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� Comprehensive simulation model of a PHEV battery with LFP cells.
� Without cooling, aggressive driving can cut battery life by 2/3 in hot regions.
� Batteries last 73e94% longer in mild-weather regions than hot regions.
� Air cooling can increase life by a factor of 1.5e6.
� Results are sensitive to end of life criteria.
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a b s t r a c t

Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications
employ thermal management strategies to extend battery life. The effectiveness of thermal management
depends on the design of the thermal management system as well as the battery chemistry, cell and pack
design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric
vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the
effect of thermal management, driving conditions, regional climate, and vehicle system design on battery
life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by
two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-
electric control strategy; larger battery packs can extend life by an order of magnitude relative to small
packs used for all-electric operation; and batteries last 73e94% longer in mild-weather San Francisco
than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5e6, depending on regional
climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

© 2016 Published by Elsevier B.V.
1. Introduction

Plug-in electric vehicles (PEVs) have the potential to reduce
operating cost, greenhouse gas (GHG) emissions, and petroleum
consumption [1,2], but high battery cost is a significant barrier to
PEV adoption [1,3e5]. For many PEVs, the battery is the most
expensive component of the vehicle [6], so if the battery fails to last
the life of the vehicle, battery replacement can significantly harm
Engineering and Department
versity, Pittsburgh, PA 15213,

).
PEV cost competitiveness. The battery industry traditionally de-
fines end-of-life (EOL) as the point where the battery's energy
storage capacity drops by 20% of its initial value or when 30% in-
ternal impedance growth is reached, whichever comes first [7];
however, different vehicle design criteria can imply different EOL
criteria [8].

Battery life is usually characterized in terms of cycle life and
calendar life. Cycle life is the number of complete discharge and
charge cycles that can be expected from the battery before it rea-
ches its EOL criteria e a measure of battery life during active use. In
contrast, calendar life is the time it takes for a battery to reach the
EOL criteria under standby (or storage) conditions [9]. According to
the goals set by US Advanced Battery Consortium (USABC), a plug-

mailto:jmichalek@cmu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpowsour.2016.10.104&domain=pdf
www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
http://dx.doi.org/10.1016/j.jpowsour.2016.10.104
http://dx.doi.org/10.1016/j.jpowsour.2016.10.104
http://dx.doi.org/10.1016/j.jpowsour.2016.10.104


Table 1
LFP cycling fade studies reviewed.

Cell description Temp [�C] C-rate Fade per cycle
(n) or Ah

DOD [%] Cap. Fade Imp. Growth

A123 Datasheet [25] A123 26650
2.3 Ah

25,45,60 Discharge:
1C,2.2C,
Charge:
1C,1.3C

n N/A Yes No

Wang et al. [20] A123 26650
2.3 Ah (paper says 2.2 Ah)

15,45,60a C/2,2C,
6C, 10Cb

Ah 10,50,80,90c Yes No

Peterson et al. [19] A123 26650
2.3 Ah

~25 Simulated drive cycles both Drive cycles
corresponding to
DODs between
34 and 97%

Yes No

Omar et al. [26] 2.3 Ah, 3.3 V
No brand mentioned

�18,0,25,40 Discharge:
1C,5C,
10C,15C
Charge:
0.25C,0.5C,
1C,2C,4C

n 20,40,60,80,100 Yes Yesd

Song et al. [27] 1.2 Ah 18650
No brand

25,55 N/A n N/A Yes No

Li et al. [28] 11 Ah 30, 45 Discharge:
1/3C,4C
Charge:
1/3C, 1.5C

n N/A Yes No

Zhang et al. [14] 16.4 Ah
No brand

�10,0,
25,45

UDDS ne N/A Yes Yes

Groot et al. [18] A123 26650
2.3 Ah

Between 23 and 53 Discharge:
1C,2C,3.75C,4C
Charge:
1C,2C,3.75C,4C

Ah 60%,100% Yes Yes

a It is mentioned that tests were performed at 0 ºC and 25 ºC as well, however test results are not reported in the paper.
b Data provided only for C/2, models provided for other C-rates.
c Not enough data for DOD dependence; it appears to matter at high C-rates, but the model does not include DOD dependence.
d There was actually quite significant resistance growth, but capacity fade was always faster, so no model is provided for impedance growth.
e Capacity fade and impedance growth are measured after 300 and 600 cycles only.
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in hybrid electric vehicle (PHEV) battery is targeted to have 15 years
of calendar life and 5000 cycles of charge depleting, 300,000 cycles
of charge sustaining mode cycle life by 2018 [10,11].

Batteries degrade with time and usage, and degradation de-
pends on the inherent characteristics of the battery such as its
materials and design. Currently, PEVs use Li-ion batteries due to
superior power and energy characteristics. However, battery char-
acteristics such as power, energy, life and safety can vary among Li-
ion battery designs [3]. The main factor governing this is battery
chemistry, which is characterized by the materials used in cathode
and anode. The most common anode material is graphite, however
there are various cathode materials used in automobile applica-
tions [3,12]. Therefore, the Li-ion chemistry is often specified by the
cathode material (assuming that the anode is graphite). Design
parameters at the cell level (shape, electrode thickness, electrolyte
material, etc.) and pack level (distance between the cells, connec-
tion elements, etc.) also affect performance and life.

Apart from the specific type and design of the battery, the
conditions and stress factors during storage and use also affect how
quickly the battery will degrade. There are various factors that
affect battery life such as time, charge/discharge rate, temperature,
and depth of discharge (DOD)/state of charge (SOC). The degree to
which each of these factors affects degradation patterns depends
on the chemistry and design. One type of cathode chemistry that
has been extensively tested in the public literature is LiFePO4 (LFP).
LFP is promising due to its safety and longer life characteristics
[13e15], although it has lower energy density than some alterna-
tive Li-ion chemistries.
Table 1 provides a list of reviewed studies that perform accel-
erated tests at different temperature, discharge/charge current
rates (C-rate) and depths-of-discharge (DoD) to quantify degrada-
tion and to identify the effects of these factors on degradation. Most
of these studies also provide insight on the underlying degradation
mechanisms and conclude that the main mechanism of degrada-
tion for LFP is usable lithium loss due to SEI growth. Although SEI
growth occurs during both storage and cycling, there is more ca-
pacity fade during cycling due to fresh SEI formation in the cracks
that occur on the SEI layer with volume expansion and contraction
during cycling [16,17]. The SEI growth usually increases with tem-
perature and C-rate, however the magnitude varies in different
studies. In addition, asymmetric cycles with different C-rates dur-
ing charge and discharge can lead to different degradation behavior
[18]. While Peterson et al. shows that LFP degradation is indepen-
dent from DoD [19], Wang et al. and Groot et al. [18,20] report
cycling at high DoDmight create significant changes in degradation
at high C-rates. Liu et al. argues that there is not a significant
impedance growth in this chemistry [21]. On the other hand Groot
et al. reports up to 30% impedance growth when the cycle C-rates
are different during charge and discharge [18]. However, capacity
fade is faster than impedance growth in these studies, relative to
common EOL criteria. To sum up, various studies performed on LFP
batteries show differences in the results they report, and there is, at
present, no single model that can describe the degradation
comprehensively.

