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Abstract 
 

A set of reduced order, linearized, dynamic models 
for distributed generators is developed along with a 
framework for modeling the generators in a power 
distribution system. Analysis of this distributed system 
structure raises two issues. The first is that the 
simulations demonstrate, unexpectedly, that a small 
load disturbance is capable of causing frequency 
instability in the primary dynamics of the distributed 
generators. Eigenanalysis of the instability suggests 
that it is a system phenomenon. The second issue is 
that the system matrix is found to not have a block 
diagonal dominant structure raising questions over 
the possible implementation of decentralized control 
strategies. A method to regain system stability along 
with an example of implementing this method are 
presented, along with the generator models. 
 
1. Introduction 

 
The potential for an increased number of 

distributed generators in the existing power system 
raises a number of engineering questions concerning 
stability and control of the power system, both locally 
in the distribution system and at the high voltage and 
central control facilities. Significant research has been 
done in this area through investigations into the 
microgrid concept [13]. The standard stability issues 
are those of frequency and voltage, with an additional 
control interest focusing on the technical capability for 
decentralized control of generation, to parallel the 
growing decentralized ownership. 

The research discussed in this paper focuses on 
developing dynamic, state space models of distributed 
generators and the distribution system. The paper 
describes the model development first, followed by a 
stability analysis based on eigenanalysis and 
sensitivity factors, and finally discusses an approach 
for allowing decentralized control within a distributed 
utility. 

 
2. The Model 
2.1. Time Scale Definitions 

 
The goals of the modeling are first to simulate the 

dynamic interactions of distributed generators in 
response to a system disturbance and second to 
analyze the effectiveness of different control strategies 
in maintaining system stability and allowing 
decentralization. The different dynamic phenomena 
and corresponding control responses can be 
distinguished by the time scale at which they occur. 
Primary dynamics from 5 seconds to 1 minute, and 
tertiary dynamics of several minutes to several hours. 
In practice, secondary level controls are designed 
assuming that the primary dynamics have settled, and 
tertiary controls assume that secondary dynamics have 
settled. Modeling and analysis of dynamic phenomena 
must mirror these assumptions. The results in this 
paper focus solely on primary dynamics. 
 
2.2. Modeling Goals and Assumptions 

 
The modeling effort is based on building 

decoupled, linearized state space models1 for each type 
of distributed generator, and coupling2 them through a 
distribution system model. State space models have 
been developed for steam turbines, hydroelectric 
turbines, combustion turbines, combined cycle plants, 
wind turbines and inverters (to be used with fuel cells 
and photovoltaics).  Numerous dynamic models exist 
for each of these technologies, however the majority 
are very complex, involving a large number of state 
variables.  In developing the models for this project, 
the objective is to represent each generator with a 
small number of state variables (three to four) so that 
interconnected system models, which each include a 
                                                        
1 Decoupled here refers to the assumption that for small disturbances 
frequency and voltage dynamics are essentially independent, and are 
related to real power and reactive power respectively. 
2 Coupling' here refers to the physical connection of the generators with 
each other by means of the distribution system. 
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number of the distributed generators, will not be 
overly complex.  A second objective is to develop each 
set of local state equations such that they incorporate 
PG as the system coupling variable.  The traditional 
system coupling variable is rotor angle, δ.   

 
2.3. Individual Component Models 

 
The models which include a synchronous generator 

all use a form of the swing equation as the generator 
state equation 
  

em PPDJ −=+ δδ &&&  
  

where Pe ≡ PG, the electrical power output. Use of this 
equation facilitates the inclusion of the system 
coupling variable, PG in each set of local state 
equations.  This generator equation differs for 
different technologies, since the mechanical power 
from the turbine, Pm, has a different representation for 
each turbine type. A wind turbine – induction 
generator model is presented at the end of this section. 
 
