 4. Table 5.1 summarizes the important model input parameters and 
assumptions.  
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Table 5.1—Model input parameters 

Input Description 

Network data Modified from the IEEE 118 bus test case (see Appendix A) 

Load shedding costs Randomly assigned between $500/MW and $1500/MW 

Generator shedding costs Assigned uniformly at $30/MW 

Solution horizon (K) 4 time steps 

External neighborhood radius (re) 10 branches 

Local neighborhood radius (rl) Varies between 1 and 6 branches 

External data estimation error 15% coefficient of variation ( /x xσ ) 

Initiating disturbances Chosen randomly from a set of 100 violation inducing double branch 
outages 

 
A simulation is initiated by choosing a disturbance, a local neighborhood radius (rl), and allowing 

agents to sample data from the pre-fault condition of their external networks. During each simulation time 
step the agents solve their local problems, and implement the required local control action. After the 
agents have finished their calculations, the affect of agent control actions is calculated using a power flow 
routine. Table 5.2 describes this simulation procedure in more detail. For every disturbance/radius 
combination steps 5-11 were repeated for both cooperative agents and unilateral agents. 

Table 5.2—Simulation procedure 
Step Action 

1 Choose a disturbance randomly from the set of double contingencies.  

2 Choose an internal neighborhood radius (rl) 

3 Run an optimal power flow to obtain the pre-disturbance network conditions. 

4 Allow the agents to take noisy measurements from buses within their extended neighborhoods.  

5 Model the disturbance and run a power flow calculation. 

6 Set k=0, K=4. 

7 Allow the agents to take measurements from their local neighborhoods. 

8 Allow the agents to calculate control plans for the control horizon (k+1…K)  

9 Incorporate the agent control actions into the network data by changing load and generation. 

10 Calculate the new network conditions using a power flow. 

11 Increment k (and K if k+1>K). 

12 Repeat from 6 until all of the violations are eliminated, or until it is clear that the agents will not be able to 
eliminate the remaining violations. 

5.2 Results 

What follows are results from 771 simulations using the above procedure and sampled using the 
assumptions in table 5.1. Each simulation is repeated for agents with and without cooperation. Figure 5.1 
shows the trajectory of the most severe violation resulting from a typical disturbance for both cooperative 
and unilateral agents. Figures 5.2 and 5.3 show the relationship between the quantity of communication 
(internal neighborhood size) and two measures of performance: control error and completion time (see 
figure 5.1 for definitions).  
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Figure 5.1—Violation trajectories that result from agents reacting to a disturbance in the IEEE 118 bus test case. 
The agents have a small local neighborhood (rl = 2). The disturbance consists of outages on branches 8 and 40. The 
cooperative agents eliminate the violation nearly along the control goal. The control error is the area of the space 
between the control goal and the actual trajectory. For the cooperative agents this area is quite small, while for the 
unilateral agents it is rather large.  The completion time is the number of time iterations required to reduce the 
violation to no more than 0.05 (5% above the constraint). For the cooperative case, the completion time is 4. For the 
unilateral case, the completion time is set to 10 (beyond the solution horizon). 
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Figure 5.2—The relationship between rl and control error (see figure 5.1 for definition). 
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Figure 5.3—The relationship between rl and completion time (see figure 5.1 for definition). On average the 
cooperative agents require one additional time step to remove their violations, independent of the local 
neighborhood size.  

5.3 Discussion 

The above experiments reveal some important properties of the agent network design. The 
experiments indicate that it is possible to eliminate power system violations using autonomous agents 
working with a power flow network model. This conclusion applies to an actual power system so long as 
the time between MPC iterations is sufficiently large that the network nearly arrives at a steady state 
before the next control action occurs. As long as the generator actions can be accomplished quickly, this 
condition should hold. Tests using a dynamic power system simulator may provide additional insight. The 
experiments also demonstrate the value of even simple cooperation schemes in agent networks. Without 
cooperation, the communication required to obtain acceptable performance may be beyond what can be 
expected from existing technology.  

6 Benefits, costs and risks 

Special protection schemes can have substantial benefits to a system, but these benefits will 
generally come in terms of services such as reliability of the bulk electric grid and transmission capacity. 
In the case of bulk network reliability, the benefits accrue to all customers almost uniformly (especially 
those without backup generation). In the case of transmission capacity it is difficult to determine the 
distribution of benefits. The costs however fall to those that own and operate the power grid: vertically 
integrated utilities, transmission owners, and independent system operators. With out instruments such as 
reliability insurance, both reliability and network capacity have properties of public goods. Additionally, a 
distributed-agent SPS will only be able to control cascading failures on control area seams if the systems 
in adjacent control areas are coordinated. Due to the difficult coordination issues involved, the 
concentrated nature of the costs, and the dispersed nature of the benefits, investment is unlikely to occur 
without regulatory intervention. Before regulators act to promote the dispersion of any technology, the 
costs, benefits, and risks of that technology should be carefully weighed. This section gives a preliminary 
description of the nature of some of these costs, risks, and benefits specifically for the US Eastern 
Interconnect. 
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6.1 Benefits 

The primary benefit of this technology is to reduce the cascading failure risk. If we know the 
expected cost of cascading failures to a system, and know that a given technology can reduce this 
probability by some portion, we can estimate the reliability value of that technology.  If a cascading 
failure on the scale of the 2003 Northeast blackout occurs once every 15 years and one half this size 
occurs twice as frequently, assuming that blackout costs scale linearly from the $6 billion estimate, the 
expected cost of large cascading failures is $800 million/year. This estimate is close to the $1 billion/year 
cost used in (Apt, 2004), but far less than the total cost of service interruptions in the United States ($20-
$100 billion – LBL paper <get this paper>). Given this assumed risk distribution, a technology that could 
cut both frequencies in half would have a $400 million/year reliability benefit.  