In contrast, storage fade is primarily dependent on the tem-
perature and the state-of-charge (SOC) at which the cells are stored.



Table 2
Thermal Management Systems Classification [31].

Purpose � Heating
� Heating and Cooling

Cooling medium � Air
� Liquid

Source � Active (cooling medium pre-conditioned before
entering the battery)
� Passive
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Several studies report that cells stored at higher SOC degrade at a
faster rate [22,23]. The difference between capacity fade at two SOC
levels decreases as the SOC levels increase [16,24].

Among the operational factors that affect LFP degradation,
temperature is one of the most significant, because degradation
increases exponentially with rise in the temperature [20,29,30].
Battery temperature is therefore often controlled in order to
improve battery life. This control can be achieved by the various
thermal management systems that are classified in Table 2.
Currently, different vehicles in the market apply different cooling
strategies (e.g.: the Toyota Prius PHEV uses air cooling; the Chevy
Volt has a complex active liquid cooling system; the Nissan Leaf
lacks a thermal management system; and the Tesla Model S, an
electric vehicle with almost three times the energy capacity of the
Nissan Leaf, has an active liquid cooling system.

There are many studies in the literature that examine andmodel
cell/pack level thermal behavior [32e36] and thermal management
design and control for battery packs [37e45]. However, studies that
examine the battery life implications of thermal management are
rare. In addition, the effects of various stress factors on cell level
degradation are explored considerably, however there are only a
few studies that investigate the implications of these factors in real
world vehicle use conditions. Table 3 summarizes the studies that
characterize the regional implications of one or more stress factors
on battery life. Gross and Clark investigate the effect of thermal
management on battery life using a generic battery life model,
whose parameters they estimate based on the assumption that the
capacity fade of the battery at the end of 15 years will be 20% when
stored at 30 �C [46]. They then scale these parameters for other
temperatures, by assuming that each 10 �C increase in temperature
will double the fade rate. Smith et al. uses a comprehensive battery
life model based on nickel-cobalt-aluminum (NCA) chemistry,
however they do not specify a thermal management strategy in
their analysis [47]. The most comprehensive analysis thus far was
performed by Neubauer and Wood [48], in which they used the
Table 3
Studies that characterize the regional implications of battery life.

Regional
comparison

Thermal Management Life mod

Gross and Clark, 2011 Yes Air vs Liquid Function
time. Par
estimate
20% capa
15 years,
with eac

Smith et al., 2012 [47] Yes N/A Function
number
discharge
literature

Neubauer and
Wood, 2014 [48]

Yes No cooling vs liquid
cooling, with three
different control strategies

Function
number
discharge
literature

This study Yes No cooling vs air cooling Function
Ah-throu
Paramete
same battery life model as Smith et al., and compared the effect of
different liquid cooling thermal management strategies on battery
life.

In this study, we aim to assess the regional and drive cycle im-
plications of degradation of a PHEV battery. For this purpose we
construct a comprehensive and modular simulation model to
address three main questions: 1) Howmuch improvement in PHEV
battery life can be obtained with passive air-cooling? 2) How does
this improvement vary across different regions and different
driving and usage profiles? 3) What is the sensitivity of the results
to the model parameters and assumptions? Various case scenarios
are simulated for an air-cooled PHEV battery pack with LiFePO4/
graphite chemistry cells.

In the following sections the approach of the study is described;
details of each module are given with underlying assumptions; the
simulations performed are explained; and finally the results, limi-
tations and future work are discussed.

2. Approach

To address the questions listed above, we begin by creating
usage scenarios for one year of daily driving, charging and rest
conditions and record the battery usage history. We use the battery
usage history to estimate the degradation over consecutive years,
assuming that every year the same usage profile repeats itself.

We consider a vehicle with specifications similar to a Toyota
Prius with a Hymotion ANR26650 LiFePO4/Graphite pack
composed of cylindrical cells manufactured by A123 systems [25].
This choice enables us to draw on prior work and use an air-cooled
system with well-established parameters, and it illustrates the
approach for use in future studies that may examine other vehicle
and battery designs. Based on these assumptions, we develop a
comprehensive simulation model to estimate battery temperature,
current and state of charge profiles under the usage scenarios
mentioned above. The model consists of three main simulation
blocks: driving, charging and rest. In addition to these blocks, there
are four sub-models, which can be used by one or more of the
simulation blocks to perform necessary calculations. These sub-
models are: battery equivalent circuit model (ECM), performance
model, thermal model, and battery life model. For the purposes of
the simulations in this study, we also create a decision algorithm
that decides which simulation block to execute based on the travel
patterns. The interactions between model components as well as
the primary simulation inputs are given in Fig. 1, and each model
component is explained in detail in the following sections.
el Battery chemistry Powertrain Drive cycle
comparison

of temperature and
ameters
d assuming
city fade at 30 �C, in
fade rate is doubled
h 10 �C increase

Not known PHEV BEV Yes

of temperature, time,
of cycles and depth of
. Parameters based on
and experimental data

NCA PHEV Yes

of temperature, time,
of cycles and depth of
. Parameters based
and experimental data

NCA BEV Yes

of temperature,
ghput, C-rate and time.
rs based on literature

LFP PHEV Yes



Fig. 1. Schematic of the modeling and simulation approach followed in the study.
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2.1. Travel data

To estimate daily travel behavior of the vehicle, we use GPS
sample data from the Atlanta Regional Commission (ARC) Regional
Travel Survey with GPS Sub-Sample, available at the Transportation
Secure Data Center (TSDC) of the National Renewable Energy Lab-
oratory (NREL) [49]. The GPS sub-sample contains data for 1653
vehicles. We filtered the data for the vehicle types and models that
might be comparable to plug-in hybrid vehicles available in the
market. We selected four vehicle types; Auto Sedan, Auto 2-Seat,
SUVs and Station Wagons, whose models are newer than the year
2000, which decreased the total number of vehicles to 921. Each of
these vehicles has 3e7 days of travel data information available,
and the total number of travel days in this subset of data is
NGPS ¼ 4940. Here, it is assumed that each travel day in this dataset
represents a different day of a single vehicle. For each GPS travel
day k, the travel profile ð4GPS

k Þ contains information on the number

of trips the vehicle made each day (TGPS
k Þ, the onset ðtSTARTkt Þ and end

times ðtSTARTkt Þ of each trip t on each travel day k, and speed versus

time points for each trip vGPSktt as summarized in Equation (1).