2.3.1. Steam-Turbine-Generator. The simplest 
model of this form is for the steam turbine where Pm is 
equivalent to Pt, the local state variable for the turbine.  
The other state variables are ωG for the generator 
(where δω &≡G ) and a  for the governor.  The full set 

of steam turbine-generator equations is 
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In these equations M is the inertia constant, eT is a 
coefficient representing the turbine self-regulation, 
defined as GtP ω∂∂ / , D is the damping coefficient, 

Tu is the time constant representing the delay between 
the control valves and the turbine nozzles, kt is a 
proportionality factor representing the control valve 
position variation relative to the turbine output 
variation, Tg is the time constant of the valve-
servomotor-turbine gate system, and r is the 
permanent speed droop of the turbine. These 
parameters are defined in references [1, 7, 8].  ωref is 
the reference frequency set by the secondary controls, 
and so is assumed constant in the primary dynamics 
time scale. PG is defined as an input to this system of 
equations. 
 

2.3.2. Hydro-Turbine-Generator. A slightly more 
complex set of equations than that for the steam 
turbine is that for a hydro turbine-generator. This 
model follows the model for a low-head hydro facility 
developed in [1], with additional information for 
parameter values from [6, 16]. The state variables for 
this technology are ωG for the generator equation, q 
for penstock flow, v for governor droop and a  for gate 
position. 
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M and D are the inertia and damping constants as 
above.  eH, kq and kw are all ratios of constants from a 
standard hydro-turbine diagram referred to as the 
universal water turbine stead-state performance 
diagram (see for example Figure 8 in [1]), Tf, Tq, and 
Tw are also all ratios of constants from the same 
diagram, multiplied by Tc, the time constant of the 
penstock, Te is the time constant of the valve-turbine 
gate system, Ts is the time constant of the servomotor 
gates, rh is the permanent speed droop, and r' is the 
transient speed droop. These coefficients are contained 
in references [1, 7, 8]. 
 
2.3.3. Combustion-Turbine-Generator. The set of 
equations used for a combustion turbine are presented 
below. The equations represent the generator (ωG), 
fuel controller (VCE), and fuel flow (both WF and 
WFdot) 
 

 

These equations are derived from the equations and 
models found in [6, 15].  M and D are the inertia and 
damping coefficients respectively. a, b and c are 
transfer function coefficients for the fuel system, and 
KD is the governor gain. β and δ are algebraic 
functions of the parameters in the references, defined 
as Fcb τβ +≡  and  FaKc +≡δ , where τF is the 
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fuel system time constant, and KF is the fuel system 
feedback gain. 

 
2.3.4. Combined Cycle Plant. The combined cycle 
combustion turbine, CCCT, model has equations for 
both a combustion turbine and steam turbine driving 
the synchronous generator. The generator output 
(swing equation) has mechanical power from both the 
steam and combustion turbines as input. The model 
develop for the CCCT uses the equations for the fuel 
controller (VCE), and the fuel flow (both WF and 
WFdot) from the CT model.  The fifth equation 
represents the thermodynamic coupling between the 
turbines, using the air flow, Wair as the coupling 
variable.  The sixth and seventh equations are for the 
steam turbine, where PST represents the mechanical 
power output from the steam turbine.   

The new parameters in this set of equations are Tv, 
the vane control time constant, d, the ratio of the fuel 
flow to rotor speed, TM and TB are time constants for a 
simplified steam turbine modeled in Figure 8 of [17], 
m and n represent the enthalpy in the mass flow of the 
air and fuel respectively, p is a function of the turbine 
exhaust temperature (see function f1 in [15]), and the 
function f2, also defined in [15], represents the turbine 
torque.  This model was derived from the models in 
[4, 9, 15, 17]. 
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2.3.5. Wind Turbine – Induction Generator.  
The model for the wind turbine system is based 
substantially on the work in [3], which specifically 
developed a model to be used for dynamic studies of 
dispersed wind turbine applications. The model below 
differs from that model in that it has a single torque 
input, Tw (defined as the wind torque), rather than 
both Tw and Tturbine.  Turbine torque is expressed in 
terms of the turbine inertia and wind torque. 