A secondary benefit of this technology would be the ability to use existing transmission capacity 
more efficiently. Because power grids do not currently react to disturbances well, operators must use 
transmission capacity sparingly to allow for possible disturbances. If the grid had better reflexes it would 
be possible in many locations to use transmission grids more aggressively, allowing for efficiency gains. 

The net effect of an effective control system will be to create a new Pareto surface of potential 
tradeoffs between network reliability and efficiency. Figure 6.1 illustrates the potential effects of 
improved grid control and altered operating criteria.  
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Figure 6.1—Illustration of the desired benefits of improved grid control. An effective control scheme will increase 
network reliability, and thereby create a new Pareto surface of potential tradeoffs between reliability and efficiency. 
If the existing tradeoff is at point A, the effect of improved control alone will be to move to point B along the new 
Pareto surface. If a set of new operating criteria were used in addition to the new control system, the effect could be 
to move to another point along the Pareto surface (point C for example). 

In future work we plan to study both of these benefits for test case networks to estimate their relative 
magnitudes and significance. 

6.2 Costs 

Because the proposed method does not require additional high-voltage hardware, the costs per 
location should be low. The computational requirements for the agents themselves are no more than the 
abilities of a standard PC. As the costs of wireless, satellite, and power line communication equipment 
decrease, the communication system costs should be reasonable as well. Table 6.1 shows an order-of-
magnitude approximation of the cost associated with implementing this technology for the US eastern 
interconnect.11 Relative to the large social cost of blackouts and the cost of building new transmission it 
seems likely that the benefits of this technology will far outweigh its costs. 
                                                 
11 See (Apt, 2004) for a related calculation 
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Table 6.1—A preliminary cost estimate for installing a network of autonomous control 
agents at every node of the eastern interconnect. Assumed discount rate is 7% with a 30 
year planning period. 
Agent hardware 50,000 buses x $2000 each = $100 million 

Installation 50,000 buses x $10,000 each = $500 million 

Maintenance 50,000 buses x $1000 every 5 years = NPV: $100 million 

Communications 25,000 buses x $2000 each = $50 million 

Total $750 million or $60 million/year 

6.3 Risks 

One interpretation of the No Free Lunch Theorem of Optimization is that it is impossible to make a 
complex system resistant to one set of disturbances without also making it more susceptible to others (Ho, 
2001). It is possible that wide-spread implementation of SPS like that presented here could result in a 
system that was more resistant to some conditions and more susceptible to others. There is therefore a 
non-zero chance that the new technology could increase rather than decrease the cascading failure risk. 

 For example, it is possible that during a very high speed cascading failure with voltages and currents 
fluctuating rapidly this method would propagate rather than arrest the problem. An important step in 
developing this method for practical use would be to develop a method for characterizing the current local 
condition as one that the agent is capable of reacting to successfully, or not. An agent could monitor the 
rate of change of voltage phase angles and frequency, and classify the current condition based on this 
data.  

The existence of risks like the above does not mean that SPS should not be used. The important 
question is whether the benefits justify the risks. Further research is needed to understand the effect that 
distributed agents would have on cascading failure risk.  

7 Conclusions 

Cascading failures and blackouts result from violations that persist in the network long enough to 
trigger the protection system actions. Experiments performed for this paper demonstrate that it is possible 
to design a network of autonomous agents with limited communication abilities that can eliminate power 
network violations before they can trigger the protection system. Experiments also demonstrate that 
cooperative agents can outperform agents acting unilaterally by a large margin. While related to existing 
work on DMPC, the proposed method is new. With additional development, it seems probable that this 
technology could improve the ability of power systems to make better tradeoffs between conflicting 
objectives. In future work we plan to refine this method, perhaps through the use of improved network 
models and communication methods, and further study the benefits, costs, and risks of distributed agents 
for power networks. 

While this work is primarily technology-focused, there are important implications for current 
regulatory issues. The benefits of improved transmission control are diverse, difficult to accurately 
quantify, and widely distributed. Under current regulation in the United States, transmission owners, 
regional transmission organizations, and state regulated utilities are responsible to fund transmission 
investments. Large investments are unlikely to occur unless regulatory bodies ensure that investors can 
recover their capital. Additionally, the installation of a distributed agent network over a large portion of a 
synchronous grid will require substantial coordination among system operators across state boundaries. 
This is likely to require at least some regulatory oversight. On the other hand our work demonstrates that  
improving the power network control system, can be done using a decentralized architecture, and 
therefore does not require large centralized regional transmission operators (RTOs). This is an important 
result, because it implies that it is possible to solve some global power network problems without 
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centralization. This property may ease implementation if it is found that a technology like this one is 
needed, but it is institutionally infeasible to organize the US grid into large RTOs. Finally, a coordinated 
method of determining the social cost of load shedding must be adopted before this method can be 
implemented. If SOs could set costs unilaterally, neighboring systems may be able to prevent local load 
shedding by setting very high local load values. Uniform cost assignment may be the best method 
initially, until a more refined method can be implemented. 
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