4GPS
k ¼

n
vGPSktt ; t

START
kt ; tENDkt

o
;

t ¼ 0;1; ::; tLENGTHkt

tLENGTHkt ¼
�
tENDkt � tSTARTkt

�
k ¼ 1;2;…;NGPS

t ¼ 1;2;…; TGPSk

(1)

To create a one year long hypothetical usage scenario, we first
assume there are no trips for 121 days of the year during which the
vehicle will be at rest [50]. For the rest of the year, we pick
NYEAR ¼ 244 travel days from NGPS ¼ 4950 available in the GPS data
to represent 1 year of driving conditions. We draw travel days
randomly until we find a set of 244 travel days that total between
11,000 and 15,000 miles, in order to seek data representative of U.S.
driving [51].

To test the sensitivity of the results to drive cycle, we also
perform simulations using two standard fuel economy test cycles
used by the Environmental Protection Agency (EPA). The first cycle,
the Urban Dynamometer Driving Schedule (UDDS), represents city
driving conditions [52]. The second cycle we use is US06, an
aggressive (high acceleration) driving schedule [52]. To incorporate
test cycles into the simulations, we employ two different ap-
proaches, which we describe in Section 2.7.

2.2. Decision algorithm

The decision algorithm decides which block (driving, charging
or rest) to execute in which order based on the travel pattern each
day. If the day is a rest day, the ‘rest’ block is simulated. If it is a
travel day, each block is called in an order that is determined by
onset times of the trips and duration between trips. Charging be-
gins immediately following the last trip of the day. The vehicle is
assumed to be at rest in between trips and after charging until the
next day's trip.

2.3. Simulation procedure

In this section, a sample day of simulations with a single trip is
used to explain the simulation procedure. For this simulation day, it
is assumed that the driving, charging and rest blocks are simulated
one after another.

The Driving block takes trip speed profile v(t) as an input and
uses performance, battery and thermal models to estimate the
dynamic current and temperature profile during the trip. Charging
starts immediately after the last trip of the day. The Charging block
first decides the duration of the charging based on the remaining
capacity in the battery after driving. During this duration, it uses
battery and thermal models to estimate the battery temperature.
Charge duration is calculated as:

tCHG ¼
ð0:9Þ�CRATED�� �FSOC

tDRVEND

��
CRATED�

ICHG
(2)

where tCHG is the charge duration, CRATED is the battery rated
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capacity,FSOC
tDRVEND is the SOC level at the end of driving, and ICHG is the

charging current. We assume the battery is charged up to 90% of its
rated capacity, and full (100%) charging is avoided. We assume
constant current charging at 4.6 A. This value is estimated based on
the Hymotion battery pack specifications, in which it is mentioned
that it takes 5.5 h to charge the 25.3 Ah battery [53]. Once charging
is complete, the rest block determines the duration the vehicle will
be at rest based on the charging duration and the start of the next
day's trip. Rest duration is then used as an input to the thermal
model to estimate battery temperature.

2.3.1. Performance model
The performance model calculates the power drawn from the

battery to sustain a certain speed profile based on the vehicle
specifications and is then used as an input to the battery model and
thermal model to estimate the current and temperature profiles.
The model estimates power assuming two modes of operation:
charge depleting (CD) and charge sustaining (CS) modes. We as-
sume the CDmode to be all-electric, with the battery being the only
power source. The CD mode is maintained until the state-of-charge
(SOC) reaches a minimum preset value, which we set to 20%. In
other words, we assume the SOC swing to be between 90 and 20%.
When the minimum SOC level is reached, the vehicle operation
switches to CS mode. In CS mode, the battery SOC is kept at the
target level. This procedure can be summarized as follows:

Pt ¼
(
PCDt

�
vt ; at ;j

VEH
�
; if t � tCDEND

PCSt
�
vt ; at ;j

VEH
�
; else

)

jVEH ¼
h
mVEH;CDRAG;AFRONT;CRR; hRB; hBW

i
where tCDEND ¼ min

n
t : FSOC

t � FSOC;MIN
o

(3)

where Pt is the power drawn from the battery at time step t, which
is either equal to the power at CD mode ðPCDt Þ or CS mode ðPCSt Þ. vt
and at are the vehicle speed and acceleration during the trip,FSOC

t is
the state-of-charge at time step t, and tCDEND is the time step when

FSOC
t � FSOC;MIN for the first time (FSOC,MIN ¼ 0.2). jVEH is a vector

of constant parameters: vehicle mass (mVEH), drag coefficient
(CDRAG), vehicle frontal area (AFRONT), tire rolling resistance coeffi-
cient (CRR), efficiency of power transfer from regenerative breaking
to battery (hRB) and efficiency of power transfer from battery to
wheels (hRB).

In CD mode, the power load on the battery is calculated using a
similar approach presented in Peterson et al. [19]. The power PCDt
drawn from the battery in CD mode can be calculated using
Equation (4).1
PCDt ¼

8>>>>>>>>><
>>>>>>>>>:

hRB
�
mVEHat þ 1

2
rAIRv2t C

DRAGAFRONT þ CRRmVEHg
�
vt ; reg

�
mVEHat þ 1

2
rAIRv2t C

DRAGAFRONT þ CRRmVEHg
�
vt

hBW
; other

1 In the original Hymotion system the Li-ion battery pack does not receive any
regenerative charging, however the NiMH battery does. Here, since we assume the
full pack is the Li-ion design, we assume regenerative charging is accepted by this
pack.
where g is the gravitational acceleration, and rAIR is the air density.
In the equation “regen” corresponds to regenerative braking that
occurs when at<0.

In CS mode, in order to obtain the battery current and voltage
profile, it is necessary to model the power control strategy. We
adopt the dynamic model of the Toyota hybrid powertrain system
developed by Liu and Peng for this purpose [54]. The MATLAB/
Simulink® based model was developed to test powertrain control
strategies. It takes the vehicle specifications and the drive cycle as
inputs and evaluates the vehicle performance using mathematical
models of the engine, generator, electric motor, controller, and
battery. We modify the Liu and Peng model by replacing its battery
model with the equivalent circuit model described in Section 2.3.2.
We also incorporate a thermal model (Section 2.5). The remainder
of the Simulink model is treated as a black-box function that de-
termines power load on the battery in CS mode ðPCSt Þ. For more
details on the Simulink model the interested reader is referred to
[54,55].
2.3.2. Battery model
The battery model estimates the current and voltage profile of

the battery under a power load. The battery pack consists of 14
modules connected in series. Each module has 44 cells, and the
cells are connectedwith a configuration of 11 parallel - 4 series [56].
Pack current and voltage profiles can be estimated by evaluating
each cell's electrical performance. The current drawn from each cell
of the pack at each time step t is:

It ¼

8>>>>><
>>>>>:

�
Pt þ PAUXt

�.
NCELL;PACK

Vt
; driving

ICHG
.
NCELL;PARALLEL; charging

(5)

where Pt is the total power drawn from the pack at time t, It is the
current drawn from each cell (which is negative during regenera-
tion braking and charging), NCELL, PACK is the total number of cells in
the battery pack, NCELL, PARALLEL is the number of the cells connected
in parallel and Vt is the cell voltage. PAUXt is the power consumed by
the auxiliary equipment. The main auxiliary power we consider in
this study is the HVAC power consumption, which is explained in
more detail in Section 2.5.