The wind turbine system is modeled as two 
rotating masses – the turbine and generator rotors – 
coupled by a tortional spring. The three equations 
represent the induction generator, ωG, the tortional 
spring, d, and the wind turbine, ωT. Note that the wind 
turbine system has no generator control, as in the 
other models, as is appropriate for a non-dispatchable 
technology.  

MG, MT, DG and DT are the generator and turbine 
inertias and damping coefficients.  Tw is the wind 
torque, and is an input to the system of equations, as is 
PG, and K is the spring constant of the tortional spring 
used to model the drive train coupling between the two 
rotors. References [12, 16] were also used for 
developing this model. 
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Steam Turbine Parameters
M 1.26 k_t 0.95
D 2 T_g 0.25

e_t 0.15 r 0.05
T_u 0.2

Hydro Turbine Parameters
M 1.5 T_q 0.72
D 2 T_w 0.76

e_h -0.22 T_e 2
k_q 2.78 r' 0.4
k_w 1.52 T_s 0.1
T_f -3.6 r_h 0.05

Combustion Turbine Parameters
M 11.5 a 0.45
D 2 a 1
c 1 t_F 0.4

K_D 25 K_F 0
b 0.05

Wind Turbine Parameters
M_G 5 D_T 1
M_T 11 K 400
D_G 0.8 s -0.05  

 

Table 1: Parameter values for generator models 
 
 
2.4. Generator Model Parameter Values 

 
The specific values for the parameters in the 

generator models, which are used in the system 
simulations in this paper are presented in Table 1.  
Complete development of these values is found in [2]. 
 
2.5. The Extended State Space 

 
To build the complete system model, the individual 

generator models are coupled to each other via the 
distribution system. To achieve this coupling each set 
of equations representing a local generator state space 
is extended to include the system coupling variable, 
selected to be power output, or PGi. This choice of 
coupling variable, rather than the traditional choice of 
rotor angle d, follows directly from the process of 
linearizing the full system model. Through use of the 
Jacobian matrix it facilitates retaining in the extended 
state space those aspects of the system topology which 
directly impact the dynamic behavior (line strength, 
interconnections and electrical distances) [10]. 

The following equation for PG is obtained, as 
defined fully in [2, 10] 
 

(1)                       LPGPG PDKP && += ω  
 

where LP& , representing a load disturbance, is an input 
variable to the system, and the matrices KP and DP are 
derived from the Jacobian matrix. Equation (1) is 
added to each set of local state space equations to form 
what is referred to as the extended state space. 
 
2.6. The Full System Model 

 
The state equations for the individual generators 

can be written in matrix form and represented as 
 

(2)            BuPCxAx GMLCLCLC ++=&  
 

where xLC is the local state vector, u is the input  ωref, 
and the bold variables represent the matrices with the 
elements of CM = 1/M and ALC defined as the local 
system matrix. The equations for each generator can 
be written in this form. 

Incorporating PG from equation (1) for the 
extended state space, the full system model can be 
written as  
 

(3)                       LPextextext PDxAx && +=  
 

where xext is the extended state space, state vector, and 
A is partitioned into block diagonal partitions 
composed of ALC, CM, KPE and 0. Numerous dynamic 
models exist for each of the various distributed 
technologies, however the majority are very complex, 
involving a large number of state variables. In 
developing the models for this project [2], the 
objective was to represent each generator with a small 
number of state variables so that full system models 
which include a number of the distributed generators 
would not be overly complex. A second objective was 
to ensure that the local state equations incorporated PG 
making them mutually compatible in the extended 
state space, with the use of PG as the system coupling 
variable. 
 
2.7. Model Specification 

 
For the results presented here, all distributed 

generators are located in the distribution system. 
Everything behind the local substation is grouped 
together and modeled as an infinite bus, filling the 
role of the slack bus for the system. Within the 
distribution system model every bus has either a load 
or a generator, or possibly both. 
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The system model is defined by specifying the 
distribution system topology, the location and size of 
loads and the location, size and type of the generators. 
The model inputs (forming the input vector to the 

system of state equations LP& ), specify the location and 
timing of system disturbance (a small increase of 
decrease in demand). The model simulates the 
dynamics due both to disturbances and to specified 
control actions, (for the results presented in this paper 
only primary controls are active). 