The electrical behavior of the cells can be modeled using an
equivalent circuit model (ECM). The generic equations for the cir-
cuit model used in this study can be defined as follows:

V ¼ VOCV � I$ROHM � VD1 � VD2 (6)
en

wise

(4)
_V
D1 ¼ � 1

RD1CD1V
D1 þ 1

CD1 I (7)



2 Heat removed from the battery is considered positive (þ) and heat transfer into
the battery is negative (�).
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_V
D2 ¼ � 1

RD2CD2V
D2 þ 1

CD2 I (8)

In this model, VOCV is the open circuit voltage of the battery,
ROHM is the Ohmic resistance, and V is the battery voltage. The
voltage-drops VD1 and VD2 across the resistance-capacitor (RC)
couples represent the dynamic voltage losses. The current I is
assumed to be positive during discharge. Equations (7) and (8) are
ordinary differential equations, which can be discretized for each
time step.

VD1
tþ1 ¼ VD1

t e
� 1

RD1
t

CD1
t
tS þ RD1t It

�
1� e

� 1
RD1
t

CD1
t
tS
�

(9)

where tS is the sampling period (i.e. the time difference between
two time steps; tS ¼ 1 s in our analysis). Then the battery voltage at
each time step can be solved as:

Vt ¼ VOCV
t � It$ROHMt � VD1

t � VD2
t (10)

The ECM parameters are functions of SOC and battery temper-
ature. Perez et al. estimated the model parameters for A123 Sys-
tems 26650 LFP/graphite cells [57] and they provide the parameters
as look-up tables for each parameter, consisting of their values at 8
different temperature and 9 different SOC index points in Ref. [58].
We estimate the parameters at each time step by linear interpola-
tion between the values provided in each look-up table. For
example, the Ohmic resistance at each time step is:

ROHMt

�
FSOC
t ; TCELLt ;FSOCINDEX; TINDEX

�
(11)

where, FSOC
t is the state of charge and TCELLt is the cell temperature

at each time step t, and FSOCINDEX and TINDEX are the SOC and
temperature indices of the look-up table.

Although some studies showed that the open circuit voltage
(VOCV) depends on the temperature [59], many studies in the
literature neglect the temperature dependence of the open circuit
voltage. In addition, Lam et al. [60] showed that the deviation of
VOCV at different temperatures from its reference value at 25 �C is
less than 2 mV at most temperatures. Therefore, it is a reasonable
approximation to assume that VOCV will not change with temper-
ature and that it depends only on SOC. Herein, we use the SOC
dependent VOCV data from Perez et al. [57] for the simulations:

VOCV
t

�
FSOC
t

�
(12)

2.4. State-of-charge estimation

The state-of-charge (SOC) at each time step needs to be esti-
mated for the interpolation of ECM parameters as well as to decide
in which operation mode the vehicle is operating (CD or CS). In this

study, we approximate FSOC
t as follows:

FSOC
tþ1 ¼

FSOC
t CRATED � It

�
tS

3600

�
CRATED (13)

where CRATED is the cell rated capacity in ampere-hours (Ah) and tS

is the time difference between two steps in seconds. Note that we
define the SOC based on the rated capacity (which is constant)
rather than available capacity (which decreases over time). Our
approximation based on rated capacity is valid until 30% capacity
loss, since we assume that SOC of the battery swings between 90%
and 20%, i.e. only 70% of the capacity is used. To see the effect of this
assumption on degradation, we ran a sensitivity case where SOC is
based on available capacity and we found there can be up to 4% less
degradation in this case. The results from this case study are pro-
vided in the supplemental information.

2.5. Thermal model

The thermal model approximates the battery temperature at
each time step by2:

TBATtþ1 ¼ TBATt þ
_Q
GEN;BAT
t � _Q

TR
t

MBAT tS (14)

where TBATt is the battery temperature, _Q
GEN;BAT
t is the heat gen-

eration rate inside the battery, _Q
TR
t is the heat transferred to or from

the battery, and MBAT is the battery thermal mass.
In constructing this thermal model, a series of assumptions were

made. First, the temperature difference across the cell is neglected.
The temperature of a cylindrical cell under dynamic conditionsmay
vary radially (core and surface temperature difference) due to
different layers of materials the cell spiral consists of, as well as in
longitudinal direction due to the location of tabs and connectors.
What determines the cell degradation and performance is peak
temperatures typically is the hottest part of the cell e typically the
cell core temperature rather than the surface temperature. There
are many studies in the literature that aim to model this thermal
behavior of the cell [61e63], however, none of these studies pro-
vide validation since it is not always easy to measure the core
temperature of the battery. Most of these studies show bymodeling
and simulation that the difference between the cell core and sur-
face temperatures is negligible under low C-rates and may increase
up to 5 �C at higher C-rates. Ye et al. [64], on the other hand, shows
that the temperature difference for a cylindrical LFP cell - with
similar parameters to the cell used in this study - can reach up to
10 �C under strong forced convection conditions, which might alter
the final degradation profiles for the batteries. However, the
possible temperature difference across the cell is assumed to be
negligible in this study, and further investigation of this issue is left
for future work. We also assume that the temperature is uniform
across the battery pack, i.e. there is no cell-to-cell temperature
variance. We neglect any conduction between the cells as well as
between cells and outer materials. Given the cell degradation rate's
non-linear dependence on temperature, the assumption of uniform
temperatures is likely to yield optimistic estimates of battery life.
Zheng et al. [65] and Chiu et al. [66] show that the temperature
difference across cells connected in series can cause the pack
degradation to be 2e6% larger compared to the average cell
degradation. A high-resolution approach for quantifying this effect
would require a more complex thermal model of both the battery
and the thermal management system, and would not be practical
for the type of simulations in this study. Instead, to estimate the
effect of cell-to-cell temperature variation on degradation, we
consider two new scenarios: (1) Optimistic: Each module in the
pack is divided into three sub-modules, where the outlet air from
one sub-module is the inlet to the next. With this approach, we aim
to capture temperature variation caused by air warming while
passing through the module, which creates a lower bound on cell-
to-cell variation. (2) Pessimistic: We assume one cell in the pack
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constantly runs 5 �C hotter than the rest of the pack during oper-
ation e a conservative approach to create an upper-bound. With
the first approach, there is no change in the degradation profile,
whereas in the second approach we observe a 3% increase in
degradation. We report and discuss the results in the supplemen-
tary information.

The heat generated in the battery pack is equal to the sum of the
heat generation in each cell. Heat generation in the pack can be
approximated as:

_Q
GEN;BAT
t ¼ NCELL;PACKIt

�
VOCV
t � Vt

�
(15)

With the formulation above, we have assumed that all cells exist
in an identical state and generate identical amounts of heat. Non-
uniform cell degradation will cause greater heat generation in
more degraded cells placed in series. Note that in this approxima-
tion we neglect reversible heat generation.

The heat transfer mechanisms we consider are the convection
and conduction from the battery pack to cabin and ambient as well
as forced convection heat transfer with air cooling:

_Q
TR
t ¼

(
_Q
TR;FC
t þ _Q

TR;NC
t ; vAIRs0

_Q
TR;NC
t ; vAIRt ¼ 0

(16)

where _Q
TR
t is the total heat transfer from the battery, _Q

TR;FC
t is the

heat transfer by forced air convection, vAIRt is the speed of the air

entering the battery during cooling and _Q
TR;NC
t is the heat trans-

ferred from the battery to the cabin and outside by natural con-

vection and conduction. To estimate _Q
TR;FC
t , we construct an air

cooling model of the battery pack. We evaluate _Q
TR;NC
t using the

thermal network model developed in NREL [48,67]. The details of
these models are explained in the next sections.
2.5.1. Air cooling model
The battery pack is cooled by a fan that draws cabin air to the

battery. We assume a simple on-off thermal control strategy, in
which the fan is turned on and off when the battery temperature
reaches and falls down to pre-determined threshold values, as
given in Equation (17). When the fan is on, the air speed is fixed at
17 m3/h (cubic meter per hour), which is the lowest battery fan
speed for Toyota Prius Hybrid battery [68]:

vAIRt ¼
�
17
	
m3
.
h
i
; TBATt >35oC

0; otherwise
(17)
Fig. 2. (a) A123 Systems Hymotion Li-ion conversion battery pack (Image Source: A123 H
module.
The flow of air is divided in parallel so that same amount of air
passes through each module in the pack [56]. Therefore, we only
model and simulate one single module to obtain the representative
temperature of the whole pack under air-cooling. A picture of the
battery pack, as well as an illustration of the cell configuration in-
side a module is given in Fig. 2.

The heat transfer with forced air convection from cells inside the
module can be estimated by:

_Q
TR;FC
t ¼ NCELL;MODULEhpDCELLDTLMt LCELL (18)

In this equation, h is the overall heat transfer coefficient, DCELL is
the cell diameter, DTLMt is the log mean temperature difference at
each time step and LCELL is the cell length. The overall heat transfer
coefficient h is defined as:

h ¼ NuD$k
AIR
.
DCELL (19)

where NuD is the Nusselt number, and kAIR is thermal conductivity
of air. The cell configuration inside the pack is neither fully aligned
nor fully staggered. However, it has mostly a staggered arrange-
ment and therefore in this study the correlation in Equation (20) by
Zhukauskas [70] for “flow across staggered bank of tubes” at uni-
form surface temperature is used to estimate the Nusselt number.

NuD ¼ C
�
ReD;max

�mðPrÞ0:36ðPr=PrsÞ0:25 (20)

ReD;max is the Reynolds number calculated at maximum air ve-
locity, C andm are constants obtained empirically and tabulated for
ReD,max, and Pr is the Prandtl number. ReD,max and Pr are calculated
at the film temperature, TFILM, which is defined as:

TFILM≡
�
TSURF þ TAIR

�.
2 (21)

where TSURF is the cell surface temperature and TAIR is inlet air
temperature. PrS is calculated at TSURF.

In this study, we assume that air inlet temperature TAIR is equal
to the cabin temperature, which is kept constant at 24 �C. In
addition, we assume that cell temperature is uniform radially and
axially along each cylindrical cell. Therefore, cell surface tempera-
ture is actually the cell temperature overall, i.e. TSURF ¼ TCELL. Since
cell temperature is time dependent, (TCELL(t)), Pr and PrS should also
vary at each time step. However, change of air Prandtl number with
temperature is considerably small, therefore we assume a constant
Prandtl number Pr¼ PrS ¼ 0.71. Therefore, a constant heat transfer
coefficient h is calculated for forced air-cooling.

The log mean temperature DTLMt difference in Equation (18) is
ymotion Animation [69]) (b) An illustration of the cell configuration inside a single



Table 4
Values of coefficient A in equation (29) as given in Wang et al. [20].

CRATE¼ICELL/CCELL 1/2 2 6 10
A 31,630 21,681 12,934 15,512
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defined as:

DTLMt ¼
�
TSURFt � TAIR

�
�
�
TSURFt � TAIROUTt

�
ln
�

TSURF
t �TAIR

TSURF
t �TAIROUT

t

� (22)

where TAIROUTt is the temperature of air leaving the battery, and it
can be calculated by using the relation given in Equation (23),
which can be obtained by equating the heat transferred from the
cell surfaces to air (Equation (18)) to the heat carried away by air. 
TSURFt � TAIROUTt

TSURFt � TAIR

!
¼ exp

 
� pDCELLNCELL;MODULEh

rAIRvAIRt ATcAIR

!
(23)

where rAIR is air density, vAIRt is the air speed, AT is the air inlet area,
and cAIR is the air constant specific heat.
2.5.2. Thermal network model
We estimate the heat transfer from the battery to the ambient

and to the cabin using the thermal network model developed in
Refs. [48,67]. According to this model the heat transferred from the
battery is estimated as:

_Q
TR;NC
t ¼ Kab

�
TBATt � TAMB

t

�
þ Kbc

�
TBATt � TCABt

�
(24)

where TAMB
t , TCABt and TBATt are ambient, cabin and battery tem-

perature. Kac is the thermal resistance between cabin and ambient,
Kab is the thermal resistance between battery and ambient, and Kcb

relates the battery conduction to cabin. Thermal resistances were
estimated by fitting values to the data collected in December 2008
in Golden, CO with a Gen 2 Toyota Prius. Cabin temperature can be
estimated as:

TCABtþ1 ¼ TCABt �
_Q
CAB
t

MCAB (25)

whereMCAB is the vehicle cabin thermal mass, and _Q
CAB
t is the heat

transfer rate from the cabin defined by:
Fig. 3. Percent capacity fade with Ah-processed during cycling of A123 Sy
_Q
CAB
t ¼ TCABt � TAMB

t
Kac þ TCABt � TBATt

Kbc
� _Q

RAD
t þ _Q

HVAC
t (26)

where _Q
RAD
t is the radiative heat transfer and _Q

HVAC
t is the heat

removal from the cabin by HVAC system. We estimate the radiative
heat transfer as:

_Q
RAD
t ¼ _qt

SOLAR
εACAR (27)

_qt
SOLAR is the global diffuse horizontal radiation per unit area

that can be found in “Typical Meteorological Year” database
compiled by NREL for various cities in United States [71]. ε is the
surface emissivity and ACAR is the car surface area. In the model,
_Q
HVAC
t is estimated as:

_Q
HVAC
t ¼

4500 W; TCABt >25oC
�4000W; TCABt <19oC

0; otherwise
(28)

The detailed schematic descriptions with the input-output re-
lationships for each model are provided in the Supplemental
Information.
2.6. Battery degradation model

Li-ion batteries degrade with time and usage. Degradation oc-
curs due to various reactions and processes both in electrolyte and
electrode level, and these can show differences between different
chemistries.