The output from the simulation is the dynamic 
behavior of all the state variables, with frequency and 
real power output typically being of greater interest 
than the others. 
 
3. Stability Analysis 
3.1. Sample Systems 

 
The distribution system modeled in the following 

examples is shown in Figure 1, with the line 
parameters defined in [5]. The first example discussed 
has a 1 p.u. steam turbine at bus 11, and a 1 p.u. 
combustion turbine at bus 23 (as well as a slack bus at 
the substation). The load disturbance at bus 21 is a 0.1 
p.u. increase in demand at time equals 2 seconds. 

Figure 2 shows the frequency deviation in the 
primary dynamics from the equilibrium point for this 
system. The third line in the figure represents the 
slack bus. The rotor frequencies for both distributed 
generators are seen to oscillate around the nominal 
60Hz frequency, and settle to a slightly slower value. 
The behavior demonstrated by the system in Figure 2 
is the expected behavior. 
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Figure 1: 30 Bus Distribution System [5] 
 

 
Figure 2: Frequency Deviation from Equilibrium for 
Steam and Combustion Turbines 
 

If the same distribution system is modeled with a 
single hydroelectric generator at bus 11 the frequency 
becomes unstable. With a combustion turbine added to 
the system at bus 23, the instability caused by the 
hydroelectric plant creates instability at the 
combustion turbine bus as well. See Figure 3. Note 
that the instability remains local to the distribution 
system; the slack bus frequency is unaffected, as a 
result of the large inertia used to represent the system 
behind the substation. 

 
3.2. Eigenvalues and Participation Factors 
 

Eigenanalysis of the system matrices, ALCi and A, 
was used to begin identifying the cause of the 
instability. The eigenvalues for the individual 
generators and for the three sample systems 
introduced above are listed in Tables 2 and 3 
respectively (the eigenvalues of ALC for each generator 
and of A for each system). The tables clearly show that 
each generator is individually stable, while the 
systems that include a hydro plant are unstable. (Note 
that the zero eigenvalue for each system is inherent to 
the structure of power system, and does not represent a 
stability problem [10].) 
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Figure 3: Frequency Deviation from Equilibrium for 
Hydroelectric and Combustion Turbines 
 

The cause of the unstable eigenvalues is 
investigated next. If these unstable eigenvalues could 
be uniquely associated with one or more of the state 
variables, then the identified state variable could be 
directly controlled to regain system stability. 
Participation factors, developed fully in reference [14], 
were used for this part of the analysis. A participation 
factor pij is defined as  
 

ijijij vwp =  
 

where wij is the ith entry in the jth left eigenvector, and 
vij is analogous for the right eigenvector. The pij 
provide a measure of the contribution of the ith state 
variable to the jth eigenvalue. Participation factors 
were calculated for the unstable modes for the systems 
discussed in this paper, as well as others with the 
generators or load disturbances located at different 
buses. This analysis identified different state variables 
as causing the instability in the system for each 
different system configuration. These results show that 
the instability is not caused by a single state variable, 
but is more appropriately identified as truly a system 
phenomenon.  
 

Steam Turbine  Combustion Turbine  Hydro Turbine
-0.50 + j1.63  -20.24 + j4.95  -0.03 + j1.48 
-0.50 + j1.63  -20.24 - j4.95  -0.03 - j1.48 

-5.66  -0.12 + j4.83 -7.17
                 -0.12 + j4.83 -0.36  

 

Table 2: Eigenvalues of Individual Generator Models 
 
 

4 CT System  4 CT con't  Hydro & CT
-21.23 + j4.94  -0.46 + j2.95  -20.30 + j2.41
-21.23 - j4.94  -0.46 - j2.95  -20.30 - j2.41
-21.20 + j4.92 -5.00 -6.62
-21.20 - j4.92 -0.67  0.07 + j4.33  
-20.31 + j2.41  -0.07 + j0.22  0.07 - j4.33  
-20.31 - j2.41  -0.07 - j0.22 -0.47 + j2.68  
-20.30 + j2.40 -1.19 -0.47 - j2.68  
-20.30 - j2.40 -0.19 -5.00
 0.18 + j5.72  -1.61 -1.26
 0.18 - j5.72  0.00 -0.9
-0.06 + j4.97  -0.17
-0.06 - j4.97  -0.06 + j0.05  
-0.25 + j3.77 -0.06 - j0.05  
-0.25 - j3.77  0.00

 -20.30 + j2.42  
 

Table 3: Eigenvalues of 30 Bus System Examples 
 
3.3. System Characteristics 

 
Recognizing the instability as a characteristic of 

the system raises the question of: What are the 
significant differences, as related to stability, between 
the two systems, i.e., between the high voltage 
network with large generators and a radial distribution 
system with smaller distributed generators? When 
modeling the hight voltage transmission system it is 
usually assumed that the local dynamics in xLC are 
slow relative to the network dynamics, PG. The 
implication of this assumption is that any change in 
xLC is instantaneously transmitted through the system 
(via the KPE term in the full system matrix A), so that 
the network itself has no affect on the local generators 
dynamics. The radial distribution system with 
relatively high impedance represents a basic change to 
the interconnecting network and its subsequent 
influence on local generator dynamics. A second 
distinction is that the generators on the high voltage 
grid are very large with correspondingly large inertias, 
in comparison to the distributed generators as modeled 
for this paper. 

The two major differences identified, from the 
reference point of the distribution system are i) 
Machine inertias are relatively small, making the 
elements in matrix CM relatively large, and ii) the 
impedance, R and L, of distribution lines is relatively 
large, affecting elements of the Jacobian derived 
matrix KP. 

These two properties result in strong coupling 
between the local state space xLC and the system 
coupling variable PG, as can be seen by referring back 
to an expanded matrix form of equation (2). The 
network term, represented KP reflects a larger 
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coupling parameter between local generator 
frequencies and PG dynamics. The smaller inertias 
compound the effect on the local frequency by being 
too small to damp out the oscillations rapidly. These 
observation of large line impedance and small inertias 
are not surprising. What is unexpected is that they are 
significant enough to potentially affect stability within 
the distribution system. 
 
3.4. Stabilizing the System 

 
The stability problem suggests that new efforts may 

be required in designing local controls to ensure that 
stability will be maintained in a distribution system 
which has numerous distributed generators. Using the 
local state space, equation (2), bounds can be defined 
for the system parameters to ensure stability. Since 
each generator is individually stable, we investigate 
the assumption that if the local system matrix is 
allowed to dominate the local dynamics in the 
interconnected system, then the system as a whole will 
remain stable. Requiring the local dynamics to 
dominate in equation (6) results in the inequality 
 

(4)                  GMLCLC PCxA ≥  
 

Focusing first in the right hand side of this inequality 
leads to setting bounds for CM ( = 1/M), or specifically 
to specifying a minimum inertia or size of plant 
installed (both machine size and rotation frequency 
determine machine inertia). Increasing the value of M 
for the hydro plant does stability the system in the 
models. 

Alternatively, the range of allowed PG values PG
min 

<= PG <= PG
max, could be redefined such that PG

max 
would be restricted to lower values. In actual 
operations this would mean a generator might not be 
able to respond to an increased demand for power, 
even if it were independently economically beneficial 
to do so. 

Stability can also be addressed by focusing on the 
left hand side of the inequality (equation (4) ). A 
general method for specifying local parameter value 
ranges for ALC is to calculate eigenvalue sensitivity to 
the parameters, for the unstable system eigenvalues. 
This calculation is similar to that for the participation 
factors discussed earlier. The sensitivity matrix, Si, for 
the ith eigenvalue is defined to be 
 

[ ] iijkii vwaS ′=∂∂= λ  
 

where wi and vi are the left and right eigenvectors 
respectively for the ith eigenvalue (vi’ is a row vector), 

and the ajk are the elements of the ALC matrix. (Note 
that the diagonal elements of this matrix are identical 
to the participation factors.) 