We focus on the LiFePO4 (LFP) chemistry. The main reasons for
this choice are: (1) the cells used in the actual Hymotion battery
pack are of this chemistry, (2) due to its safety and longer life
characteristic, this chemistry is a potential candidate to be used in
automotive applications, and it has been extensively studied in the
stems ANR26650 cell - comparison of results from different studies.



Table 5
Case studies simulated.

Test the effect of: Options

Thermal management No battery thermal management
Air-cooling

Regional Climate San Francisco, CA
Phoenix, AZ
Miami, FL

Driving Cycle GPS data from Atlanta
EPA US06 test cycle
EPA UDDS test cycle

Annual miles driven 12,400 miles
14,700 miles
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public literature [14,19e21,26e28], and (3) in this chemistry, the
main aging is due to capacity loss rather than impedance growth
[19,21], therefore the battery life model can be simplified by
considering only capacity loss criteria. In LFP batteries, the main
aging mechanism is SEI growth, therefore the degradation
modeling approach we follow here is similar to other batteries
where SEI growth is the dominant factor in ageing.

Fig. 3 shows the percent capacity fade versus Ah-processed
obtained from the studies in Table 1 that tested A123 Systems
ANR26650 cells. As can be seen from the figure, measurements
and/or estimations of degradation vary a lot among studies and test
conditions.We select themodel provided byWang et al. as our base
case model, since it provides the most comprehensive analysis
considering the main stress factors.

The generic capacity fademodel described inWang et al. is given
in Equation (29):

qCYC ¼ A$exp

"
�31700þ 370:3� �ICELL
CCELL�

RGAS$TCELL

#�
fAH;TH

�0:55
(29)
Fig. 4. Battery temperature, pack current and pack SOC level estimations from a 17 h dura
Phoenix with GPS data when air-cooling is employed during driving and charging to cool t
period is excluded here to help make more detail visible during the short driving periods.
where qCYC is the percent capacity fade with cycling, ICELL is the
current drawn from (or charged to) the cell, CCELL is the nominal cell
capacity in ampere-hours (Ah), RGAS is the universal gas constant,
TCELL is the cell temperature and fAH;TH is the ampere-hour (Ah)
throughput. A is a constant given at four different C-rates (ICELL/
CCELL) in Table 4. Note that in this equation, the relationship be-
tween degradation and temperature is formulated with an Arrhe-
nius type relation.

The Ah-throughput in this model is defined as the energy
delivered by the cell during cycling. Therefore, it does not involve
the energy recharged to the cell during charging. We assume that
the degradation mechanisms during the charging follow the same
pattern as discharge, and we define a new parameter, Ah-processed
(fAH;PRÞ as the total energy processed in a cell (charge and
discharge). Therefore, replacing fAH;TH with fAH;PR=2 in Equation
(29), we update the model as:

qCYC ¼ A$exp

"
�31700þ 370:3� �ICELL
CCELL�

RGAS$TCELL

#�
fAH;PR

.
2
�0:55
(30)

We assume this generic model can be applied to estimate the
cycling fade at each time step as follows:

qCYCt ¼ Gt$

2
4 qCYCt�1

Gt

! 1
0:55

þ DfAH;PR
t

3
5
0:55

Gt ¼ At$ð1=2Þ0:55$exp
"
�31700þ 370:3� CRATE

t

RGAS$TCELLt

# (31)

where DfAH;PR
t is the ampere-hour processed between the time

steps t and t�1:
tion of a sample day. The sample day is randomly selected from the case simulated in
he pack when its temperature increases above 35 �C. The rest period prior to the 17-h



Fig. 5. Analyzing the drive cycle effect on capacity fade when air-cooling is not active. (a) Comparison of drive cycles in Phoenix. Annual miles driven are 12,400 miles. UDDS and
US06 results are obtained using Approach 2: assuming same driving profile and distance every driving day (b) Comparison of two approaches in using US06 drive cycle. Approach 1:
replace every trip in GPS data with corresponding US06 cycles that matches the same trip distance. Approach 2: assume same miles of travel every day divided into two trips, one in
the morning and one in the evening (c&d) Investigation of capacity fade with US06. Annual miles driven are 14,700. (c) comparison of energy management strategies. (d)
comparison of pack size.
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DfAH;PR
t ¼

Zt
t�1

ICELLðtÞ$dty1
2

����ICELLt

���þ ���ICELLt�1

���� (32)

We estimate At for CRATE
t by using linear interpolation between

the tabulated values given in Table 4.
The capacity loss during storage, i.e. whenever the vehicle is at

rest, is obtained by a model fit to data provided by the cell manu-
facturer [22]. In the given data, the percent capacity loss was
observed to vary linearly with the logarithm of time in days.
Therefore, the model form given in Equation (33) is used to esti-
mate the storage fade. The constant parameters given in the for-
mula are obtained using least squares regression fit to the data.
qSTO ¼
�
100:0202$T

CELL�5:885
�
$log10

�
tSTO

�
(33)
where tSTO is the storage duration in days.
Using this model for the purpose of estimating battery life in

electrified vehicle applications requires several assumptions:

� The cycling tests were performed at static loading profiles, i.e.
using constant current/discharge rates. We assume the same
degradation model will be valid with under dynamic load, and
that we can apply the model at 1-s resolution.

� The tests were performed on single cells only. We assume the
degradation behavior does not changewhen the cells are used in
connection with other cells in a pack.



Fig. 6. Capacity fade comparison between cities using GPS data. No air-cooling is
employed and total annual miles driven is 14,700 miles.
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� The coupled effects of stress factors are not clear. We assume the
relationships observed in these tests are applicable when the
model is used to estimate degradation at various other tem-
perature and C-rate combinations.

� We assume the ageing mechanisms are exactly the same during
charge and discharge. Li et al. shows that fresh SEI formation
with cycling occurs only during charging and although this SEI
peels off and accumulates during discharge, no new SEI for-
mation occurs [16]. In addition, Groot et al. shows that different
charge/discharge current combinations can lead to different
capacity loss profiles depending on the temperature [18]. As an
example, their test results indicate that for temperatures higher
than 30 �C cycling with 1C discharge/3.75 C charge rates cause
faster degradation than cycling with 3.75C both during charge
and discharge.