This matrix was calculated for the two unstable 
eigenvalues for each of the systems with a 
hydroelectric generator. The results show that for the 
local parameters, sensitivity is greatest to the 
parameters in the equation for the gate position. The 
time constant Ts is a factor in each of these parameters 
suggesting that Ts would be a good value to adjust. 

 

 
Figure 4: Gate Opening Ts Increased 
 

Figure 4 shows the system of Figure 3, with the 
time constant for the gate opening of the hydro plant 
increased so that it can not react as quickly to a 
disturbance, ,preventing it from resonating with the 
oscillations. Note that although this second solution 
does solve the stability problem, it also serves to 
challenge one of the anticipated benefits of distributed 
generation, specifically that the fast response 
capabilities of small generators would be beneficial in 
responding quickly to changes in demand and so help 
minimize any disturbance. 
 
3.5. Options for Decentralized Control 

 
As discussed in the introduction, the changing 

utility industry structure will most likely encourage 
increased penetration of distributed generators, and 
therefore increasingly emphasize decentralized versus 
centralized control of both individual generators and 
system level services. In linear system theory the 
ability to have decentralized control is represented by 
having a diagonal system matrix. If the system matrix 
is diagonalizable then the system can be represented 
by independent single order subsystems. If the system 
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matrix is not diagonalizable, but is instead diagonally 
dominant, the subsystems are not fully independent 
but are still identifiable as subsystems with weak 
interconnections. When the subsystems inherently 
include more than a single state variable, 
decentralization is represented by a system matrix 
with a block diagonal dominant (BDD) structure. 

The definition of strict block diagonal dominance 
is  
 

(5)                   
11

∑ ∞

<
∞

−

≠ ijji
ii

A
A  

 

where the Aii are the square diagonal blocks and the 
Aij are the off-diagonal blocks across the same rows 
[11]. To obtain a block structure for the system matrix 
of equation (3) the state vector is reorganized as [xLC1 
PG1 xLC2 PG2 …]T. This ordering groups all state 
variables associated with a single generator together, 
and eliminates the lower right-hand block of zeros. 
Each diagonal block in the system matrix now 
represents a single generator’s extended state space 
and has the following structure 
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Each off-diagonal block in the full system matrix A 
contains a single network coupling tern KPE 
representing the coupling of generator i to the other 
generators on the system. Other elements in the off-
diagonal blocks are 0. 

The system matrix can be partitioned into the block 
structure as outlined above, with each generator 
representing a multivariable subsystem interconnected 
to the other generators via the KPE terms. As 
discovered in the section on stability though, these 
interconnections are not weak in the mathematical 
sense. Applications of the definition in equation (5) 
demonstrates that the system matrix is not block 
diagonally dominant. To facilitate decentralized 
control on the system this matrix must be made BDD 
– part of the continuing work in this research. 
 
4. Summary 

This paper has presented dynamic models and 
described the modeling approach used to simulate the 
decoupled frequency dynamics for a distribution 
system with small, distributed generators. One 
objective of the modeling was to represent each 
generator with a small number of state variables (3 to 

4), and incorporate power output, PG, as the system 
coupling variable (rather than the traditional variable, 
d, rotor angle). Unexpectedly, instability at the 
primary dynamics level was found, and was shown to 
be a system level phenomenon rather than one caused 
by a single state variable. Identification of the 
significant system level characteristics suggested 
various methods for stabilizing the system, requiring 
that close attention be paid to generator selection (size 
or inertia), operating parameters (specifically PG

max) 
and local control design. 

In addition to the instability at the system level, it 
was found that initially the system matrix is not block 
diagonally dominant. This suggest that parameters of 
the system matrix must be restricted to certain values 
or ranges in order to regain a block diagonally 
dominant structure and facilitate decentralized 
control. 
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