� When estimating the constant parameter At in Equation (31)
using Table 4, we assume for any C-rate lower or higher than
the minimum andmaximum index values given in the table, the
constant At is equal to its value at either in the lowest or highest
C-rate. Therefore, our estimates of degradation for C-rates
higher than 10C are likely optimistic.

All these assumptions may be causing over or underestimation
of degradation depending on the conditions. However, to Authors'
knowledge, there is no model available in public literature that
would address all these issues. We use sensitivity analysis to
explore alternative assumptions and focus on comparing cases on a
relative, rather than absolute, basis.

2.7. Simulations and sensitivity analysis

Using the procedure and models described above, we perform
various simulations to estimate the effects of air-cooling, regional
climate, and drive cycle on battery life. Table 5 summarizes the case
studies simulated.

Thermal management: To test how much air-cooling improves
battery life we simulate two cases. In the first case, there is no
cooling system for the battery, and the interaction between battery,
ambient and cabin is considered using only the thermal network
model. In the second case, we assume battery is cooled with the
forced convection air-cooling system described in Section 2.5.1.

Regional climate: We perform simulations for three different
cities. Phoenix represents a regionwhere cold hours as well as high
peak temperatures can be observed. Both Miami and San Francisco
show little hourly and daily fluctuations in temperature. However,
in Miami the temperatures are higher, so Miami represents a hot
climate, and San Francisco represents a mild climate in this study.
The factors that change with region are the ambient temperature
and radiation inputs to the thermal model.

Driving cycle: Changing drive cycle affects average vehicle
speed so that it is not possible to compare two different drive cycles
while holding both distance and time of trips constant. We
compare results using two approaches:

Approach 1. In the first approach, the speed profiles in the GPS
data are replaced by UDDS and US06 speed profiles repeated back-
to-back such that the total distance driven remains the same. In
doing this, we assume that the start time of each trip in the GPS
data doesn't change. However, due to different speed profiles, trips
can take longer or shorter with UDDS and US06, and therefore trips
end times are different than the GPS data. This is a particular issue
with UDDS, since it is a low speed cycle and the next trip start time
in the GPS data may be earlier than the prior trip end time under
UDDS driving. This results in instances of more than one trip
occurring during the same hourly bin.

Approach 2. In the second approach we assume the same driving
pattern every day throughout the year, with the same drive cycle
(UDDS or US06). We divide the total annual miles driven to 244
driving days and assume half of this distance is driven in the
morning starting at 8:30 a.m., and the other half is driven in the
evening starting at 5:30 p.m., to represent a daily commute be-
tween home andwork. We assume the battery is only charged after
the last trip of the day and is at rest in between trips.

Annual miles driven:We pick two different sets of driving days
drawn randomly from the GPS data. The first set sums up to a total
distance of 12,400 miles and the second set has an annual mileage
of 14,700 miles. Note that, we make these random selections based
on distance only. Therefore, the two different sets also have other
differences in driving patterns. However, the rest days and the
driving days throughout the year are assumed to be the same across
the two sets.

3. Results and discussion

3.1. Sample daily estimations

Fig. 4 presents some estimation results from a sample simula-
tion day in Phoenix in May. The day starts with a 7.5 h rest period,
which is not shown on the plot. Then there is a short trip and a long
rest period until the next trip. This behavior can represent a daily
commute to work. After the last trip, the battery is charged until
reaching its maximum capacity value, and the vehicle is at rest until
the day ends. For this simulation case, air cooling is employed,
which is also depicted in the first graph: Whenever the tempera-
ture exceeds 35 �C, air cooling kicks in, and temperature starts to
drop. The car is assumed to be outside and unplugged during rest
periods; therefore the radiation effects are also included in calcu-
lating the battery temperature.

3.2. Drive cycle

Fig. 5a shows the degradation profiles of assuming different
driving cycles in Phoenix, in the case of no air-cooling. As expected,
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the US06 drive cycle results in more degradation: battery life is
halved compared to the GPS drive cycles (using 20% capacity loss as
the end of life criteria). UDDS results are comparable to GPS. UDDS
is a milder cycle; however, driving the same distances with UDDS
takes considerably longer compared to GPS.

Fig. 5b shows a comparison of the degradation profiles between
the two approaches we use to perform simulations with US06 data.
As can be seen, assuming the same driving profile every day results
in less degradation compared to replacing trips in the GPS.

In both approaches with US06, degradation is very fast, and
20% capacity loss is reached in less than 3 years. To investigate this
issue and test any model errors, we perform two additional case
studies: In the first case, we test the effect of energy management
strategy by assuming a blended mode CD operation. In a blended
CD mode operation, instead of behaving like a pure electric
vehicle, the PHEV uses a mix of gasoline and electricity until the
usable battery charge is depleted. For this case, we perform both
CD and CS mode simulations using the Toyota Prius control system
model in Simulink described in Section 2.3.1. In the second case,
we investigate the pack size implications and perform the simu-
lations again assuming a pack with 5 times more modules with
the same cell configurations. As expected, in both cases a signifi-
cant reduction in capacity fade is observed. With blended mode
strategy, the battery life quadruples, as shown in Fig. 5c although
Fig. 7. Effect of air cooling on capacity fade and battery life when annual miles driven are 14
drive cycles. US06 simulations are performed using Approach 1. (b) Capacity Fade in Phoe
provided for two cities (c) Improvement in battery life by air-cooling for different cases sim
this may change the amount of gasoline consumed. In the case of a
bigger pack, the degradation rate is slow, and the battery EOL is
not reached after fifteen years as depicted in Fig. 5d. These results
suggest that the cost of a larger battery pack sized to last the life of
the vehicle (with lower current draw and heat generation per cell)
could be lower than the cost of an equivalent battery capacity
spread over multiple smaller packs replaced over time as each
reaches EOL (depending on the pack cost and discount rate) even
if the same cells are used. An additional benefit of larger packs is
that less-expensive cells can often be used [72]. These results are
consistent with the observations that degradation is slower in
large battery packs, and small-battery PHEVs in the marketplace
are typically designed as blended-operation vehicles rather than
EREVs.
3.3. Regional effects

The comparison of capacity fade at three cities is given in Fig. 6.
It is observed that, battery life in San Francisco is 75% longer than
battery life in Phoenix, mainly because less cabin thermal condi-
tioning use in a mild climate decrease the load on the battery,
therefore increasing life. In Miami battery life is one year longer
than Phoenix.
,700 miles. (a) Capacity Fade in Phoenix, comparison of air cooling vs no cooling for two
nix and San Francisco, using GPS data. The comparison of air-cooling vs. no cooling is
ulated. US06 simulations were performed using Approach 1.



Fig. 8. (a) Comparison of battery life for various cases simulated. Vertical line presents the base case (city: Phoenix, drive cycle: GPS, thermal management: none, annual miles
driven ¼ 12,400 miles, battery EOL: 20% capacity fade) (b) Battery life comparison change for US06 cases simulated at 14,700 miles. Vertical line presents the base case (city:
Phoenix, thermal management: none, battery EOL: 20% capacity fade).

T. Yuksel et al. / Journal of Power Sources 338 (2017) 49e64 61
3.4. Effect of thermal management

Air-cooling can improve battery life significantly. In Phoenix,
battery life doubles using the GPS data, and using US06 battery life
is almost 8 times as long, as shown in Fig. 7a. The degree of
improvement also depends on the city. As Fig. 7b shows, for San
Francisco the improvement with air-cooling is less than in Phoenix.
It is also observed that, the seasonal variation seen in the rate of
capacity loss under no cooling condition disappears and the ca-
pacity loss curves become smooth under air-cooling condition. Due
to air-cooling, the effect of peak temperatures is reduced,
decreasing the change in the capacity loss behavior across seasons.
Fig. 7c summarizes the improvement of battery life by air-cooling
for the cases simulated.

3.5. Battery end-of-life criteria
For all the results discussed so far, the battery's end-of-life

(EOL) is assumed to be when it has lost 20% of its capacity.
However, individual drivers might continue using their vehicles
after this threshold, and with some vehicle designs the driver
may not observe any change in range or performance at 20% fade
(e.g.: a sufficiently small operational SOC window). As an
example, if the battery end-of-life is set to 30% capacity loss, in
most of the cases examined the battery life is longer than 15
years.

The change of battery life under various cases compared to base
case simulation in Phoenix is summarized in Fig. 8a. In addition,
Fig. 8b shows the comparison of different cases that were simulated
with a US06 drive cycle.

4. Conclusions

We developed a simulation model of vehicle and battery oper-
ations, heat generation, heat transfer, and battery degradation
during vehicle operation, charging, and rest to estimate PHEV
battery degradation under various scenarios. We use the results to
identify key drivers of battery degradation. We estimate for a base
case of 12,400 miles per year; driving conditions based on GPS data
collected in Atlanta, GA; ambient temperature and solar radiation
based on data from Phoenix, AZ; and a 20% capacity fade end-of-life
criteria that an EREV PHEV with a 5 kWh Li-ion battery pack
composed of cylindrical ANR26650 LiFePO4/Graphite cells manu-
factured by A123 systemswithout air cooling has an expected life of
seven years. This base case represents a fairly aggressive vehicle
design test case, since a relatively small battery pack is being used
as the only power source for the PHEV in charge-depleting mode,
and we expect that our life estimates are likely optimistic due to
some simplifying assumptions such as ignoring temperature gra-
dients among cells in the pack and within each cell. Applying an air
cooling system or relaxing the end-of-life criteria to 30% fade can
more-than double this life estimate, and driving in a milder climate
region can nearly double the life estimate. Milder driving (UDDS)
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can increase life slightly, while aggressive driving (US06) can cut
life by two thirds. The presence of an air-cooling system reduces the
implications of aggressive driving and hot climate, and changing
the PHEV to blended operation or increasing the size of the battery
pack substantially increase battery life.
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Nomenclature
Parameter
4GPS Travel profile from NHTS
tSTART Trip start time, s
tEND Trip end time, s
vGPS Vehicle speed profile from GPS data, m s�1

tCHG Charge duration, s
CRATED Battery rated capacity, Ah

FSOC State-of-charge level
ICHG Charge current, A
P Power drawn from battery, W
v Vehicle speed, m s�1

a Vehicle acceleration, m s�2

FSOC;MIN Min. SOC level allowed
mVEH Vehicle, mass kg
CDRAG Vehicle drag coefficient
AFRONT Vehicle frontal area, m2

CRR Vehicle tire rolling resistance coefficient
hRB Efficiency of power transfer from regenerative braking to

battery
hBW Efficiency of power transfer from battery to wheels
rAIR Air density, kg m�3

PAUX Power consumed by auxiliary equipment, W
NCELL,PACKNumber of cells per pack
ACELL Cell surface area, m2

VOCV Cell open circuit voltage, V
V Cell voltage, V
ROHM Ohmic resistance, U
RD1, RD2 Resistances of the RC couples in battery ECM, U
CD1, CD2 Capacitances of the RC couples in battery ECM, F
VD1, VD2 Voltages across RC couples in battery ECM, V
tS Sampling period, s

FSOCINDEX State of charge index for equivalent circuit model look
up tables

TINDEX Temperature index for equivalent circuit model look up
tables
TBAT Battery temperature, oC
MCAB Vehicle cabin thermal mass, J oC�1

MBAT Battery thermal mass, J oC�1

_Q
GEN;BAT

Heat generation rate inside the battery, W
_Q
TR

Heat transferred to or from the battery, W
I Current drawn from the battery during driving, Amp
NCELL,PACKNumber of cells in the pack
_Q
TR;FC

heat transfer by forced air convection, W
_Q
TR;NC

heat transferred from the battery to the cabin and outside
by natural convection and conduction, W

vAIR Air speed entering the battery when cooling fan is turned
on, m3 h�1

NCELL,MODULE Number of cells in a module
h Overall heat transfer coefficient, W K�1

DCELL Cell diameter, mm
DTLM Log mean temperature difference, oC
LCELL Cell length, mm
NuD Nusselt number
kAIR Thermal conductivity of air, W mK�1

ReD,max Reynolds number calculated at max. air velocity
Pr Prandtl Number
TFILM Film temperature, oC
TSURF Surface temperature, oC
TAIR Air inlet temperature to the battery, oC
TAIROUT Air outlet temperature from the battery, oC
rAIR Air density, Kg m�1

AT Air inlet area, mm2

cAIR Air constant specific heat, J kgK�1

TCAB Vehicle cabin temperature, oC
TAMB Ambient temperature, oC
Kab thermal resistance between battery and ambient, W K�1

Kac thermal resistance between cabin and ambient, W K�1

Kcb Thermal resistance relating battery conduction to cabin,
W K�1

_Q
CAB

Heat transfer rate from the cabin, W
_Q
RAD

Radiative heat transfer, W
_Q
HVAC

heat removal from the cabin by HVAC system, W
_qSOLAR global diffuse horizontal radiation per unit area
ε surface emissivity
ACAR Car surface area, m2

qCYC percent capacity fade with cycling, %
ICELL current drawn from (or charged to) the cell, A
CCELL nominal cell capacity, Ah
RGAS Universal gas constant
fAH;TH ampere-hour (Ah) throughput, Ah
qSTO capacity loss during storage, %
tSTO Storage duration, days
Indices
k Travel day
t trip
t Time step
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